A variety of articles are formed from textiles. As examples, articles of apparel (e.g., shirts, pants, socks, footwear, jackets and other outerwear, briefs and other undergarments, hats and other headwear), containers (e.g., backpacks, bags), and upholstery for furniture (e.g., chairs, couches, car seats) are often at least partially formed from textiles. These textiles are often formed by weaving or interlooping (e.g., knitting) a yarn or a plurality of yarns, usually through a mechanical process involving looms or knitting machines. One particular object that may be formed from a textile is an upper for an article of footwear.
Knitting is an example of a process that may form a textile. Knitting may generally be classified as either weft knitting or warp knitting. In both weft knitting and warp knitting, one or more yarns are manipulated to form a plurality of intermeshed loops that define a variety of courses and wales. In weft knitting, which is more common, the courses and wales are perpendicular to each other and may be formed from a single yarn or many yarns. In warp knitting, the wales and courses run roughly parallel.
Although knitting may be performed by hand, the commercial manufacture of knitted components is generally performed by knitting machines. An example of a knitting machine for producing a weft knitted component is a V-bed flat knitting machine, which includes two needle beds that are angled with respect to each other. Rails extend above and parallel to the needle beds and provide attachment points for feeders, which move along the needle beds and supply yarns to needles within the needle beds. Standard feeders have the ability to supply a yarn that is utilized to knit, tuck, and float. In situations where an inlay yarn is incorporated into a knitted component, an inlay feeder is typically utilized.
The present disclosure can be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the present disclosure.
Various aspects are described below with reference to the drawings in which like elements generally are identified by like numerals. The relationship and functioning of the various elements of the aspects may better be understood by reference to the following detailed description. However, aspects are not limited to those illustrated in the drawings or explicitly described below. It also should be understood that the drawings are not necessarily to scale, and in certain instances details may have been omitted that are not necessary for an understanding of aspects disclosed herein, such as conventional fabrication and assembly.
One general aspect of the present disclosure includes a method, the method including knitting a first portion of a knitted component on a first region of a knitting machine, knitting a second portion of the knitted component on a second region of the knitting machine, moving the first portion of the knitted component towards the second portion of the knitted component by moving a first needle bed of the knitting machine relative to a second needle bed of the knitting machine, and knitting at least one course with the knitting machine that connects the first portion of the knitted component to the second portion of the knitted component.
Without limitation, the method may further include transferring at least one loop of the first portion of the knitted component from the second needle bed to the first needle bed prior to moving the first needle bed relative to the second needle bed. Without limitation, the method may further include transferring at least one loop of the second portion of the knitted component from the first needle bed to the second needle bed prior to moving the first needle bed relative to the second needle bed. Without limitation, the method may further include knitting a third portion of the knitted component after connecting the first portion of the knitted component to the second portion of the knitted component, where the third portion of the knitted component includes at least one double-jersey knit structure. Without limitation, the method may further include knitting a fourth portion of the knitted component and connecting the fourth portion of the knitted component to the third portion of the knitted component with a second connection course formed on the knitting machine. The first portion of the knitted component may be formed with a first feeder, where the second portion of the knitted component is formed with a second feeder, and where the third portion of the knitted component is formed with at least one of the first feeder and the second feeder. Alternatively, the first portion of the knitted component is formed with a first feeder, where the second portion of the knitted component is formed with a second feeder, and where the third portion of the knitted component is formed with a third feeder. The at least one course may be formed on both of the first needle bed and the second needle bed. In some embodiments, movement of the first needle bed is relative to the second needle bed is controlled by a programmed actuator. Without limitation, the method may further include using a computing interface to input electronic instructions to the actuator. The knitted component may include an upper for an article of footwear, where at least one of the first portion and the second portion forms a tongue. The first portion of the knitted component may include a double-jersey knit structure at a location adjacent to the at least one course. The second portion of the knitted component may include a double-jersey knit structure at the location adjacent to the at least one course. The at least one course may include a connection course, where the location is located immediately adjacent to the connection course in a direction perpendicular the course-wise direction.
Another general aspect of the present disclosure includes a knitted component. Without limitation, the knitted component may have a first portion and a second portion, where at least one of the first portion and the second portion includes a double-jersey knit structure. At least one connection course may secure the first portion to the second portion, where the at least one connection course extends longitudinally in a first direction, where in a flat orientation, the first portion overlaps the second portion at a location immediately adjacent to the connection course in a second direction, and where the second direction is perpendicular to the first direction.
Optionally, the first portion of the knitted component may include a double-jersey knit structure and the second portion may additionally or alternatively include a double jersey knit structure. The connection course may include a double-jersey knit structure. In some embodiments, the knitted component forms an upper for an article of footwear, where at least one of the first portion and the second portion forms a tongue of the upper.
