The present invention relates to an improved sports article and methods for production of the same.
An article of footwear usually includes two primary elements, an upper and a sole element. Knitting is frequently used for producing textiles for shoe uppers. Knitted uppers may offer great comfort, flexibility, as well as breathability. However, present methods offer limited construction and design possibilities, thus limiting the comfort and functionality, for example the breathability, fit, and support, of existing knitted uppers. For example, presently a collar opening is cut into an upper after knitting, thus producing unnecessary waste and requiring an additional process step in the production.
EP 0105773 A1 relates to socks in general and in particular, to a two-ply sock of improved durability, comfort and construction for an athletic activity, such as jogging.
EP 2922435 B1 relates to an article of footwear having an upper and a sole structure that is secured to the upper. A knitted component of the upper is formed of a unitary knit construction and includes a sock portion and a tongue portion.
JP 2011017097 A1 concerns a method for forming an opening of tubular knitted fabric using a circular knitting machine.
U.S. Pat. No. 5,946,944 A concerns a seamless brassiere, and methods and a blank for making the brassiere are described. In particular, a tubular blank is circularly knit, and first and second walewise extending longitudinal openings are formed along opposite sides of the blank, to form torso and neck openings for the brassiere.
US 2015/0342261 A1 concerns a shoe comprising, from within the shoe, a first flexible textile layer forming a sock, and a reinforcing structure in which the textile layer is arranged and to which it is fixed by fixing means.
It is therefore an object underlying the present invention to provide a shoe upper with an improved level of comfort, fit, support, and breathability. It is also an object underlying the present invention to provide a more efficient method of producing the same.
This object is at least partially achieved by the teachings of the independent claims and in particular by a shoe upper comprising a tubular knitted element, wherein the tubular knitted element comprises an integrally-formed aperture, wherein the aperture is formed by casting-off or binding-off at least one stitch, and wherein the aperture comprises at least a first width.
A shoe in the present context may be any article of footwear, for example a running shoe, a football boot, a hiking boot, a tennis shoe, a golf shoe, a sandal, etc.
A tube in the present context may be essentially cylindrical but allowing for unintentional deviations, for example due to manufacturing imperfections, as well as intentional deviations from a mathematically perfect cylinder. Therefore, “tubular” in the context of the present invention is more understood in a topological sense. The diameter of the tubular knitted element may be engineered to vary along a longitudinal direction of the tubular knitted element depending, for example, on anatomic or athletic requirements. For example, the tubular knitted element may have a larger diameter in a forefoot portion than in a heel portion, etc.
An aperture is to be understood as an opening from which yarns are substantially absent. “Substantially absent” means that there may be some yarns, for example due to manufacturing imperfections or by wear on the knitted upper. The aperture may advantageously serve to facilitate inserting a foot into the shoe upper, or to provide regions of breathability or increased flexibility.
In casting-off, sometimes also called dropping-off, a newly-formed course of loops drops off their noses onto the knocking-over bits. This may be achieved as the needle bar moves away from the pressing-edge when the sinkers and dividers withdraw. In other words, the needles release a loop so that it hangs suspended by its head from the foot of a new loop whose head is still held in a hook of the needles. Casting-off may be performed on a circular knitting machine, for example a small circular knitting machine. Some knitting machines can be programmed directly for a drop-off, while others cannot. In the latter case, it is possible to overcome this problem by using an empty feeder. Therefore, cut-off waste is reduced further. After casting-off, the needles that performed the cast-off remain inactive, i.e. not knitting, in order to create the aperture. “Binding-off” is understood as any process that allows a stitch to be secured in order to prevent unravelling. Binding-off may be performed on a flat knitting machine. After binding-off, the needles that performed the bind-off remain inactive, i.e. not knitting, in order to create the aperture.
After casting-off, binding-off, the method may further comprise not knitting on a certain number of needles for a predetermined number of courses, during the knitting of the tubular knitted element.
An advantage of the shoe upper according to the present invention is that it can be produced easily, quickly, and efficiently. In particular, since the aperture is formed integrally during knitting, no additional step of cutting may be required. Therefore, waste is reduced and the method is simplified, compared to existing methods. A further advantage of the upper according to the present invention is that intricate structural designs may be implemented. For example, it is possible to create overlapping layers with differently styled apertures. Therefore, the upper is more functional than uppers known in the art.
