This application generally relates to the field of damping of structures and more specifically to a vibratory damping assembly that is configured to overlay or otherwise be disposed in relation to a structure under load, in which the flexible vibratory damping assembly is defined by an elastomeric material made up of a plurality of adjacent loops that are formed in a knitted, weaved, loomed, stitched or crocheted configuration.
Known assemblies are configured to provide damping of structures against dynamic loads, such as those created by oscillating sources, in order to prevent premature failures. These damping assemblies can include, for example, various damping elements that are axially disposed in relation to a defined structure or housing. As the load is applied, dynamic reactions within the assembly absorbs energy, thereby damping the applied load. One example of a hydraulically controlled damping assembly of this type is described in U.S. Pat. No. 3,151,856, the entire contents of which are herein incorporated by reference.
Another version of a vibratory damping apparatus is shown in
While each of the foregoing assemblies are quite effective in damping applied loads, there is considerable complexity for each of these described structures in terms of the number of working parts and associated costs that are required to manufacture same and to effect repair in the event of failure. In addition, the type of structures and arrangement of the various damping elements to which these assemblies can be suitably mounted can be somewhat limited due to their shape, functionalities, and/or size, among other concerns and also based on environments, including input loads imparted to a structure and the associated damping assembly. In addition, this type of assembly also insulates the device to which the assembly is attached. This insulation can be an undesirable attribute, which produces overheating.
As a result, there is a general and pervasive need in the field to develop a vibratory damping assembly that can be effectively used to provide damping over a broad spectrum of input frequencies and in which the apparatus can be used in connection with numerous and varied types of structures with little or no modifications, as well as providing effective damping under various types of loading conditions and environments and further provide ventilation of the assembly to which it is attached.
Therefore and according to a first aspect, there is provided a vibratory damping apparatus comprising at least one knitted section made from an elastomeric material, the at least one knitted section being defined by a plurality of adjacent elastomeric loops that are independently influenced by input loads. As described herein, the term “knitted” refers to any method for which an elastomeric cord(s) or thread(s) can be assembled to create a series of intertwined loops or layers of construction including but not limited to knitting, crocheting, looming, weaving, stitching and the like.
The size of the elastomeric cord and adjacent intertwined loops that are formed, as well as the voided density of the created section(s) and the properties of the elastomeric material, enables a virtually unlimited number of configurations and varied designs in order to effectively tune the damping apparatus for loading conditions/environments that may be encountered.
According to another aspect, there is provided a method of manufacturing a vibratory damping apparatus, the method comprising the steps of providing at least one section of at least one elastomeric material and forming a plurality of adjacent individual loops from the at least one elastomeric material into a knitted arrangement. In addition, these various configurations can be combined and assembled to further influence performance characteristics and benefits.
In at least one version, the knitted arrangement is defined by using elastomeric thread or cord wherein at least one of the density of the resulting mesh, the elastomeric thread diameter and/or loop size of at least one portion of the knitted arrangement can be suitably configured or varied in order to tune damping characteristics of the apparatus in regard to a structure under load.
According to at least one embodiment, at least one outer layer can be added to at least a portion of the formed knitted arrangement in order to create a constrained layer.
According to another aspect, there is provided a method for damping a structure or structural component comprising the steps of providing a sheet-like section defined by a elastomeric material that is formed into a knitted arrangement, the knitted arrangement including a plurality of adjacent loops; and attaching the sheet-like section to a structure or structural component under load wherein the adjacent loops are caused to vibrate independently based upon the load applied
The sheet-like section can be configured to permit it to be wrapped about a structural component, such as a pipe, or the sheet-like section can be otherwise attached.
In at least one version, the method can further include the step of applying a rigid or semi-rigid outer layer onto at least a portion of the sheet-like section. This layer can be metal, by way of example.
Advantageously, the herein described damping apparatus is highly flexible and easily conforms thereby enabling the apparatus to be wrapped about or hung from structural components under load without any or significant modification thereto. As a result, the herein described damping apparatus can be effectively used in conjunction with a varied number of different structures having conventional and/or non-conventional shapes or configurations.
