Knitted component with a fused surface region located on a tubular knit structure

Information

  • Patent Grant
  • 11365494
  • Patent Number
    11,365,494
  • Date Filed
    Wednesday, August 7, 2019
    5 years ago
  • Date Issued
    Tuesday, June 21, 2022
    2 years ago
Abstract
A knitted component may include a first side and an opposite second side and a first tubular knit structure having a first portion on the first side and a second portion on the second side, where the first portion is at least partially formed with a first yarn and where the second portion is at least partially formed with a different second yarn, and where the first yarn includes a thermoplastic polymer material with a melting point of about 200° C. or less. The knitted component may further include a fused surface region on the first side of the knitted component formed with the thermoplastic polymer material of the first yarn. The knitted component may further include an inlaid strand extending through a passage formed by the first tubular knit structure between the first portion and the second portion.
Description

Conventional articles of footwear generally include two primary elements: an upper and a sole structure. The upper is generally secured to the sole structure and may form a void within the article of footwear for comfortably and securely receiving a foot. The sole structure is generally secured to a lower surface of the upper so as to be positioned between the upper and the ground. In some articles of athletic footwear, for example, the sole structure may include a midsole and an outsole. The midsole may be formed from a polymer foam material that attenuates ground reaction forces to lessen stresses upon the foot and leg during walking, running, and other ambulatory activities. The outsole may be secured to a lower surface of the midsole and may form a ground-engaging portion of the sole structure that is formed from a durable and wear-resistant material.


The upper of the article of footwear generally extends over the instep and toe areas of the foot, along the medial and lateral sides of the foot, and around the heel area of the foot and in some instances under the foot. Access to the void in the interior of the upper is generally provided by an ankle opening in and/or adjacent to a heel region of the footwear. A lacing system is often incorporated into the upper to adjust the fit of the upper, thereby facilitating entry and removal of the foot from the void within the upper. In addition, the upper may include a tongue that extends under the lacing system to enhance adjustability of the footwear, and the upper may incorporate other structures such as, for example, a heel counter to provide support and limit movement of the heel.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an illustration showing a lateral side view of an example of an article of footwear having pods in accordance with certain aspects of this disclosure.



FIG. 2 is an illustration showing a top view of the article of footwear depicted in FIG. 1.



FIG. 3 is an illustration showing a top view of a knitted component for forming an upper of the article of footwear of FIGS. 1-2.



FIG. 4 is an illustration showing a side cutout view of a pod included in an upper in accordance with the present disclosure, where the pod has three layers.



FIG. 5 is an illustration showing a side cutout view of a pod included in an upper in accordance with the present disclosure, where the pod has four layers.



FIG. 6 is an illustration showing a side cutout view of three pods separated by two edge regions of a knitted component in accordance with the present disclosure.



FIG. 7 is an illustration showing an example of a knitting process for forming a pod (“A”) and an edge region (“B”) of the knitted component of FIG. 6 on a knitting machine.



FIG. 8 is an illustration showing a top perspective view of another embodiment of an article of footwear having pods in accordance with certain aspects of the present disclosure.



FIG. 9 is an illustration showing a top view of an embodiment of an article having pods in accordance with certain aspects of the present disclosure.



FIG. 10 is an illustration showing a top view of an embodiment of an article having irregular pods in accordance with certain aspects of the present disclosure.



FIG. 11 is a photograph showing a front view of an embodiment of an article having a fused surface region formed by a first side of a plurality of tubular knit structures in accordance with certain aspects of the present disclosure.



FIG. 12 is an illustration showing a side section of exemplary tubular knit structures in accordance with certain aspects of the present disclosure.



FIG. 13 is a close-up photograph of a portion of the article of FIG. 11.



FIGS. 14A-14B are illustrations showing a knitting process for forming a first tubular knit structure in accordance with certain aspects of the present disclosure.



FIGS. 15A-15B are illustrations showing a knitting process for forming a second tubular knit structure having an inlaid strand in accordance with certain aspects of the present disclosure.





DETAILED DESCRIPTION

Various aspects are described below with reference to the drawings in which like elements generally are identified by like numerals. The relationship and functioning of the various elements of the aspects may better be understood by reference to the following detailed description. However, aspects are not limited to those illustrated in the drawings or explicitly described below. It also should be understood that the drawings are not necessarily to scale, and in certain instances details may have been omitted that are not necessary for an understanding of aspects disclosed herein, such as conventional fabrication and assembly.


Certain aspects of the present disclosure relate to uppers configured for use in an article of footwear and/or other articles, such as articles of apparel. When referring to articles of footwear, the disclosure may describe basketball shoes, running shoes, biking shoes, cross-training shoes, football shoes, golf shoes, hiking shoes and boots, ski and snowboarding boots, soccer shoes, tennis shoes, and/or walking shoes, as well as footwear styles generally considered non-athletic, including but not limited to dress shoes, loafers, and sandals.


In one aspect, a knitted component may include a first side and an opposite second side and a first tubular knit structure having a first portion on the first side and a second portion on the second side, where the first portion is at least partially formed with a first yarn and where the second portion is at least partially formed with a different second yarn, and where the first yarn includes a thermoplastic polymer material with a melting point of about 200° C. or less. The knitted component may further include a fused surface region on the first side of the knitted component formed with the thermoplastic polymer material of the first yarn. The knitted component may further include an inlaid strand extending through a passage formed by the first tubular knit structure between the first portion and the second portion.


In another aspect, a knitted component may include a first tubular knit structure, the first tubular knit structure having a first portion on a first side of the knitted component and a second portion on a second side of the knitted component. A fused surface region may be formed on the first portion of the first tubular knit structure. An inlaid strand may extend through a passage formed by the first tubular knit structure between the first portion and the second portion.


In another aspect, a method may include knitting a tubular knit structure of a knitted component during a knitting process, the tubular knit structure having a first portion on a first side of the knitted component and a second portion on a second side of the knitted component, where the first portion is at least partially formed with a first yarn and where the second portion is at least partially formed with a different second yarn, and where the first yarn includes a thermoplastic polymer material with a melting point of 200° C. or less. The method may further include inlaying an inlaid strand during the knitting process such that it extends through a passage formed by the tubular knit structure, where the passage extends between the first portion and the second portion.