Another general aspect of the present disclosure includes an upper for an article of footwear. The upper may include a knitted component with a first portion and a tongue secured via a connection course of the knitted component, where a forward terminus of the tongue is coextensive with the first portion and overlaps the first portion such that it is covered by the first portion from an external perspective. In some embodiments, the forward terminus of the tongue includes a double-jersey knit structure. An area of the first portion that overlaps the forward terminus of the tongue may additionally or alternatively include a double-jersey knit structure. The connection course may additionally or alternatively include a double-jersey knit structure.
Another general aspect of the present disclosure relates to a knitting machine. The knitting machine may include a first needle bed with a first plurality of needles, a second needle bed with a second plurality of needles, where the first plurality of needles and the second plurality of needles define an intersection axis. The knitting machine may further include an actuator for moving at least one of the first needle bed and the second needle bed in a direction parallel to the intersection axis, where the first needle bed is displaceable relative to the second needle bed, via the actuator, a distance greater than a length containing at least five consecutive needles of the first needle bed.
In some embodiments, the actuator may be capable of moving the first needle bed and the second needle bed relative to a frame member of the knitting machine. The first needle bed may be movable relative to the second needle bed, via the actuator, a distance greater than a length containing at least twenty consecutive needles of the first needle bed. The actuator may include a motor, and/or the actuator may be operable to move at least one of the first needle bed and the second needle bed while at least one of the first needle bed and the second needle bed performs a knitting process.
One or more rails 106 may extend above and parallel to the intersection and may provide attachment points for one or more feeders 108. Herein, the rails 106 are defined by a track for which a feeder 108 may couple to in a movable manner. The rails 106 may be secured to a body 107, where the body 107 includes a rail 106 on each side (e.g., on two sides as shown) (and where each of the rails 106 are configured to couple to a different feeder 108). Two rails 106 are included in the depicted embodiment, but more or fewer than two rails 106 may be included. The feeders 108 may include a dispensing area 110 located near the intersection and configured to dispense a yarn 112 to at least one of the first needle bed 102 and the second needle bed 104 as it moves along the intersection.
The knitting machine 100 may include a carriage 114 (also called a cam box) that is movable along the first needle bed 102 and the second needle bed 104. An upper portion 116 of the carriage 114 may include a set of plungers (described in more detail below) that can selectively engage at least one of the feeders 108 such that the feeder 108 that is engaged moves along one of the rails 108 as the carriage 114 moves. As the carriage 114 moves along the first needle bed 102 and the second needle bed 104, the carriage 114 may selectively actuate needles of the first needle bed 102 and/or the second needle bed 104 such that the actuated needles move from the default position to the extended position. The actuation may be the result of a set of cams (not shown in
In some embodiments, the knitting machine 100 may have needle beds that are movable relative to each other. For example, the first needle bed 102 and the second needle bed 104 may be movable in a first direction 118 and/or a second direction 120. The first direction 118 and the second direction 120 may be parallel to the longitudinal axis defining the operation or knitting location of the needles of the knitting machine 100 (which may be an intersection point be of needles respectively from the first needle bed 102 and the second needle bed 104, for example), and therefore also parallel to the course-wise direction (or longitudinal dimension of courses) when the knitting machine is operating. Such movement may be referred to as “racking.” While some existing machines are capable of slight racking (e.g., with total displacement of one needle bed relative to the other being up to a distance containing about 3 needles on one of the needle beds), such racking is primarily limited in purpose to calibration and alignment functions during machine setup along with forming knit wedges. By contrast, in the present embodiments, the knitting machine 100 may be capable of racking an extreme amount (e.g., offsetting by the distance containing 10 consecutive needles or more), and such racking may be utilized during knitting to form novel embodiments of knitted components as described in detail below.
The movement of the first needle bed 102 relative to the second needle bed 104 may be controlled via an actuator 122. In some embodiments, the actuator 122 may include an electric motor. The electric motor may be controlled, for example, by a computing interface, dials, switches, etc. (not shown in
In some embodiments, other components of the knitting machine 100 may be designed to accommodate extreme racking movement of at least one of the first needle bed 102 and the second needle bed 104. For example, frame members and walls of the knitting machine 100 (e.g., the depicted wall 124) may be removed (e.g., with reference to existing machine), moved, may include openings for receiving a needle bed (e.g., opening 126), and/or may be otherwise redesigned such that they do not inhibit movement of the needle beds 102, 104 along the first direction 118 and/or the second direction 120. Thus, in certain embodiments, the first needle bed 102 may be movable/displaceable relative to the second needle bed 104 (through movement of one or more of the beds) for a distance that is equal to, or greater than, the distance containing five consecutive needles on one of the needle beds (e.g., such as a distance greater than or equal to the distance containing at least 10 needles, 20 needles, 50 needles, or even 100 needles or more on a needle bed).
