Knotless dynamic suture tensioning device and methods

Information

  • Patent Grant
  • 8613755
  • Patent Number
    8,613,755
  • Date Filed
    Wednesday, March 18, 2009
    15 years ago
  • Date Issued
    Tuesday, December 24, 2013
    11 years ago
  • CPC
  • US Classifications
    Field of Search
    • US
    • 606 213000
    • 606 215-218
    • 606 232000
    • 606 233000
    • 024 291000
    • 024 293000
    • 024 200000
    • 024 1290D0
    • 024 197000
    • 024 455000
    • 024 1150G0
    • 024 1360L0
    • 024 1360K0
    • 024 1320R0
    • 024 1150R0
    • 024 712500
    • 024 712000
    • 024 106000
    • 024 103000
    • 024 097000
    • 024 376000
    • 024 373000
    • 024 371000
    • 024 369000
    • 081 003430
    • 081 064000
    • 001 213000
    • 001 215-218
    • 001 232000
    • 001 233000
  • International Classifications
    • A61B17/00
    • A61B17/08
    • Term Extension
      836
Abstract
Two spaced bodily tissues are approximated with a surgical tensioning device comprising a resilient member and a pressure locking device. The method comprises a step of routing one end of a length of suture through both spaced bodily tissues and inserting the suture end into and through the pressure locking device. The suture is then tensioned by pulling on the suture end passing through the pressure locking device. Responsive to tension changes in the suture, the pressure locking device is actuated by moving at least one surface in the pressure locking device to clamp the suture in position.
Description
BACKGROUND OF THE INVENTION

The present invention is related to the general surgical repair of separated body tissues, and more particularly to internally fixating and stabilizing such body tissues, specifically bones.


In the present state of the art, there are a number of systems available to repair biological tissues separated in surgery or by injury. These products serve to approximate and stabilize the tissues so that healing may commence and provide compression in the interface to promote healing. Compression and stability are critical for proper anatomical healing of tissue. With the correct amount of compression applied to the interface of the tissue portions to be joined, signals are sent to the tissue, thus allowing the tissue to remodel in proper anatomical position. The amount of compression applied to the tissue interface needs to be appropriate to the type of tissue that is being healed.


A common problem in using suture is the variable nature of the residual tension realized after the knot is tied. Hand tied knots usually supply only a fraction of the residual tension for which the suture is capable. There are various procedures where the residual tension in a hand tied knot is insufficient to approximate and generate the compression needed for healing between tissues. Moreover, knot stacks can interfere with the natural movement of surrounding tissues.


There are times when high tension may cause suture to cut into tissue at points of stress concentration. This suture cutting may not happen immediately. It can take place as the tissue degrades or relaxes, or sometimes there are external forces that cause the suture to cut into the tissue. This cutting action releases tension in the suture and adversely affects the quality and durability of the repair.


Additionally, the use of wires can cause damage to adjunctive tissues because of penetration by the sharp ends of the wires.


What is needed, therefore, are devices and techniques for holding two tissue portions in a state of compression and tension beyond that which is commonly achieved using hand-tied sutures.


SUMMARY OF THE INVENTION

The present invention solves the problems outlined above by providing a means to approximate two tissue portions together so that there is compression in the tissue interface. The invention provides a means to hold two tissues in a state of compression beyond that which is commonly achieved with the hand tying of sutures. The invention may also be used to lengthen retracted tendons or ligaments. This is done by anchoring one end of the suture on bone and the other end on tendon or a ligament. The dynamic tensioning element in the invention serves to stretch and optionally attach the tendon or ligament to the bone.


Attached to one end of the suture is a resilient mechanism designed to keep tension in the suture, as tissues will shrink during healing. This resilient mechanism lies on top of the tissues to be approximated. The free end of the suture is brought to the resilient mechanism and routed into an integral receptacle such that pulling on the suture end will bring the tissues together. As the tissues come together and tension is brought to the suture, the resilient mechanism will activate and start to store the energy needed to activate the resilient mechanism, in order to keep tension on the suture when the tissues shrink during healing.


When the desired suture tension has brought the tissues to their desired position for healing, a surface or surfaces within the suture receiving receptacle acts to put pressure on the suture. The pressure applied is sufficient to bind the suture end with the resilient mechanism. This surface, or these surfaces, within the suture receiving receptacle provide(s) latent pressure on the suture during the suture tensioning process. The latent pressure is then converted to a binding pressure, once the suture has approximated the tissues. This pressure conversion happens as a result of the change in tension on the suture as it is released from the practitioner's grasp.


The suture interacts with the binding surfaces by means of friction. Friction always acts in the opposite direction of motion. As the suture is drawn to tighten tissue, the frictional interaction opposes this motion. Consequently, more force is needed to achieve the same effect on the tissue. Once the practitioner releases the suture, the motion of the suture changes direction, and so does the frictional forces. Now, the friction forces act to bind the suture to the resilient mechanism by means of the surface or surfaces.