FIG. 1 is an illustration showing an article of footwear 100, and FIG. 2 is a top view of the article of footwear 100. Referring to FIGS. 1-2, the article of footwear 100 may include an upper 102, where the upper 102 is substantially formed as a textile component. The textile component may be any suitable type of textile, and in some embodiments it may be formed as a knitted component. As shown, the upper 102 may be secured to a sole structure 106. The upper 102 may include a lateral side 108 and a medial side 110. The area where the sole structure 106 joins the upper 102 may be referred to as a biteline 112. The upper 102 may be joined to the sole structure 106 in a fixed manner using any suitable technique, such as through the use of an adhesive, by sewing, etc. The upper 102 may extend partially or completely around a foot of a wearer and/or may be integral with the sole structure 106, and a sockliner may or may not be used. In some embodiments, the sole structure 106 may include a midsole (not shown) and an outsole. The upper 102 may extend under the foot of a wearer and form an underfoot portion, which may be in place of the sole structure 106, if desired.


The upper 102 may additionally include a throat area 114 extending from and an ankle opening 118 leading to the void 120, and a collar 122 may at least partially surround an ankle opening 118. The void 120 of the article of footwear 100 may be configured (e.g., sized and shaped) to receive and accommodate a foot of a person. The throat area 114 may be generally disposed in a midfoot area 124 of the upper 102. The midfoot area 124 of the upper 102 may be located between a heel area 126 and a toe area 128. In some embodiments, an optional tongue (such as the tongue 276 shown in FIG. 8) may be disposed at least partially in the throat area 114, but no tongue is depicted in FIGS. 1-2. If a tongue is included, the tongue may be any type of tongue, such as a gusseted tongue or a burrito tongue. If a tongue is not included, the lateral and medial sides of the throat area 114 may be joined together.


As depicted in FIGS. 1-2, an outer surface 130 of the upper 102 be subdivided into two or more generally defined areas referred to as pods 132. The pods 132 may be at least partially demarcated by edge regions 134 of the upper 102. In some embodiments, the edge regions 134 may substantially or completely surround at least some of the pods 132. Within a given pod 132, the outer surface 130 may be formed primarily of a fused area of material that is heat-processed during the manufacturing of the article of footwear 100. Herein a “fused area” is an area where distinct portion(s) of material forming the upper (e.g., distinct individual strands or yarns formed of thermoplastic polymer material) are partially or substantially melted and then cooled such that the material is bonded together. A fused area is not required to be formed by any specific process. More specific constructions of the pods 132 and the surrounding edge regions 134 are described in further detail below.


At least a portion of the upper 102 may be formed by a knitted component 104 (and at least a portion of the knitted component may be referred to as a “knit element”). FIG. 3 shows the knitted component 104 as it may appear after knitting (e.g., on a flat knitting machine) but before being lasted or otherwise manipulated into a wearable shape in the depicted article of footwear 100 of FIGS. 1-2. While the upper 102 is described herein as being formed primarily of the knitted component 104, it alternatively or additionally could include a textile component formed by a process other than knitting (e.g., weaving) and may also include other materials including but not limited to leather, plastics, rubbers, and any other materials suitable for incorporation into the upper of an article of footwear.


Forming the upper 102 with the knitted component 104 may provide the upper 102 with advantageous characteristics including, but not limited to, a particular degree of elasticity (for example, as expressed in terms of Young's modulus), breathability, bendability, strength, moisture absorption, weight, abrasion resistance, and/or a combination thereof. These characteristics may be accomplished by selecting a particular single layer or multi-layer knit structure (e.g., a ribbed knit structure, a single jersey knit structure, or a double jersey knit structure), by varying the size and tension of the knit structure, by using one or more yarns formed of a particular material (e.g., a polyester material, a relatively inelastic material, or a relatively elastic material such as spandex), by selecting yarns of a particular size (e.g., denier), and/or a combination thereof.


The knitted component 104 may also provide desirable aesthetic characteristics by incorporating yarns having different colors, textures or other visual properties arranged in a particular pattern. The yarns themselves and/or the knit structure formed by one or more of the yarns of the knitted component 104 may be varied at different locations such that the knitted component 104 has two or more portions with different properties (e.g., a portion forming the throat area 114 of the upper 102 may be relatively elastic while another portion may be relatively inelastic). In some embodiments, the knitted component 104 may incorporate one or more materials with properties that change in response to a stimulus (e.g., temperature, moisture, electrical current, magnetic field, or light). For example, the knitted component 104 may include yarns formed of one or more thermoplastic polymer materials (including material composites) that transition from a solid state to a softened or liquid state when subjected to certain temperatures at or above its melting point and then transitions back to the solid state when cooled. The thermoplastic polymer material(s) may provide the ability to heat and then cool a portion of the knitted component 104 to thereby form an area of bonded or continuous material (herein referred to as a “fused area”) that exhibits certain advantageous properties including a relatively high degree of rigidity, strength, and water resistance, for example. Non-limiting examples of thermoplastic polymer materials are polyurethanes, polyamides, polyolefins, and/or nylons.


As shown in FIG. 3, the knitted component 104 may substantially form the pods 132 and the surrounding edge regions 134. When thermoplastic polymer material is included and configured to be fused during a heat-processing step, the thermoplastic polymer material may be exposed on the outer surface 130 of the knitted component 104 only at the pods 132, and other materials may be used to form the outer surface 130 at the edge regions 134. Thus, once heat is applied to the outer surface 130 during a heat-processing step (e.g., steaming or otherwise applying heat after knitting), the result of this process may be the formation of a “shell” on the outer surface 130 of the pods 132. The shell may enhance the stiffness, strength, rigidity, durability, and other characteristics of the article of footwear 100. The enhanced characteristics may provide additional support and structure and may bolster or replace other structural elements (such as a heel counter, brio cables, etc.). Certain methods of heat-processing an outer surface of a knitted component are described in detail in U.S. patent application Ser. No. 15/443,808, filed Feb. 27, 2017, which is herein incorporated by reference in its entirety.


In some embodiments, the heat-processing of the outer surface 130 of the pods 132 may cause the melted thermoplastic polymer material to flow over the edge regions 134 such that the edge regions 134 are at least partially covered by fused material once it has cooled. Alternatively, the fused material may be isolated on the outer surface 130 only adjacent to the pods 132 and may terminate adjacent to the edge regions 134 leaving at least a portion of the outer surface 130 free of the fused material at the edge regions 134. Thus, at least after heat-processing, the edge regions 134 may have a first degree of flexibility, the pods 132 may have a second degree of flexibility, and the first degree of flexibility may be substantially greater than the second degree of flexibility (which may be at least partially attributed to the lack of fused material on the edge regions 134). Similarly, the edge regions 134 may have a first degree of stiffness, the pods 132 may have a second degree of stiffness, and the first degree of stiffness may be substantially less than the second degree of stiffness. The relative degrees of flexibility and stiffness may be compared by applying a force to the respective components and then measuring the amount of displacement through those same components.