Another advantage of the shoe upper according to the present invention is that the technique of cast-off or bind-off can also be advantageously used to replace time-consuming knitting processes that are used to seal off the edges of a finished knitted upper. Generally, the edges of a finished upper are closed or sealed to prevent the edges from fraying after knitting, for example, during manipulation of the uppers, washing, etc. Thereafter, the cutting process removes these edges from the upper by die-cutting. One such time-consuming knitting process of closing the edge of the knitted upper is called “narrowing.” Narrowing involves moving the stitches to the inside of the fabric being knitted using the transfers. This way the width of the fabric gets smaller. Narrowing is time consuming because the machine is not knitting in that time, but transferring. Another time-consuming process for sealing the edge of the upper may be linking. Therefore, instead of carrying out narrowing or linking on the edges of the knitted upper, that is meant to be later cut and the cut edges thrown away as waste material, the edge of the upper can be quickly and partly secured by means of cast-off. This will save a substantial amount of knitting time per upper and also give an upper with a neat selvedge which does not fray.
The tubular knitted element may include an opening on at least one end of the tubular knitted element, and the aperture may not be joined with the opening. In other words, the aperture and the opening may be separated by knitted yarns of the tubular knitted element.
Therefore, the aperture may, for example, serve to provide additional ventilation, while the opening may be a separate collar opening. Thus, the functionality of the upper is improved.
The tubular knitted element may include an opening on at least one end of the tubular knitted element, and the aperture may be joined to the opening. Therefore, the aperture and the opening may form a large joint opening. In this way, such a large joint opening can be created without additional material waste and in a greater variety of shapes than would be possible with conventional knitting.
A width of the aperture may change essentially gradually. A width may be measured along a course direction. “Essentially gradually” means, in this context, that a width of the aperture changes by the width of less than 10 wales, and in some embodiments, less than 4 wales, or just one or two wales, from a first course to a subsequent second course. If there is more than one wale width in the shoe upper, an average wale width is to be considered for this purpose. It is generally perceived to be more comfortable if properties such as flexibility and support vary gradually, rather than abruptly, over the upper.
The aperture may further include at least a second width, wherein the first and second widths may be different. For example, the width of the aperture may change essentially gradually from the first width to the second width. The second width may be essentially zero, which is to be understood as less than one wale width. In this way, a greater variety of shapes may be provided in order to improve the functionality of the upper.
The tubular knitted element may include a first portion and a second portion, wherein the first portion may be folded into the second portion or the second portion may be at least partially folded over the first portion, thus forming an internal knitted portion and an external knitted portion. In other words, the internal knitted portion may be a first layer and the external portion may be a second layer, and the first layer and the second layer at least partially overlap. The term, “layer” is not to be confused with a double jersey, i.e., a double-layer construction. It should be noted, that it is not necessary for the first layer and the second layer to overlap completely.
This advantageously allows regions of reinforcement to be engineered by the folding of the second portion into the first portion. This can be done by selectively only reinforcing part of the shoe upper without creating sizeable cut-off waste.
The aperture may be arranged at least on one of the first or the second portion, and the aperture may at least partially overlap with the second or the first portion, respectively. For example, the second layer may be at least partially visible through the aperture, which is arranged in the first layer, or vice versa. This allows a region of increased breathability to be engineered without significantly reducing the overall level of support provided by the shoe upper since the regions surrounding the aperture continue to provide support.
The internal knitted portion and the external knitted portion may be connected. This may further increase the stability of the shoe upper. For example, the first and the second layer may be connected by a technique known as linking in an essentially seamless manner. Alternatively, the first and the second layer may be connected by sewing, gluing, by means of a melt yarn (and at least partially melting the meltable yarn), a meltable sheet (and at least partially melting the meltable sheet), a chemical sheet, such as an adhesive sheet or tape, or by any other suitable means.
The shoe upper may include at least one melt yarn having a low-temperature meltable composition. The meltable composition may include a thermoplastic polymer with a melting point of 200° C. or lower, 150° C. or lower, or 100° C. or lower. The latter may also be referred to as a low melt yarn and may be advantageous as it allows lower temperatures to be applied for melting and thus reduces the risk of damage to the knit. Melting the meltable component allows an easy and secure way of consolidating the structure of the tubular knitted element. For example, this may allow for connection of the first layer and the second layer.
The melt yarn may include a sheath and a core, and the sheath may include the low-temperature meltable composition. This type of melt yarn may be advantageous as it continues to provide good tensile strength even after melting.
The melt yarn may at least be arranged adjacent to the aperture. This arrangement is advantageous, as melting the meltable yarn helps to prevent fraying or unravelling around the aperture.