This invention takes advantage of this change in frictional force direction to bind the suture to the resilient means. This is managed by having more than one surface interacting with suture within the receiving receptacle. These surfaces can move relative to one another. The suture, in being tensioned, moves a surface relative to another surface so that less pressure is put on the suture and the suture is free to move. Then, the tension is released from the suture and the suture changes direction, pulling the surfaces in the opposite direction relative to one another. This changes in direction moves the surfaces to put more pressure on the suture, thus binding it in the suture receiving receptacle.


Other embodiments of the invention use mechanical means to draw the surface together, so that sufficient pressure is put on the suture to bind it in the suture receiving receptacle.


The tissue portions comprise biological tissue in the body, including, but not limited to, skin, tendon, bone, ligaments, blood vessels, and organs. The suture may comprise woven, braided, or knitted fibers or metals, or a monofilament, and can be made of any known suture material. The suture may be of any shape, including, but not limited to, round, square, oval, flat (like a strap), or tubular. The shape of the suture for particular embodiments will be discussed more fully hereinbelow.


More particularly, there is provided a surgical tensioning device for dynamically holding two tissue portions in contact with one another. The inventive device comprises a resilient member and a pressure locking mechanism engaging the resilient member. The pressure locking mechanism has a surface for engaging and clamping a length of suture passing therethrough, which is responsive to tension changes applied to the suture to secure the suture in place without a need for knotting the suture. In some embodiments, the resilient member comprises a spring having a base portion and a plurality of extending portions extending from the base portion. An attachment point is disposed on each of the plurality of extending portions. The plurality of extending portions may comprise legs spaced from one another and upstanding from the base portion. The legs each have distal ends, and one of the attachment points is disposed on each of the leg distal ends. The pressure locking mechanism comprises one of the attachment points.


A second one of the attachment points, on a second one of the legs, is adapted to be connected to a first end of a length of suture, and a second end of the length of suture is adapted to be secured within the pressure locking mechanism.


In one particular embodiment, the pressure locking mechanism comprises a tube having an internal cylindrical wall which comprises the aforementioned single surface, with the suture being adapted to pass through a lumen in the tube defined by the internal cylindrical wall. The internal cylindrical wall is adapted to collapse about the suture responsive to tension placed on the suture.


In certain preferred embodiments, the resilient member is fabricated from one of spring tempered stainless steel or titanium, as is the pressure locking mechanism. However, the pressure locking mechanism is fabricated from one of fully annealed spring tempered stainless steel or fully annealed titanium.


In another embodiment of the invention, the pressure locking mechanism comprises a plurality of the aforementioned clamping surfaces. In this embodiment, the pressure locking mechanism comprises a loop having an internal surface defining a channel through which the suture may pass, and an inserting plug which is insertable into the channel. The inserting plug has an external surface, wherein the suture is clamped between the internal surface of the loop and the external surface of the inserting plug. Preferably, one of the internal surface of the loop and the external surface of the inserting plug is textured.


In yet another embodiment of the inventive device, the suture preferably comprises flat or tape suture. The resilient member comprises a spring loop and a plurality of attachment points for securing the suture to the resilient member, and the pressure locking mechanism is disposed at one of the attachment points. The pressure locking mechanism comprises a pin and a pair of flexible arms for supporting the pin, a gap being formed between the pin and a surface of the spring loop for receiving the suture, wherein when tension in the suture changes, the spring loop moves to clamp the suture between the spring loop surface and the pin.


In another aspect of the invention, there is provided a pressure locking mechanism for securing suture in place at a procedural site. The pressure locking mechanism is adapted for engagement with a resilient member and has a surface for engaging and clamping a length of suture passing therethrough. The surface is responsive to tension changes applied to the suture to secure it in place without a need for knotting the suture. The pressure locking mechanism comprises, in one embodiment, a tube having an internal cylindrical wall which comprises the aforementioned surface, with the suture being adapted to pass through a lumen in the tube defined by the internal cylindrical wall, and the internal cylindrical wall being adapted to collapse about the suture responsive to changes of tension on the suture. In other embodiments, the pressure locking mechanism comprises a plurality of the aforementioned surfaces. In one modified embodiment, the pressure locking mechanism comprises a loop having an internal surface defining a channel through which the suture may pass, and an inserting plug which is insertable into the channel The inserting plug has an external surface, wherein the suture is clamped between the internal surface of the loop and the external surface of the inserting plug.


In another modified embodiment, flat suture is utilized, and the pressure locking mechanism comprises a pin and a pair of flexible arms for supporting the pin, a gap being formed adjacent to said pin for receiving the suture.


