The use of polymeric compounds such as nylon and polypropylene in the manufacture of cordage has resulted in rot and abrasion resistant products. Indeed, when properly stored, cordage manufactured from polymeric compounds may last indefinitely. One characteristic—abrasion resistance—may be highly desirable in many applications. Abrasion resistance is partially a result of low friction characteristics typical of polymeric compounds utilized to manufacture cordage. However, the same low friction characteristics which provide abrasion resistance, may also contribute to knot slippage since the security of many kinds of knots is dependent on friction.
Attempts to overcome this problem include, treating strands of cordage chemically to increase friction between cordage surfaces; and providing clamping devices to secure cordage ends. However, chemically treating strands of cordage to increase friction may, in some instances, lower abrasion resistance. In other instances, chemical treatment may not be lasting and may “wear” off of the cordage over time. Additionally, clamping devices, while effective in some examples, provide additional complexity in securing systems. In some examples, clamping devices may even damage cordage.
As such, knot keeper embodiments are provided herein.
The following presents a simplified summary of some embodiments of the invention in order to provide a basic understanding of the invention. This summary is not an extensive overview of the invention. It is not intended to identify key/critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some embodiments of the invention in a simplified form as a prelude to the more detailed description that is presented below.
Knot keepers for use with cordage, the knot keeper configured for securing a knot tied in the length of cordage are presented including: a trunk; and a number of branches radiating from the trunk, where the length of cordage is configured to receive the knot keeper along a cordage axis such that the trunk and a first portion of the number of branches is confined within the length of cordage, and where a second portion of the number of branches extends from the length of cordage. In some embodiments, the number of branches further includes a tip such as: a flat tip, a rounded tip, a pointed tip, a hooked tip, a barbed tip, a bull-nose tip, a bull-nose barb tip, a rectangular tip, and a rectangular barb tip. In some embodiments, the second portion of the number of branches extends from the length of cordage in a range of approximately 0.1R to 1R, where R=the radius of the length of cordage. In some embodiments, the number of branches radiates from the trunk at an angle in a range of approximately 10 to 170 degrees. In some embodiments, the number of branches are disposed about the trunk in a configuration selected from the group consisting of: a single row symmetrical orientation; a single row asymmetrical orientation; a double row symmetrical orientation, a double row asymmetrical orientation; a triple row symmetrical orientation, a triple row asymmetrical orientation, a quadruple row symmetrical orientation, a quadruple row asymmetrical orientation, a quintuple row symmetrical orientation, a quintuple row asymmetrical orientation, a sextuple row symmetrical orientation, a sextuple row asymmetrical orientation, a septuple row symmetrical orientation, a septuple row asymmetrical orientation, a octuple row symmetrical orientation, a octuple row asymmetrical orientation, and a random orientation. In some embodiments, the length of cordage is constructed in a configuration selected from the group consisting of: a hollow braid, a solid braid; and a twisted rope. In some embodiments, the knot keeper is integrated as a strand of the cordage. In some embodiments, the length of cordage and the knot keeper are manufactured from a material selected from the group consisting of: a polymeric compound, a combination of polymeric compounds, a natural fiber, and a combination of polymeric compound and natural fiber. In some embodiments, the number of branches is spaced to achieve a density in a range of approximately 1 to 20 branches per inch. In some embodiments, the length of cordage is a shoelace.
In other embodiments, slip resistant cordage is presented including: a length of cordage; a knot keeper configured for securing a knot tied in the length of cordage, the knot keeper including: a trunk; and a number of branches radiating from the trunk, where the knot keeper is disposed along a cordage axis such that the trunk and a first portion of the number of branches is confined within the length of cordage, and where a second portion of the number of branches extends from the length of cordage.
In other embodiments, slip resistant shoelaces are presented including: a length of hollow braid cordage; a knot keeper configured for securing a knot tied in the length of hollow braid cordage, the knot keeper including: a trunk; and a number of branches radiating from the trunk, where the length of hollow braid cordage is configured to receive the knot keeper along a cordage axis such that the trunk and a first portion of the number of branches is confined within the length of hollow braid cordage, and where a second portion of the number of branches extends from the length of hollow braid cordage. In some embodiments, the length of hollow braid cordage and the knot keeper are manufactured from a material selected from the group consisting of: a polymeric compound, a combination of polymeric compounds, a natural fiber, and a combination of polymeric compound and natural fiber.
The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
The present invention will now be described in detail with reference to a few embodiments thereof as illustrated in the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art, that the present invention may be practiced without some or all of these specific details. In other instances, well known process steps and/or structures have not been described in detail in order to not unnecessarily obscure the present invention.