The shoe upper may include at least one elastic yarn. An elastic yarn is to be understood within its common meaning in the field of textile engineering. An elastic yarn allows the upper to conform well to the shape of a foot.
The elastic yarn may include elastane. Elastane is advantageously highly elastic, yet durable.
The elastic yarn may be at least arranged adjacent to the aperture. An elastic yarn may help to prevent fraying or unravelling around the aperture.
At least a portion of an edge of the aperture may include one or more courses of knitted loops of elastic yarn and/or melt yarn. These one or more courses of elastic yarn and/or melt yarn may be dropped-off or bound-off. This arrangement is advantageous, as melting the meltable yarn helps to prevent fraying or unravelling around the aperture. Additionally, or alternatively, the elastic yarn may help to prevent fraying or unravelling around the aperture. This may be one or more complete courses, which is particularly simple to implement.
In particular, the one or more courses of knitted loops may be partially knitted along the edges of the aperture. Just before the cast-off, or bind-off, extra courses may be knitted with only the needles that will cast-off or bind-off. In other words, during a knitting sequence, knitting may be isolated to selected area(s), while the remaining stitches may be held and may not be knit. All held stitches may be knitted at a later stage. By holding stitches, the number of courses changes within the fabric length. This can cause the direction of the knitting to change and/or form a three-dimensional (3D) area in the fabric. This further helps to prevent fraying.
The first portion may include a first yarn and the second portion may include a second yarn, the first yarn has a first yarn thickness and the second yarn has a second yarn thickness, and the first yarn thickness is smaller than the second yarn thickness.
Yarn thickness is closely related to the perceived “softness” of the fabric. The finer the yarn, the softer the fabric. For example, the internal knitted portion may be in contact with the foot of a wearer, or at least with a sock worn by the wearer. It may thus be preferable to use a softer yarn for the internal knitted portion. For example, the first yarn thickness may be less than 25 μm, less than 20 μm, or less than 15 μm. However, finer yarn may also be less abrasion-resistant, and therefore it may be preferable that the second yarn thickness is greater than the first yarn thickness. The term “yarn thickness” may also relate to fiber thickness for fiber yarns, such as natural yarns.
The first portion may include a first type of yarn and the second portion may include a second type of yarn, wherein the first type of yarn and the second type of yarn may be different. A type of yarn is determined by its intrinsic properties, such as, for example, the material that it comprises, or its structure, e.g., sheath-core, vs. single strand, etc., but not merely by its thickness, the number of plies or strands, or the dernier- or Tex-value. For example, two yarns that both comprise polyester but that have a different thickness and/or number of plies are considered to be a same type. By using a different type of yarn, it is further possible to enhance the advantageous effects of selectively creating stability or flexibility and breathability.
The tubular knitted element may be knitted by a circular knitting machine, for example a small circular knitting machine. A circular knitting machine allows high production speeds.
The tubular knitted element may be knitted by a flat knitting machine. Flat knitting allows structures to be constructed that cannot be constructed with circular knitting.
The invention further concerns a shoe including a shoe upper according to the present invention. The shoe may further include a sole element. The sole element may include a midsole having preferred cushioning properties and an outsole to facilitate a preferred level of grip on the ground and protection of the foot. The shoe upper confers the advantageous properties described herein to the shoe according to the present invention.
The invention further concerns a method of producing a shoe upper including: knitting a tubular knitted element; creating an integrally-formed aperture comprising at least a first width in the tubular knitted element by casting-off or binding-off at least one stitch.
The terminology and advantages of the present method have already been described with reference to the shoe upper.
Knitting the tubular knitted element may include knitting an opening on at least one end of the tubular knitted element that is not joined with the aperture. The advantages thereof have already been described with reference to the shoe upper.
Knitting the tubular knitted element may include knitting an opening on at least one end of the tubular knitted element joined with the aperture. The advantages thereof have already been described with reference to the shoe upper.
The method may further include changing a width of the aperture essentially gradually. The advantages thereof have already been described with reference to the shoe upper.
Creating the integrally-formed aperture further includes shaping the aperture so that it includes at least a second width which is different from the first width. For example, the width of the aperture may change essentially gradually from the first width to the second width. The second width may be essentially zero, which is to be understood as less than one wale width. The advantages thereof have already been described with reference to the shoe upper.
The tubular knitted element may include a first portion and a second portion, wherein creating an aperture in the tubular knitted element may include integrally forming the aperture in the first portion and/or in the second portion, and folding the first portion into the second portion or folding the second portion at least partially over the first portion, thus forming an internal knitted portion and an external knitted portion. The advantages thereof have already been described with reference to the shoe upper.