Different pods 132 may have identical dimensions, but at least some of the pods 132 may have dimensions that are substantially different. Similarly, the edge regions 134 may be about the same size throughout the knitted component 104, but alternatively the edge regions 134 may vary in size. The sizes and locations of the pods 132 and/or the edge regions 134 may thus be selected to provide the upper 102 with strength, rigidity, protection, and other characteristics where desired, while also providing suitable flexibility, stretchability, and other characteristics at other zones or locations. To illustrate, the pods 132 in a first zone 136 may be larger, on average, than the pods 132 located in a second zone 138, where the first zone 136 is located closer to the heel area 126 and the second zone 138 is located closer to the toe area 128. Thus, the edge regions 134 may be more prevalent in the second zone 138 than the first zone 136 per unit area. As a result, the first zone 136 may have a higher degree of strength, rigidity, durability, and stiffness (along with other characteristics associated with the pods 132) while the second zone 138 may have a higher degree of flexibility, stretchability, and other characteristics associated with the edge regions 134. It is also contemplated that different pods 132 may have different material compositions such that, even correcting for size, the pods 132 provide differing degrees of the associated characteristics. To illustrate, a first pod may have a greater density of a thermoplastic polymer material on the outer surface 130 than a different second pod, and as a result, the first pod may have a greater degree of stiffness than the second pod.


While not required in all embodiments, it is contemplated that the substantial entirety of the heel area 126 may be constructed in a manner similar to the construction of the pods 132 (e.g., such that one large pod 140 forms the majority of the heel area 126). Similarly, substantially the entirety of the toe area 128 may be formed by a large pod 142. Advantageously, the heel area 126 and/or the toe area 128 may bolster or replace heel counter and/or toecap elements to thus offer a degree of desirable rigidity, strength, and structural support to a wearer etc. that is desirable in certain applications. In contrast, other portions such as the collar 122 may be formed with an elastic knit structure, and/or may not be heat-processed, such that the collar 122 is configured to stretch when receiving a foot.


Whether formed of the knitted component 104 or not, the upper 102 may have a single layer or multiple layers. For example, as shown in FIG. 4 (showing a side cutout view of one of the pods 132), at least one pod 132 of the upper 102 may include a first layer 144 and a second layer 146, where the first layer 144 is an outer layer and the second layer 146 is an inner layer nearer the void when incorporated into the article of footwear 100. The knitted component may also have the first surface 154 formed by the first layer 144 (which may include the outer surface 130 of FIGS. 1-3) and the second surface 156 formed by the second layer 146. The second surface 156 and the first surface 154 may face in opposite directions. For example, the first surface 154 may face outward (e.g., such that it is exposed for viewing when the article of footwear 100 is in use), and the second surface 156 may face the void, or interior of the article of footwear 100.


The first layer 144 may include the above-described fused area, such that it can be considered to have formed a “shell” for providing protection and other desirable properties for the outer surface 130, and the second layer 146 may be formed of a material (e.g., elastane, cotton, or polyester) having desirable comfort-related characteristics for contacting a foot or sock of a wearer, such as a desirable elasticity, absorption and/or anti-abrasiveness. A third layer 148 may be located in a pocket 152 that is formed between the first layer 144 and the second layer 146. As described in more detail below, if the upper 102 is formed of a knitted component 104, the third layer 148 may include an inlaid material located at least partially between the first layer 144 and the second layer 146, where the first layer 144 and the second layer 146 are both knitted layers. The third layer 148 may be substantially bonded to the first layer 144 due to heat processing of the material of the first layer 144, but this is not required. More or fewer than three layers are also contemplated. For example, as shown in FIG. 5, a fourth layer 150 may be located between the second layer 146 and the third layer 148, but the fourth layer 150 may alternatively be located in any other location.


In some embodiments, the fused material forming the first layer 144 may be transparent (at least after heat-processing) such that when a viewer looks at the first surface 154, he or she can detect the visual characteristics of the underlying third layer 148. The third layer 148 can be formed/manipulated during the manufacturing process to provide desirable visual effects without limitation, as the third layer 148 may not have the necessity of providing structural characteristics (which may instead be substantially provided by the first layer 144). However, it is also contemplated that the third layer 148 may provide certain structural or other functional characteristics, if desired, such as cushioning. Similarly, the fourth layer 150 may provide cushioning and/or other characteristics, such as additional stiffness, or alternatively, such as a water resistant layer, for example, that may be desired in the upper 102. In some embodiments, the thermoplastic polymer material of the first layer 144 may not be transparent prior to the heat-processing step, and instead may have a color or may be opaque (e.g., white) and may hide or otherwise obscure the third layer 148 from view. This may be advantageous where it is beneficial to easily view the position of the material forming the first layer 144 during manufacturing to ensure quality standards are met.



FIG. 6 is an illustration showing a detailed side-cutout view of a multi-layer knitted component 104 forming the upper 102. The depicted knitted component 104 has a first pod 158, a second pod 160, and a third pod 162. The first pod 158 and the second pod 160 may be separated by a first edge region 164, and the second pod 160 and the third pod 162 may be separated by a second edge region 166. For illustration purposes, in FIG. 6, four yarns (e.g., yarn types having one or more strands) are included: a first yarn 168, a second yarn 170, a third yarn 172, and a fourth yarn 174.


While the yarns 168, 170, 172, 174 can be made of any suitable material, in an exemplary embodiment, the first yarn 168 may be at least partially formed with a thermoplastic polymer material having a suitable melting point that is substantially lower than the melting point and decomposition point of the second yarn 170 (for example, 100° C. lower or more) and also substantially lower than the melting point and decomposition point of the third yarn 172 and fourth yarn 174. Illustrative, non-limiting examples of suitable thermoplastic polymer materials include polyurethanes, polyamides, polyolefins, and nylons. In some embodiments, substantially the entirety of the first yarn 168 may be formed of the thermoplastic polymer material, but alternatively the first yarn 168 may be a yarn with a thermoplastic polymer sheath with a relatively low melting point surrounded by a core that remains stable at higher temperatures. The melting temperature of the thermoplastic polymer material may be, for example, between about 80° C. and about 200° C., such as from about 100° C. to about 125° C. based on atmospheric pressure at sea level. In another embodiment, the thermoplastic polymer may be a nylon co-polymer with a melting point of between about 130° C. and about 150° C., such as about 140° C. Additionally or alternatively, the first yarn 168 may include a thermoplastic polyurethane. Additionally or alternatively, the thermoplastic polymer material may be formed of a material that becomes translucent or transparent when raised above its melting point and then cooled.