As illustrated, knot keeper 110 includes a trunk 114 and a plurality of branches 112. Knot keeper 110 is disposed along cordage axis 104. In some embodiments, a portion of branches 112 extends from the cordage (see 106). In some embodiments, branches 112 extend from the cordage in a range of approximately 0.1R to 1R, where R=cordage radius. Thus, in one embodiment, a total length of a branch would be R+0.1R. Further illustrated, branches 112 may radiate from trunk 114 at any angle 120 in a range of approximately 10 to 170 degrees. The angle at which a branch radiates from a trunk is application specific. For example, where more slip resistant cordage is desired, a 90° radiating angle may be utilized. Where less slip resistant cordage is desired, a much lower, or much higher radiating angle may be utilized. In embodiments, a knot keeper may be manufactured from a polymeric compound, a combination of polymeric compounds, a natural fiber, and a combination of polymeric compound and natural fiber without limitation.
In other embodiments, double row orientation 220 having trunk 222 and branch 224 is illustrated. Double row orientation refers to an orientation of branch rows with respect to the trunk. In this embodiment, two rows are utilized. Configuration may be symmetrical with respect to orientation as well as to spacing. Thus, while two rows are oriented at approximately 180° with respect to one another in this illustration (symmetrical), the two rows may be oriented in any configuration (asymmetrical) without limitation without departing from embodiments provided herein. Further, double row orientation may include branches which are uniformly spaced (symmetrical) or randomly spaced (asymmetrical). In addition, in embodiments, branches may directly oppose one another as illustrated, or may be offset (see 112,
In other embodiments, triple row orientation 230 having trunk 232 and branch 234 is illustrated. Triple row orientation refers to an orientation of branch rows with respect to the trunk. In this embodiment, three rows are utilized. Configuration may be symmetrical with respect to orientation as well as to spacing. Thus, while three rows are oriented at approximately 120° with respect to one another in this illustration (symmetrical), the three rows may be oriented in any configuration (asymmetrical) without limitation without departing from embodiments provided herein. Further, triple row orientation may include branches which are uniformly spaced (symmetrical) or randomly spaced (asymmetrical). In addition, in embodiments, branches may directly oppose one another as illustrated, or may be offset (see 112,
In other embodiments, quadruple row orientation 240 having trunk 242 and branch 244 is illustrated. Quadruple row orientation refers to an orientation of branch rows with respect to the trunk. In this embodiment, four rows are utilized. Configuration may be symmetrical with respect to orientation as well as to spacing. Thus, while four rows are oriented at approximately 90° with respect to one another in this illustration (symmetrical), the four rows may be oriented in any configuration (asymmetrical) without limitation without departing from embodiments provided herein. Further, quadruple row orientation may include branches which are uniformly spaced (symmetrical) or randomly spaced (asymmetrical). In addition, in embodiments, branches may directly oppose one another as illustrated, or may be offset (see 112,
Also illustrated for
Shoelaces manufactured with polymeric compounds, however, may exhibit some knot slippage. Thus, in the hiking boot example, while the hiking boot may be usable, the constant tying and retying of a shoelace knot may lead to an undesirable user experience. Attempts to remedy this problem include clamping mechanisms of some sort, or removing the shoelace altogether and replacing it with a buckle, zipper, or VELCRO™ arrangement. A slip resistant shoelace 302 having an integrated knot keeper serves to maintain knot 304. As illustrated above for
While this invention has been described in terms of several embodiments, there are alterations, permutations, and equivalents, which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and apparatuses of the present invention. Furthermore, unless explicitly stated, any method embodiments described herein are not constrained to a particular order or sequence. Further, the Abstract is provided herein for convenience and should not be employed to construe or limit the overall invention, which is expressed in the claims. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
1066759 | Schloss | Jul 1913 | A |
2141801 | Taft | Dec 1938 | A |
2306515 | Wright | Dec 1942 | A |
3110945 | Howe, Jr. | Nov 1963 | A |
3522637 | Brumlik | Aug 1970 | A |
3832841 | Cole | Sep 1974 | A |
4198734 | Brumlik | Apr 1980 | A |
4247967 | Swinton | Feb 1981 | A |
4930196 | Laurin | Jun 1990 | A |
5074013 | Arnold et al. | Dec 1991 | A |
5272796 | Nichols | Dec 1993 | A |
5673546 | Abraham et al. | Oct 1997 | A |
5778499 | Lehrman | Jul 1998 | A |
6212743 | Cohen | Apr 2001 | B1 |
7549201 | Kraft et al. | Jun 2009 | B2 |