In yet another aspect of the invention, there is disclosed a method for securing together two spaced bodily tissues with a surgical tensioning device comprising a resilient member and a pressure locking device. The method comprises a step of routing one end of a length of suture through both spaced bodily tissues and inserting the suture end into and through the pressure locking device. The suture is then tensioned by pulling on the suture end passing through the pressure locking device. Then the pressure locking device is actuated responsive to changes in tension in the suture by moving at least one surface in the pressure locking device to clamp the suture in position.


The invention, together with additional features and advantages thereof, may best be understood by reference to the following description taken in conjunction with the accompanying illustrative drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an isometric view illustrates one representative embodiment of the device of the present invention;



FIG. 2 is an enlarged view of the locking tension device of the embodiment of FIG. 1;



FIG. 3 is a view similar to FIG. 1, illustrating a modified embodiment of the present invention, as used to approximate two tissue portions;



FIG. 4 is a detail view of portion A of FIG. 3;



FIG. 5 is a detail view similar to FIG. 4, illustrating the pressure lock of the embodiment of FIGS. 3-4 in a fully assembled state;



FIG. 6 is a cross-sectional view illustrating the pressure locking function achieved by the embodiment of FIGS. 3-5;



FIG. 7 is an isometric view of another modified embodiment of the invention;



FIG. 8 is a detail view of portion B of FIG. 7; and



FIG. 9 is a cross-sectional view detailing the pressure locking function achieved by the embodiment of FIGS. 7 and 8.





DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring now more particularly to the drawings, there is shown in FIGS. 1-2 one embodiment of a knotless dynamic suturing device 10 which is constructed in accordance with the principles of the present invention. The device 10 is constructed to utilize a single surface to impart a locking pressure on a length of suture, and comprises a resilient member or spring 12, which is generally shaped like the letter ā€œUā€, with a base portion 14 and upstanding legs 16, 18. Each upstanding leg includes, at its end distal to the base portion 14, respective attachment points 20 and 22. Each attachment point 20, 22 may comprises a loop, hook or pressure locking mechanism as shown.


A length of suture 24 is attached to the attachment point 20 at one end thereof, as shown, to thereby attach the suture 24 to the spring 12. The suture 24 is first woven or stitched into and through tissue with suture end 26 leading the way. A needle may be used to route the suture through tissue. Then, suture 24 is routed into attachment point 22, which comprises a pressure locking mechanism, using the suture end 26. The suture is then brought into tension by pulling on the suture end 26. As the suture 24 is put into tension, two concurrent movements are realized. First, the tissue portions to be approximated are brought to their desired positions, in approximation to one another, and second, the legs 16 and 18 of the device 10 flex apart to store the energy needed in the spring's bridge or base 14, in order to supply continuing tension to the suture, thus keeping the tissue in compression while it heals.


The locking pressure device 22 is fabricated of a tubular material. The pressure is derived by collapsing the tubular walls onto suture 24 by means of an external device. Preferably, this external device comprises a crimping tool, but any suitable tool could be used by the practitioner, at a time during the procedure when the practitioner is ready to lock the suture in place. Collapsing the tubular walls permanently distorts the tube at point 28, such that it permanently locks the suture within a lumen 30 of the tube. Thus, the single surface utilized to pressure lock the suture in place is the internal cylindrical wall of the tube 22. The material utilized to fabricate the legs 16, 18 and the base portion 14 of the spring 12 must be sufficiently resilient to supply the energy storage needed for the inventive device to properly function. The material utilized to fabricate the tube 22 must be sufficiently compliant so as to conform and form around the suture 24. Should both of these materials (for fabricating the spring 12 and tubular pressure locking mechanism 22) be the same, the temper of the material would still be different in order to provide the desired properties. Preferably, the entire device is made of spring tempered stainless steel or titanium, with the locking pressure device 22 being fully annealed to be sufficiently compliant.



FIGS. 3-6 illustrate a modified embodiment of the present invention, having a pressure locking device which utilizes two surfaces to pressure lock the suture into place. In this embodiment, like elements to those in the FIGS. 1-2 embodiment are designated by like reference numerals. Thus, in FIG. 3, there is shown a device 32 that is designed to utilize two surfaces to generate the locking pressure on the suture 24. The device 32 comprises a pressure locking mechanism 34, comprising a loop, and an inserting plug 36. FIG. 3 shows tissue 38 with a lesion 40 being approximated by the device 32. This application is similar for all three illustrated embodiments, though other applications are appropriate as well. Suture 24 has been routed around tissue 38 and inserted with suture end 26 into the pressure locking mechanism 34. The suture 24 is then brought into tension by pulling on the suture end 26. As tension is brought onto the suture, two concurrent movements are realized. First, the tissue 38 is brought to its desired position, and second, legs 16 and 18 flex apart to store the energy needed in the spring's base or bridge 14 to supply continuing tension to the suture, thus keeping the tissue in compression while it heals. The loop 34 includes a channel defined by an inner surface 42, through which the suture passes.