The second yarn 170 may be made from a yarn substantially formed of polyester or a polyester in combination with elastane. Such a yarn may provide elasticity and anti-abrasion that is well suited for forming the inner surface of an upper. The melting point or decomposition point of the material(s) forming the second yarn 170 may be relatively high (e.g., above 200° C. or higher, such as 260° C. or higher for certain polyesters) such that the material remains stable during heat processing of the knitted component 104.


Like the second yarn 170, the depicted third yarn 172 may be formed of a material that remains stable during heat processing. In one embodiment, the third yarn 172 may comprise a plurality of polyester yarns having different colors. Advantageously, the third yarn 172 may provide a desirable visual effect when the first yarn 168 forms a transparent shell on the first surface 154 (as described in more detail below). Optionally, the third yarn 172 may additionally or alternatively be formed of a material that provides loft within the pockets 152 to provide the knitted component 104 with a visually-appealing texture where the pods 132 extend outward with respect to the edge regions 134. In one non-limiting embodiment, the third yarn 172 may include a bulking material that expands in size after the knitting process (e.g., in response to a stimulus, such as heat), thus enhancing the optional loft provided within the pod 132. Such yarns are described in detail in U.S. Provisional Application No. 62/355,153, filed Jun. 27, 2016, and U.S. Provisional application Ser. No. 15/631,344, filed Jun. 23, 2017, each of which is incorporated by reference herein in its entirety.


The fourth yarn 174 may be a monofilament yarn, which may be advantageous for providing a durable and inelastic tie (as described in more detail below). Monofilament yarns are formed of a single elongated, continuous filament of a synthetic polymer material. Some monofilament yarns, such as those made of a single filament of an inelastic synthetic polymer material may have substantially no elasticity, or very little, elasticity. For example, a monofilament yarn made of an inelastic synthetic polymer material may have maximum elongation of less than 5% (e.g., the maximum length of the yarn when subjected to a tensile force approaching its breaking force is less than 105% of its length when not subjected to a tensile force), and it is contemplated that a such a yarn could have a maximum elongation of 1%, 0.5%, or even less.


Referring to the knit construction illustrated in FIG. 6, the knitted component 104, including each of the depicted pods and edge regions, may include the first surface 154 (e.g., an outward-facing surface) and the second surface 156. Referring to the second pod 160, the first surface 154 may be formed substantially by the first yarn 168 such that, when heat-process 172 issed, the fusible material of the first yarn 168 fuses to form a rigid first surface 154. In contrast, the first surface 154 of the first edge region 164 may be substantially formed by the second yarn 170. If the second yarn 170 is substantially free of fusible material, and/or the material of the second yarn 170 has a melting point that is higher than a melting point of the first yarn 168, the edge regions 164, 166 may remain relatively flexible with respect to the first pod 158 after heat processing (at least on the first surface 154). Similarly, the first surface 154 of the second edge region 166 may be substantially formed of the second yarn 170 and also remain relatively flexible with respect to the second pod 160 and third pod 162 after heat processing (at least on the first surface 154).


The second surface 156 of the knitted component may be substantially formed of the second yarn 170 throughout the depicted pods and edge regions. Advantageously, when the second yarn 170 is a polyester yarn, for example, the second layer 146 may have characteristics that are desirable for facing a void. For example, the second surface 156 may have relative softness and/or other comfort-related characteristics that are suitable and desirable for contacting the foot or sock of a wearer. As described in more detail below, this construction may be achieved by utilizing a knitting process that forms a multi-layer structure. For example, within the first, second, and/or third pods 158, 160, 162, the first layer 144 having the first surface 154 may be substantially formed on a first needle bed of a flat knitting machine, and the second layer 146 having the second surface 156 may be substantially formed on a second bed of the flat knitting machine such that the pocket 152 is formed between the first layer 144 and the second layer 146. At least a portion of the second yarn 170 may be knit with the first needle bed at the edge regions 164, 166. Other suitable knitting processes are also contemplated (e.g., a technique utilizing transfers between both needle beds). A specific knitting process is described in more detail below with reference to FIG. 7.


The third yarn 172 may be a yarn that is inlaid between the first layer 144 and the second layer 146. While only one third yarn 172 is depicted in FIG. 6, a plurality of yarns may be inlaid between the first layer 144 and the second layer 146, and thus the depicted third yarn 172 may represent a plurality of yarns in reality (e.g., a plurality of yarn types, and/or a plurality of individual yarns of the same type). The third yarn 172 may have one or more visual characteristics to provide the knitted component 104 with desirable visual properties. For example, when the knitted component 104 is viewed from a perspective looking towards the first surface 154, the third yarn 172 may be visible within at least one of the pods 158, 160, 162 due to the transparency of the material of the heat-treated first yarn 168. Thus, it is contemplated that the third yarn 172 may include a variety of colors, visual textures, patters, or other visual properties that may be deemed visually appealing. Optionally, a material (e.g., a material other than a yarn) may be included within the pocket 152 as an alternative to, or in addition to, the third yarn 172. Such a material may enhance the padding or cushioning-related characteristics of the pod. Alternatively, such material may enhance the rigidity or stiffening characteristics of the pod to provide greater structure to the particular region. Once the first yarn 168 is heat-processed, the thermoplastic polymer material of the first yarn 168 may be at least partially bonded to the third yarn 172.


Optionally, the fourth yarn 174 may be included to provide a tie (e.g., a structural connection) between the first layer 144 and the second layer 146 within the pods 158, 160, 162. The fourth yarn 174 may thus be advantageous for providing the pods 158, 160, 162 with structural integrity and/or for reducing movement of the third yarn 172 within the pod. In some embodiments, and as described above, the fourth yarn 174 may be a monofilament yarn or strand. Advantageously, since monofilament strands are often relatively small in diameter and formed of a transparent material while still having relatively high tenacity and strength, the fourth yarn 174 may provide an adequate tie between the layers 144, 146 without interrupting the visual characteristics provided by the inlaid third yarn 172. The resulting knit structure of the knitted component 104 may have suitable strength, durability, rigidity, and other desirable structural characteristics. In other embodiments, the fourth yarn 174 may be excluded such that the first layer 144 and the second layer 146 are separable at the pods 158, 160, 162.