The method may include integrally forming the aperture in at least one of the first or the second portion and arranging the tubular knitted element such that the aperture at least partially overlaps with the second portion or the first portion, respectively. The advantages thereof have already been described with reference to the shoe upper.
The method may further include connecting the internal knitted portion and the external knitted portion. The details and advantages thereof have already been described with reference to the shoe upper.
The shoe upper may include at least one melt yarn, comprising a low-temperature meltable composition, wherein the melt yarn is arranged at least adjacent to the aperture. The details and advantages thereof have already been described with reference to the shoe upper.
The shoe upper may include at least one elastic yarn, wherein the elastic yarn is arranged at least adjacent to the aperture. The details and advantages thereof have already been described with reference to the shoe upper.
The method may further include knitting at least a portion of an edge of the aperture using one or more courses of knitted loops of elastic yarn and/or melt yarn. These one or more courses of elastic yarn and/or melt yarn may be dropped-off or bound-off. The details and advantages thereof have already been described with reference to the shoe upper.
In particular, the one or more courses of knitted loops may be partially knitted along the edges of the aperture. The details and advantages thereof have already been described with reference to the shoe upper.
Knitting may include using a first yarn in the first portion and a second yarn in the second portion, wherein the first yarn has a first yarn thickness and the second yarn has a second yarn thickness, and wherein the first yarn thickness may be smaller than the second yarn thickness. The advantage thereof has already been described herein with reference to the shoe upper.
Knitting may include using a first type of yarn for the first portion and a second type of yarn for the second portion, wherein the first and second types of yarn may be different. The details and advantages thereof have already been described with reference to the shoe upper.
The invention further concerns a method of producing a shoe that includes: producing a shoe upper as described herein, and attaching a sole element to the shoe upper. The details and advantages thereof have already been described with reference to the shoe.
In the following, exemplary embodiments of the invention are described with reference to the figures. The figures show:
In the following, only some possible embodiments of the invention are described in detail. It is to be understood that these exemplary embodiments can be modified in a number of ways and combined with each other whenever compatible and that certain features may be omitted in so far as they appear dispensable.
In this example, the tubular knitted element 10 includes an opening 14 at one end of the tubular knitted element 10, and, the aperture 11 is joined to the opening 14. The shoe upper therefore provides a great amount of torsional freedom, which may be advantageous in sports that require a quick change of direction.
Some embodiments described herein relate to a shoe upper having a tubular knitted element, wherein the tubular knitted element comprises an integrally-formed aperture, and wherein the aperture is formed by casting-off or binding-off at least one stitch, and wherein the aperture comprises at least a first width.
In any of the various embodiments described herein, a width of the aperture may change essentially gradually.
In any of the various embodiments described herein, the internal knitted portion and the external knitted portion may be connected.
In any of the various embodiments described herein, the shoe upper may include at least one melt yarn having a low-temperature meltable composition. In some embodiments, the melt yarn may at least be arranged adjacent to the aperture.
In any of the various embodiments described herein, the shoe upper may include at least one elastic yarn.
In any of the various embodiments described herein, the tubular knitted element may be knitted by a small circular knitting machine.
In any of the various embodiments described herein, the tubular knitted element may be knitted by a flat knitting machine.
Some embodiments described herein relate to a method of producing a shoe upper that includes knitting a tubular knitted element, and creating an integrally-formed aperture, comprising at least a first width, in the tubular knitted element by casting-off or binding-off at least one stitch.
In any of the various embodiments described herein, the method of producing a shoe upper may further include changing a width of the aperture essentially gradually.
In any of the various embodiments described herein, a width of the aperture changes essentially gradually from a first width to a second width.
In any of the various embodiments described herein, the method of producing a shoe upper may further include knitting at least a portion of an edge of the aperture using one or more courses of knitted loops of elastic yarn and/or melt yarn.
In any of the various embodiments described herein, knitting may include using a first yarn in the first portion and a second yarn in the second portion, wherein the first yarn has a first yarn thickness and the second yarn has a second yarn thickness, and wherein the first yarn thickness is smaller than the second yarn thickness.
In any of the various embodiments described herein, knitting may include using a first type of yarn for the first portion and a second type of yarn for the second portion, wherein the first and second types of yarn are different.
Number | Date | Country | Kind |
---|---|---|---|
10 2018 213 242.9 | Aug 2018 | DE | national |