Additionally, the herein described damping apparatus is simple in terms of its overall construction and ease of use in that the entire apparatus can be fabricated as a single or unitary lightweight component made from one or several elastomers. As such, the herein described apparatus has no moving parts, such as pistons or springs, that can prematurely fail and require replacement of either the damping apparatus and/or the component under load. Yet, the unitary apparatus is reliant upon the independence of the individual loops and certain additive features based upon contact between adjacent loops of the knitted configuration to achieve desired damping. In addition, the herein described damping apparatus is capable of absorbing a broad spectrum of input energy and can reliably and effectively provide damping over a broad range of input frequencies.
Still further, the knitted character of the herein described vibratory damping apparatus also enables heat dissipation, for example, when the apparatus is wrapped in overlaying relation or hung from structural components having hot surfaces, such as pipes and the like.
These and other features and advantages will be readily apparent from the following Detailed Description, which should be read in conjunction with the accompanying drawings.
The following description relates to various embodiments of a flexible apparatus formed into a knitted configuration that is suitable for purposes of damping a structural component under load. All described embodiments are intended to be merely exemplary of the inventive concepts described herein. As such, it will be readily apparent that other suitable versions can be contemplated by those of sufficient skill. In addition and throughout the course of this description, various terms are used in order to provide an effective frame of reference with regard to the accompanying drawings. These terms, which may include “first”, “second”, “lateral”, “top”, “upper”, “lower”, “above” and “below” among others, are not intended to limit the overall scope of the inventive concepts, including the appended claims, unless so specifically indicated.
It should further be noted that the accompanying drawings are intended to fully illustrate the salient features of the herein described vibratory damping apparatus in accordance with the various embodiments. As a result, these drawings are not to scale and should not be relied upon by the reader for that purpose.
For purposes of this description, the terms “a”, “an”, “the”, and “said” refers to one or more than one.
As used herein, the terms “comprising”, “comprises”, and “comprise” are open-ended terms definitionally used to transition from a subject recited before the term to one or more elements recited after the term, where the element or elements listed after the term are not necessarily the only elements that make up the subject.
As used herein, the terms “containing”, “contains” and “contain” have the same open-ended meaning as “comprising”, “comprises”, and “comprise”.
As used herein, the terms “including”, “includes”, and “include” have the same open-ended meaning as “comprising”, “comprises”, and “comprise”.
In this application, the term “knitted” refers to a configuration defined by intertwining threads of at least one material into a series of connected loops that can be formed into a two-dimensional pattern. This term as used throughout applies to any method for which an elastomeric cord can be assembled to create intertwined loops or layers of construction including but not limited to knitting, crocheting, looming, weaving, stitching and the like.
The term “elastomer” or “elastomeric material” for purposes of this application refers to any natural or synthetic material having the properties of rubber in which the material is permitted to deform under application of a load but in which the material resumes its original shape upon removal of the deforming force or load.
Referring to
The knitted arrangement in each instance takes on the form of a sheet that can be wrapped directly about a structural component, such as a pipe, and secured thereto using clips, hooks or the like. Alternatively, the knitted apparatus 300A, 300B can be hung from a structural component or could be arranged into other shapes, such as, for example, a knitted sleeve or tubular design that is configured to be fitted in overlaying relation onto an object for purposes of damping.
According to another embodiment, an outer layer, such as a metal tape or other suitably rigid material can be applied onto at least a portion of the knitted arrangement and optionally secured, such as by using adhesives or other attaching means as in the instance of a metal tape. Alternatively, the outer layer can be simply placed in overlaying relation onto a portion of the knitted arrangement. In either event and for purposes of damping, the applied outer layer forms a constrained layer boundary, as compared to the highly flexible knitted arrangement provided by the multiple independent loops of elastomeric material.
In operation and following the attachment of the knitted arrangement to a structural component, an applied load to the structural component causes the adjacent loops of the knitted arrangement to act independently relative to one another, as shown in part according to an apparatus partially shown in section in
Advantageously, the knitted loop/mesh structure of the herein described damping apparatus enables heat to be directed for dissipation, as well as structure borne noise attenuation.