FIG. 7 illustrates exemplary knit diagrams for the pod and edge regions, respectively, and one skilled in the art would know how to accomplish it based on the diagrams alone. In one example, the sequence identified as “A” on the left side of FIG. 7 illustrates one embodiment of a knitting sequence that may be used for the pods 158, 160, 162 of the knitted component 104 as shown in FIG. 6. Similarly, the sequence identified as “B” on the right side of FIG. 7 illustrates a knitting sequence that may be used to form the edge regions 164, 166 of the knitted component 104. As is apparent to a person of ordinary skill in the art, the types of yarns and manner of knitting each yarn may differ between different areas of the knitted component 104, and the sequences depicted and described herein can be slightly or substantially altered to form similar structures.


Referring to sequence “A” of FIG. 7, step 1 represents one or more knitting passes of knitting the first yarn 168 on every other needle of a first needle bed (e.g., a front bed). In step 2, the third yarn 172 may be inlaid between the first needle bed and a second needle bed of the knitting machine. As described in more detail above, the third yarn 172 may represent a plurality of strands or yarns which may be inlaid with one pass or multiple passes. For example, in an exemplary embodiment, the third yarn 172 may include eight (8) inlaid polyester yarns having selected colors or other visual characteristics. In step 3, the fourth yarn 174 may be knit to anchor or secure (e.g., “tie”) the first layer 144 to the second layer 146 using tuck stitching. In step 4, the second yarn 170 may be knitted on every other needle of the back bed, as shown, with the second yarn 170 again being knitted in step 5 on the alternate needles of the back bed. In step 6, the third yarn 172 may again be inlaid. In step 7, the fourth yarn 174 may again be knit to tie the first layer 144 to the second layer 146, using tuck stitches. Finally, in step 8, the first yarn 168 is knit on every other needle of the front bed that was not used in step 1. The resulting structure may be similar to at least one of the pods 158, 160, 162 depicted in FIG. 6.


Referring sequence “B” of FIG. 7, which may represent the formation of one of the edge regions 164, 166 (shown in FIG. 6), step 1 may include inlaying the first yarn 168. In step 2, the third yarn 172 may be inlaid. In step 3, the fourth yarn 174 may be knit to anchor the adjacent yarns using tuck stitching. In step 4, the second yarn 170 may be knitted on the back bed, as shown, with the elastic yarn again knitted in step 5 on the front bed. In step 6, the third yarn 172 may again be inlaid. In step 7, the fourth yarn 174 may again be knit to tie yarns using tuck stitches. Finally, in step 8 the first yarn 168 may be inlaid as shown.



FIG. 8 is an illustration showing a top perspective view of another embodiment of an article of footwear 200. As shown, the article of footwear 200 may include an upper 202 that is formed of a knitted component 204. The upper 202 may include a tongue 276 extending through a throat area 214 of the upper 202. The tongue 276 may be formed as a portion of the knitted component 204 on a knitting machine, or it may be separately formed and then later attached to the knitted component 204 after the knitting process (e.g., via sewing). The article of footwear 200 may also include a fastening element. Any suitable type of fastening element may be used, such as the depicted lace 278, a cable-tensioning system, and/or any other suitable device. The upper 202 may be configured to secure to and communicate with the fastening element such that the fastening element may adjust and/or tighten the upper 202 around a foot of a wearer. For example, the upper 202 may include a set of apertures for receiving the fastening element, but other suitable element(s) may alternatively be used.


Like certain embodiments described above, the knitted component 204 may include one or more pods 232. The pods 232 may incorporate any of the characteristics, constructions, or other features described with respect to the embodiments above. As shown, the pods 232 may be located on the knitted component 204 on an outer surface 230 of the upper 202 in a location other than in the throat area 214. Additionally or alternatively, the pods 232 may be located on the tongue 276. Advantageously, the pods 232 on the tongue 276 may provide protection, rigidity, cushioning, durability, and/or other related characteristics in the throat area 214 without sacrificing the ability of the upper 202 to be tightened around the foot.



FIG. 9 is an illustration showing a top view of an embodiment of an article 300. The article 300 may be a swatch for an article of apparel. Non-limiting examples of articles of apparel include shirts, pants, socks, footwear, jackets and other outerwear, briefs and other undergarments, hats, and the like. Like the examples above, the article 300 may include a plurality of pods 332 surrounded by edge regions 334. In some embodiments, the article 300 may be substantially formed by a knitted component 304. The knitted component 304 may include a construction similar to the construction described with respect to the embodiments above, though other constructions are also contemplated. As shown, the pods 332 may include a variety of shapes and sizes. Certain pods 332 may be substantially formed as triangles, rectangles, pentagons, hexagons, etc. Optionally, at least some of the pods 332 may be demarcated by edge regions 334 that are curved, as shown (see, e.g., pod 380).


In some embodiments, dimensions of the edge regions 334 may vary. For example, a first edge region 382 may have a first thickness, a second edge region 384 may have a second thickness, and the first thickness may be greater than the second thickness. Advantageously, thicker edge regions may be placed in locations where more flexibility, stretchability, and/or other characteristics are desired. Similarly, larger pods 332 may be placed in locations where stiffness, rigidity and/or structure and other related characteristics are desired.


Referring to FIG. 10, in some embodiments, the pods 332 of the article 300 may have an irregular shape (and in some embodiments, only one irregular pod may be included). For example, the edge regions 334 may extend in an irregular path (e.g., a curved, swerved, jagged, or otherwise non-linear path) through the knitted component 304 of the article 300.



FIG. 11 shows another embodiment of a knitted component 402 having an irregular pod with a fused front surface (similar to the above-described pods). Hereafter, the fused front surface (similar to the above-described pods) will be referred to as a “fused surface area 407” for ease of illustration. However, the fused surface area 407 may incorporate any of the compatible features from the above-described pods without the tubular knit structures 408, 410, and in some embodiments, certain pods may be included without tubular knit structures in addition to one or more fused surface areas 407. Like the embodiments described above, one or more knitted webbed regions 412 may be located on the first side 414 (or front) of the knitted component 402 to provide advantageous functional characteristics (e.g., flexibility, stretchability, and/or other functional characteristics) along with unique and desirable visual effects. The webbed regions 412 may be similar, equivalent, and/or identical to the “edge regions” described above.