This racking capability may provide the knitting machine 100 with the ability to form knitted components with enhanced structures relative to previously-known varieties. For example, the knitting machine 100 of
The first portion 152 and the second portion 154 of the knitted component 130 may be formed with a common feeder or different feeders. For example, referring to
After formation of the first portion 152 and the second portion 154 of the knitted component 130, the first portion 152 and/or the second portion 154 may be prepared for being moved via movement of at least one of the needle beds 102, 104. For example, a transfer technique may be initiated to move all of the loops 136 of the first portion 152 to the first needle bed 102 and/or to move all of the loops 138 of the second portion 154 to the second needle bed 104. As would be understood by those of ordinary skill in the art, this transfer step frees the first portion 152 from the second needle bed 104 (e.g., such that no loops of the first portion 152 are held by needles of the second needle bed 104) and also frees the second portion 154 from the first needle bed 102. Importantly, since after such a transfer step, the second needle bed 104 can move relative to the first portion 152 of the knitted component 130 without pulling on, stretching, distorting, or otherwise interfering with the knit structure of the first portion 152 of the knitted component 130. The same is true of movement of the first needle bed 102 relative to the second portion 154 of the knitted component 130.
Referring to
Once the first portion 152 and the second portion 154 of the knitted component 130 are moved such that they at least partially overlap on the knitting machine 100 (as shown in
The connection course(s) 142 may secure the first portion 152 to the second portion 154, and in some embodiments may be the terminus of a separate third portion 140 of the knitted component 130. While not shown, it is contemplated that the process described above may be repeated multiple times to form a knitted component having more than two layers, and/or different areas where each of the different areas has multiple layers. For example, a fourth portion of the knitted component (not shown) may be formed, and the fourth portion of the knitted component may be moved relative to the third portion of the knitted component and then connected to the third portion with a connection course formed on the knitting machine.
The knitting process described above, made possible by the knitting machine 100 of
To illustrate, and referring to
Each of the first portion 152 and the second portion 154 may be formed with a double-jersey knit structure utilizing a first set of needles 166 of the first needle bed 102 and a second set of needles 168 of the second needle bed 104. Advantageously, using two needle beds (i.e., double-jersey knitting) may provide an enhanced knit structure with suitable strength, durability, and desirable visual characteristics. Further, double jersey knitting may provide the ability for inlaying at least one tensile strand 170 within a course during the knitting process. One example of inlaying is described in U.S. patent application Ser. No. 13/048,527, filed on Mar. 15, 2011, and patented as U.S. Pat. No. 8,522,577, which is hereby incorporated by reference in its entirety. While not shown, the second portion 154 of the upper 150 could also include one or more inlaid strands or other elements.
Once the first portion 152 and the second portion 154 are formed, all of the outstanding loops of the first portion 152 that are on the second needle bed 104 of the knitting machine may be transferred to the first needle bed 102 (see
Advantageously, the first portion 152 and the second portion 154 may be secured together on the knitting machine and without necessitating sewing or otherwise attaching the portions together after the knitting process. That is, the knitting process on the knitting machine may substantially secure the two portions together and also may form the remainder of the upper 150 without the need for significant post-knitting processes or steps. Such an embodiment may display enhanced strength and durability relative to other embodiments, and substantially completing formation during one process (e.g., on the knitting machine) may increase manufacturing efficiency and/or reduce manufacturing costs, thus lowering the overall cost to consumers. This contrasts with embodiments where two or more portions are formed separately as distinct knitted components and then later secured to each other after knitting.
The present disclosure encompasses any and all possible combinations of some or all of the various aspects described herein. It should also be understood that various changes and modifications to the aspects described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present disclosure and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.
This application claims priority to U.S. Provisional Application Ser. No. 62/777,566, filed Dec. 10, 2018, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
7222504 | Nakayama | May 2007 | B2 |
8448474 | Tatler | May 2013 | B1 |
8522577 | Huff | Sep 2013 | B2 |
8973410 | Podhajny | Mar 2015 | B1 |
9060570 | Huff et al. | Jun 2015 | B2 |
9890485 | Podhajny | Feb 2018 | B2 |
11122850 | Hutchinson | Sep 2021 | B2 |
11186930 | Huffa | Nov 2021 | B2 |
20080110048 | Dua | May 2008 | A1 |
Number | Date | Country |
---|---|---|
29 38 388 | Apr 1981 | DE |
WO 2015116294 | Aug 2015 | WO |
WO 2015134648 | Sep 2015 | WO |
Entry |
---|
International Search Report and Written Opinion dated Apr. 20, 2020 for PCT Application No. PCT/US2019/065391, 15 pages. |
International Preliminary Report on Pantentability received for PCT Patent Application No. PCT/US2019/065391, dated Jun. 24, 2021, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20200181816 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
62777566 | Dec 2018 | US |