As noted, the formed and knitted elastomeric sheet can be attached in overlaying relation onto a structural component, such as a pipe or rod, or can be hung therefrom. In yet another version, the damping apparatus could be interposed directly between a pair of structures (not shown) in which the knitted elastomeric sheet would be compressed therebetween.
By way of example and referring to
Referring to
Referring to
Referring to
Referring to
According to the depicted comparison, first, second and third resonant modes are respectively formed, at about 120 Hz, 400 Hz and 450 Hz. As shown by the graphical comparison and though each damping apparatus provided some level of effectiveness as indicated at 522, 524 as compared to the undamped element 520, the response 528 of the knitted elastomeric sheet 440 clearly demonstrated the most consistent response in terms of both frequency response and velocity response over the herein broadly defined spectrum of input frequencies.
It will be readily apparent that other modifications and variations can be contemplated that utilize at least one of the inventive concepts described herein and according to following appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1948844 | Dawes | Feb 1934 | A |
2300241 | Van Voorhis | Oct 1942 | A |
2869858 | Hartwell | Jan 1959 | A |
3151856 | Bresk et al. | Oct 1964 | A |
3578028 | Roberts | May 1971 | A |
3667142 | Goodloe | Jun 1972 | A |
3677265 | Brabazon | Jul 1972 | A |
5855733 | Douglas et al. | Jan 1999 | A |
5918319 | Baxter | Jul 1999 | A |
6227010 | Roell | May 2001 | B1 |
6342457 | Best et al. | Jan 2002 | B1 |
6516637 | Fancher et al. | Feb 2003 | B1 |
6737370 | Espe | May 2004 | B2 |
6776769 | Smith | Aug 2004 | B2 |
7043329 | Dias et al. | May 2006 | B2 |
7647946 | Mirmand et al. | Jan 2010 | B2 |
8136884 | Bullard et al. | Mar 2012 | B2 |
8332168 | Mansfield | Dec 2012 | B2 |
8419502 | Liu | Apr 2013 | B2 |
8695668 | Duchemin et al. | Apr 2014 | B2 |
8772187 | Ugbolue et al. | Jul 2014 | B2 |
20030024584 | Godel et al. | Feb 2003 | A1 |
20030096547 | Oka et al. | May 2003 | A1 |
20090181590 | Hansen et al. | Jul 2009 | A1 |
20100112275 | Hansen et al. | May 2010 | A1 |
20120148772 | Avula et al. | Jun 2012 | A1 |
20120153703 | Bogard et al. | Jun 2012 | A1 |
20130105262 | Weisbeck | May 2013 | A1 |
20130284299 | Schooley et al. | Oct 2013 | A1 |
Number | Date | Country |
---|---|---|
0 168 767 | Jan 1986 | EP |
0 735 949 | Nov 1997 | EP |
1 040 910 | Dec 2001 | EP |
1 302 578 | Apr 2003 | EP |
1 092 797 | Jul 2004 | EP |
2 231 909 | Sep 2010 | EP |
2 438 224 | Apr 2012 | EP |
2 648 558 | Oct 2013 | EP |
698837 | Oct 1953 | GB |
2 111 824 | Jul 1983 | GB |
WO 2012078833 | Jun 2012 | WO |
Entry |
---|
Bouncing Into Fashion [H Edition]; Chandler; Jul. 11, 2011; 4 pages. |
Easyclean and Anti-Slip Knit Silicone; Alibaba; http://www.alibaba.com/product-detail/easyclean-and-anti-slip-knit-silicone-543319360.html; 2014; 3 pages. |
European Search Report for EP 15 198 786.4; Dated: May 11, 2016; 8 pages. |
European Office Action for EP 15 198 786.4; dated Jun. 6, 2017; 3 pages. |
European Office Action for EP 15 198 786.4; dated Dec. 12, 2017; 2 pages. |
Number | Date | Country | |
---|---|---|---|
20160178025 A1 | Jun 2016 | US |