FIG. 12 is an illustration of tubular knit structures 408, 410 that may be similar or identical to the tubular knit structures 408, 410 of the knitted component 402 shown in FIG. 11. Referring to FIG. 12, a first side 414 of the tubular knit structures 408, 410 may be on the first side 414, and thus the front surface 404, of the knitted component, and a second side 416 of the tubular knit structures 408, 410 may be on a second side 416, and back surface, of the knitted component 402. The tubular knit structures 408, 410 may be formed using a tubular knitting process, as described in more detail below (e.g., with reference to FIGS. 14-15). The tubular knit structures 408, 410 may generally extend longitudinally in a course-wise direction (e.g., in a direction corresponding to the lengthwise dimension of a plurality of courses forming the knitted component 402). Passages or pockets 420 may be formed within the tubular knit structures 408, 410 between the front surface 404 and back surface 406, and in some embodiments (as described in more detail below), the passages may receive a floating or inlaid strand 422, which may be inlaid in a manner similar to the third yarn 428 depicted in FIG. 6.


The first side 414 of the tubular knit structures 408, 410 may be formed primarily (or entirely) with a first yarn 424, and the second side 416 may be formed primarily (or entirely) with a second yarn. In some embodiments, the first yarn 424 may be a yarn including a thermoplastic polymer material configured to be heat-processed. For example, in certain exemplary embodiments, the first yarn 424 may include, and may be substantially formed of, a thermoplastic polymer material (such as a polyurethanes, polyamides, polyolefins, nylons, and/or another suitable thermoplastic polymer material). Thus, the melting temperature of the thermoplastic polymer material of the first yarn may be, for example, between about 80° C. and about 200° C., such as from about 100° C. to about 125° C. based on atmospheric pressure at sea level. In another embodiment, the thermoplastic polymer may be a nylon co-polymer with a melting point of between about 130° C. and about 150° C., such as about 140° C. Additionally or alternatively, the first yarn 424 may include a thermoplastic polyurethane. Additionally or alternatively, the thermoplastic polymer material may be formed of a material that becomes translucent or transparent when raised above its melting point and then cooled. As a result, heat-processing the first side 414 of the knitted component 402 may form a fused area on the front surface, thus enhancing the rigidity, water-resistance, and other characteristics of the front surface.


Further, after heat processing, the front surface of the tubular knit structures 408, 410 may be transparent, thus providing a viewer that is looking at the front surface of the first side 414 with a unique and desirable visual effect. For example, referring to the first tubular knit structure 408, one viewing the front surface 404 may see through the transparent first side 414 of the tubular knit structure 410 and therefore see the interior surface of the second side 416 of the tubular knit structure 410. Advantageously, the first yarn 424 may be utilized to provide desirable functional characteristics on the front surface 404 (regardless of its visual characteristics prior to fusing), and the front side of the fabric can be provided with unique and pleasing aesthetics through colors, textures, patterns, etc. that are imparted by the second yarn 426 on the second side of the tubular knit structure 410.


As mentioned in the paragraph above, the second side 416 of the tubular knit structure 410 may be formed with a second yarn 426 that is distinct from the first yarn 424. For example, the second yarn 426 may be a yarn having a relatively high melting point (relative to the first yarn 424), with specific characteristics desirable for the back surface 406 of the second side 416. In some embodiments, the second yarn 426 may be a multi-filament polyester yarn (e.g., a yarn formed primarily or entirely of a polyester material), which may have a variety of colors for providing unique visual effects (e.g., to the front and/or back surfaces of the knitted component), and which may have characteristics such as softness and anti-abrasiveness that are desirable on a surface that may contact a user (such as an inner surface of an upper for an article of footwear or a skin-contacting surface of an article of apparel).


Optionally, some (or all) of the tubular knit structures may receive an inlaid strand, such as the second tubular knit structure 410 that receives the inlaid strand 422 in its passage 420. In some embodiments, the inlaid strand 422 may be referred to as a “cushioning yarn.” A cushioning yarn, as described herein, may have a full diameter (e.g., when not restricted or compressed) of about 1/16″ or larger, for example, though other cushioning yarns may have other diameters (e.g., ⅛″, ¼″, or even larger). Two non-limiting exemplary examples of cushioning yarns are a 5500 denier version and a 3500 denier version of multifilament polyester yarn that has been texturized to loft. Particular examples are marketed as “LILY” yarns and are sold by Sawada Hong Kong Co. Ltd., though other yarns from other manufacturers may also be cushioning yarns. In this application, one or more cushioning yarns may be inlaid such that it extends through the passage 420 in the second tubular knit structure 410. When the passage 420 of a second tubular knit structure 410 is intersected by the non-tubular webbed region 412, the inlaid strand may be inlaid through the webbed region 412, or may be incorporated into the knit structure of the webbed region 412. In examples where the inlaid strand 422 is a cushioning yarn, the yarn will expand to a natural equilibrium diameter, but will reduce in diameter if pressure is applied to the strand. For instance, if the inlaid strand 422 has a natural equilibrium diameter that is less than the diameter of the passage 420, the inlaid strand 422 will have a diameter at about the natural equilibrium diameter of the inlaid strand 422. However, if the diameter of the passage 420 is less than the natural equilibrium diameter of the inlaid strand 422, the inlaid strand will exert a force from within the passage 420 on the second tubular knit structure 410, imparting an amount of loft to the second tubular knit structure 410, adding thickness to the knitted component 402. This thickness in turn may provide for a buffer between the back surface 406 and any direct heat source applied to the front surface 404 during processing, which may be advantageous for preventing scorching of materials located in yarns forming the back surface 406 (if applicable).


The webbed region 412 shown in FIG. 11 and FIG. 13 may be formed with any suitable knit structure, and in some embodiments may utilize the structures of the above-described webbed regions. The webbed region 412 may be a location where the tubular knit structures 408, 410, and/or the fused surface region 407, terminate. Further, the webbed region 412 may extend through multipole courses (e.g., in the wale-wise direction) and may have an irregular pattern. In one non-limiting embodiment, the webbed region 412 may be a double jersey knit structure (and/or any structure incorporating two needle beds), where the first yarn 424 (i.e., the fusible yarn) is located on the back surface of the second side 416 of the knitted component 402. Advantageously, this orientation may protect the first yarn 424 from heat in the webbed region 412 (thus substantially preventing it from fusing during heat-processing) such that stretchability and other desirable characteristics of the webbed region 412 are not compromised. In this embodiment, the second yarn 426 may substantially form the front surface 404 in the webbed region 412.



FIG. 13 is a photograph showing a magnified view of an area of the knitted component 402 of FIG. 11, which includes tubular knit structures may be constructed in accordance with FIG. 12. For example, the knitted component 402 includes the first tubular knit structure 408, where the front surface 404 is transparent. This transparency may is formed to due fusing thermoplastic polymer material that was initially incorporated into the first side 414 of the first tubular knit structure 408 via first yarn (e.g., the first yarn 424 of FIG. 12). In the photograph, the red color of the first tubular knit structure 408 is a characteristic imparted by a second yarn located on the second side (e.g., back side) of the knitted component 402 (such as the second yarn 426 of FIG. 12). In other words, from the perspective of FIG. 13, the viewer is looking at the interior surface of the second side 416 (FIG. 12) of the first tubular knit structure 408 since the first side 414 (FIG. 12) of the first tubular knit structure 408 is transparent.



FIG. 13 also depicts a second tubular knit structure 410, which appears white in the photograph. The white color is a characteristic provided by an inlaid cushioning yarn, such as a “LILY” yarn referenced above. More specifically, the inlaid strand 422 of the second tubular knit structure 410 is visible since the first side 414 (FIG. 12) of the second tubular knit structure 410 is fused to form a transparent front surface. The second side 416 (FIG. 12) of the second tubular knit structure 410 is not visible since it is blocked by the inlaid strand 422 from the perspective of FIG. 13.


The knitted component 402 of FIG. 13 also includes a webbed region 412 that extends through the knitted component 402 in an irregular pattern. The webbed region 412 may be selectively placed to impart desirable characteristics (e.g., stretchability) to certain areas of the knitted component 402. The first yarn (e.g., the fusible yarn) may be covered by a third yarn on the first side 414 of the knitted component 402 in the webbed region, thus protecting the first yarn from fusing during heat processing. In the depicted embodiment, the webbed region is grey, meaning the so-called “third yarn” has a grey color. The “second yarn,” or red yarn, may be located behind the grey yarn (e.g., due to a plating technique known in the art where certain yarns on visible on certain sides of the fabric, selectively). Notably, the third yarn may be a yarn that is similar or identical to the second yarn, but having a different color. In other embodiments, the second yarn (e.g., the red yarn in FIG. 13) may be on the front surface in the webbed region 412, and it is contemplated that only one colored yarn (e.g., grey or red) may be included in the tubular knit structures 408, 410 (e.g., in addition to the fusible yarn). More than two colored yarns may alternatively be included in some embodiments. Further, not all tubular knit structures necessarily include the same colors of yarns, nor the same types of yarns. Furthermore, it is contemplated that some of the tubular knit structures may not have fusible yarns on either surface, and/or some tubular knit structures may have fusible yarns on the back surface (or even both surfaces).



FIG. 14A is a knit diagram showing a knitting method for forming the first tubular knit structure 408 (e.g., as shown in FIG. 13). As shown, the first yarn 424 is knitted on a first needle bed of the knitting machine, which may be a front needle bed. As described above, the first yarn 424 may be a fusible first yarn 424. On the second or back needle bed, two polyester yarns may be knitted (e.g., the second yarn 426 and the third yarn 428). The second yarn 426 and the third yarn 428 may be plated in such a manner that the second yarn 426 appears on an interior surface of the second side 416 of the first tubular knit structure 408, and thus the third yarn 428 will appear on a back surface of the knitted component 402. If the first yarn 424 is transparent (or becomes transparent after fusing), the second yarn 426 will be visible from a front perspective (as described above). The plating process may be achieved by selecting which feeder (i.e., the feeder of the second yarn 426 or the feeder of the third yarn 428) leads the other during knitting. If this sequence is repeated over a number of courses (e.g., two or more courses) prior to locking the front layer from the front needle bed and the back layer from the back needle bed together, the resulting structure is the first tubular knit structure 408.



FIG. 14B is a knit diagram showing a knitting method for forming a webbed region 412. The webbed region 412 may be located in the same course as the above-described first tubular knit structure 408, and selectively locating the webbed region 412 will selectively form the location and orientation of the webbed region 412 on the knitted component 402 (e.g., as shown in FIG. 11). Referring to FIG. 14B, the first yarn 424 and the second yarn 426 are knitted on the back needle bed, and the third yarn 428 is knitted on the front needle bed. Thus, the third yarn 428 will be substantially the only yarn visible from a front viewing perspective in the webbed region 412. Notably, the first yarn 424 could float (e.g., be located between the needle beds and not looped, similar to an inlaid strand) rather than knit on the back needle bed, which would locate it between both surfaces (e.g., inside the fabric), which may be advantageous when it is desirable to protect it from heat during heat-processing.



FIG. 15A and FIG. 15B are similar to FIG. 14A and FIG. 14B, but FIGS. 15A-B additionally include an inlaid strand 422 (e.g., as shown in the second tubular knit structure 410 of FIG. 13). In FIG. 15A, the inlaid strand 422 may be free between the front and back needle beds during knitting (and thus it may end up between two separable layers of the tubular knit structure), and thus may expand into its default state with a cushioning diameter (as described above). In contrast, the inlaid strand may be compacted when located between the surfaces of the tightly-bound webbed region 412, and it is contemplated that the inlaid strand 422 may not be visually apparent in this region (as is shown in FIG. 13).


Advantageously, by including tubular knit structures and/or cushioning yarns that provide enhanced loft of the tubular knit structures, the knitted component may be heat-processed with a contact-based heat plate (e.g., rather than a steam gun), and such loft of the tubular knit structures will cause the tubular knit structures to contact the heat plate prior to the heat plate making contact with the webbed regions. In effect, the heat plate can avoid scorching or otherwise damaging the yarns on the surface in the webbed region while still providing heat to melt fusible yarn(s) on the front surface of the knitted component. This may also provide the ability for the heat plate to mold texture-proving characteristics in the front surface of the knitted component at select areas.


All of the structures and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While this disclosure may be embodied in many different forms, there are described in detail herein specific aspects of the disclosure. The present disclosure is an exemplification of the principles of the disclosure and is not intended to limit the disclosure to the particular aspects illustrated. In addition, unless expressly stated to the contrary, use of the term “a” is intended to include “at least one” or “one or more.” For example, “a yarn” is intended to include “at least one yarn” or “one or more yarns.”


Any ranges given either in absolute terms or in approximate terms are intended to encompass both, and any definitions used herein are intended to be clarifying and not limiting. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the disclosure are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Moreover, all ranges disclosed herein are to be understood to encompass any and all subranges (including all fractional and whole values) subsumed therein.


Furthermore, the disclosure encompasses any and all possible combinations of some or all of the various aspects described herein. It should also be understood that various changes and modifications to the aspects described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the disclosure and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.

Claims
  • 1. A knitted component, comprising: a first side and an opposite second side;a first tubular knit structure having a first portion on the first side and a second portion on the second side, wherein the first portion is at least partially formed with a first yarn, wherein the second portion is at least partially formed with a different second yarn, and wherein the first yarn includes a thermoplastic polymer material with a melting point of about 200° C. or less;a fused surface region on the first side of the knitted component formed with the thermoplastic polymer material of the first yarn; andan inlaid strand extending through a passage formed by the first tubular knit structure between the first portion and the second portion,wherein at least one end of the first tubular knit structure terminates at a webbed region, andwherein the inlaid strand extends through the webbed region in a compacted state.
  • 2. The knitted component of claim 1, wherein the fused surface region is at least partially transparent or translucent.
  • 3. The knitted component of claim 1, further comprising a second tubular knit structure adjacent to the first tubular knit structure, wherein the first yarn is located on a first portion of the second tubular knit structure, and wherein the second tubular knit structure forms a pocket.
  • 4. The knitted component of claim 3, wherein the pocket formed by the second tubular knit structure is empty.
  • 5. The knitted component of claim 1, wherein the webbed region includes a non-tubular structure.
  • 6. The knitted component of claim 1, wherein the first yarn is located on the second side of the knitted component in the webbed region.
  • 7. The knitted component of claim 1, wherein a polyester yarn is located on the first side of the knitted component in the webbed region.
  • 8. The knitted component of claim 1, wherein the webbed region extends through multiple courses of the knitted component.
  • 9. The knitted component of claim 1, wherein the webbed region comprises a non-linear shape.
  • 10. The knitted component of claim 1, wherein, in the first tubular knit structure, the inlaid strand has a first diameter,wherein, in the webbed region, the inlaid strand has a second diameter, andwherein the first diameter is larger than the second diameter.
  • 11. A knitted component, comprising: a first tubular knit structure having a first portion on a first side of the knitted component and a second portion on a second side of the knitted component;a fused surface region formed on the first portion of the first tubular knit structure; andan inlaid strand extending through a passage formed by the first tubular knit structure between the first portion and the second portion,wherein at least one end of the first tubular knit structure terminates at a webbed region, andwherein the inlaid strand extends through the webbed region in a compacted state.
  • 12. The knitted component of claim 11, wherein the fused surface region is formed by a thermoplastic polymer material having a melting point of 200° C. or less, and wherein the thermoplastic polymer material is included with a first yarn knitted within the first portion of the first tubular knit structure.
  • 13. The knitted component of claim 11, wherein the fused surface region is at least partially transparent or translucent.
  • 14. The knitted component of claim 11, further comprising a second tubular knit structure adjacent to the first tubular knit structure, wherein the fused surface region extends to a first portion of the second tubular knit structure, and wherein a pocket formed by the second tubular knit structure is empty.
  • 15. The knitted component of claim 11, wherein the webbed region includes a non-tubular structure.
  • 16. The knitted component of claim 11, wherein a polyester yarn is located on the first side of the knitted component in the webbed region.
  • 17. The knitted component of claim 11, wherein the webbed region extends through multiple courses of the knitted component.
  • 18. The knitted component of claim 11, wherein the inlaid strand comprises a cushioning yarn.
  • 19. The knitted component of claim 11, wherein the second portion of the first tubular knit structure includes a material with a melting point higher than 200° C.
  • 20. A method of forming a knitted component, the method comprising: knitting a tubular knit structure of the knitted component, the tubular knit structure having a first portion on a first side of the knitted component and a second portion on a second side of the knitted component, wherein the first portion is at least partially formed with a first yarn, wherein the second portion is at least partially formed with a different second yarn, and wherein the first yarn includes a thermoplastic polymer material with a melting point of 200° C. or less; andinlaying an inlaid strand such that it extends through a passage formed by the tubular knit structure, wherein the passage extends between the first portion and the second portion,wherein at least one end of the tubular knit structure terminates at a webbed region, andwherein the inlaid strand extends through the webbed region in a compacted state.
RELATED APPLICATION

This application claims the benefit of U.S. Provisional Application No. 62/716,792, filed Aug. 9, 2018, which is hereby incorporated by reference in its entirety.

US Referenced Citations (19)
Number Name Date Kind
3166822 Starkie Jan 1965 A
5543194 Rudy Aug 1996 A
5795835 Bruner et al. Aug 1998 A
5965467 Stevenson et al. Oct 1999 A
6145348 Hardegree et al. Nov 2000 A
8997529 Podhajny Apr 2015 B1
8997530 Podhajny Apr 2015 B1
20040118018 Dua Jun 2004 A1
20120246973 Dua Oct 2012 A1
20120279260 Dua et al. Nov 2012 A1
20140000043 Boardman et al. Jan 2014 A1
20140150292 Podhajny et al. Jun 2014 A1
20140245633 Podhajny Sep 2014 A1
20150075031 Podhajny Mar 2015 A1
20160088893 Meir Mar 2016 A1
20160090670 Meir Mar 2016 A1
20170224045 Dua Aug 2017 A1
20170245582 Green Aug 2017 A1
20170370027 da Costa Pereira Machado et al. Dec 2017 A1
Foreign Referenced Citations (9)
Number Date Country
105077847 Nov 2015 CN
106174877 Dec 2016 CN
2 236 051 Oct 2010 EP
2 792 261 Oct 2014 EP
2 805 638 Nov 2014 EP
WO 2004060093 Jul 2004 WO
WO 2016053808 Apr 2016 WO
WO 2017151496 Sep 2017 WO
WO 2019028347 Feb 2019 WO
Non-Patent Literature Citations (2)
Entry
International Search Report and Written Opinion dated Dec. 11, 2019 for PCT Application No. PCT/US2019/045879, 19 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2019/045879, dated Feb. 18, 2021, 11 pages.
Related Publications (1)
Number Date Country
20200048800 A1 Feb 2020 US
Provisional Applications (1)
Number Date Country
62716792 Aug 2018 US