The locking pressure is generated by inserting the plug 36, which comprises an external surface 44, into the interior of the pressure locking mechanism 34, and squeezing the suture 24 between surfaces 42 and 44. FIG. 6 illustrates a cross-section of the suture 24 squeezed in the interface between surfaces 42 and 44. Either of the surfaces 42, 44 may be textured in order to increase the friction on the lock. In this embodiment, as illustrated, surface 44 is textured, so that the plug 36 is pulled in to the interior of the pressure locking mechanism 34 by the tension in the suture 24. FIG. 5 shows the pressure locking mechanism 34 in a fully assembled state.


A third embodiment of the inventive concept is shown in FIGS. 7-9. In this embodiment, pressure is again used to lock the suture, but also, significant frictional resistance is employed while tensioning. This knotless dynamic suturing device 50 is represented in FIG. 7, with FIG. 8 detailing the pressure lock and FIG. 9 showing a cross-section of the detailed interface of FIG. 8. While the invention is not constrained to flat suture, the embodiment 50 makes use of flat or tape suture 52. Flat suture is preferred in situations where the high tensions in the suture require that broad contact is ensured between the suture and the tissue. This broad contact distributes the tension in the suture over a broad area, thus preventing the tension in the suture from damaging tissue. This is an especially important feature when dealing with patients with known poor bone quality, such as diabetic and osteoporotic patients.


As in the above described prior embodiments, the suture 52 is connected to a spring 54 at an attachment point or first suture end 56. A second suture end 58 is routed through the tissue with a needle (not shown), and back to an attachment point 60 where it is routed around a pin 62. Pin 62 is able to float on a pair of flexible arms 64 to permit suture to pass between the pin 62 and a spring surface 66 (FIG. 9). As tension is applied to the second suture end 58, and the tissues are brought into compression, spring loops 68 on the spring 54 distend storing energy that will supply substantially constant compression during the tissue healing cycle. Applying tension to the second suture end 58 also pushes the pin 62 away from the spring surface 66, thereby decreasing the pressure on the suture in that interface. When tension is released on the second suture end 58, the predominate suture tension shifts to the other side of the pin at point 72, thus effectively pushing the pin 62 into the spring surface 66. This action supplies the pressure needed to lock and hold the suture in place.


Accordingly, although exemplary embodiments of the invention have been shown and described, it is to be understood that all the terms used herein are descriptive rather than limiting, and that many changes, modifications, and substitutions may be made by one having ordinary skill in the art without departing from the spirit and scope of the invention, which is to be limited only in accordance with the following claims.

Claims
  • 1. A surgical tensioning device for dynamically holding two tissue portions in contact with one another, the device comprising: a resilient member comprising a spring loop forming a continuous configuration without ends; anda pressure locking mechanism engaging said resilient member, said pressure locking mechanism having a surface for engaging and clamping a length of suture passing therethrough, said surface being responsive to tension changes applied to the suture to secure the suture in place without a need for knotting the suture, wherein the pressure locking mechanism further comprises a pin and a pair of flexible arms connected to the spring loop and for supporting the pin, a gap being formed between said pin and a surface of the spring loop for receiving the suture, such that when tension in the suture changes, the pin moves to clamp the suture between the spring loop surface and the pin.
  • 2. The surgical tensioning device as recited in claim 1, wherein said resilient member is fabricated from one of spring tempered stainless steel or titanium.
  • 3. The surgical tensioning device as recited in claim 1, wherein said pressure locking mechanism is fabricated from one of fully annealed spring tempered stainless steel or fully annealed titanium.
  • 4. The surgical tensioning device as recited in claim 1, wherein said pressure locking mechanism comprises a plurality of said surfaces.
  • 5. The surgical tensioning device as recited in claim 1, wherein the suture comprises flat suture.
  • 6. A pressure locking mechanism for securing suture in place at a procedural site, said pressure locking mechanism being adapted for engagement with a resilient member and having a surface for engaging and clamping a length of suture passing therethrough, said surface being responsive to tension changes applied to the suture to secure it in place without a need for knotting the suture; wherein said pressure locking mechanism comprises a pin and a pair of flexible arms for supporting the pin, a gap being formed adjacent to said pin for receiving the suture said surface comprising a surface on said pin which is adapted to contact the suture and clamp it against another surface on the resilient member to clamp the suture in place, wherein the pair of flexible arms are both disposed adjacent to and in contact with a same side of the resilient member;and further wherein an end of the suture is routed about said pin and said pin is able to float on said pair of flexible arms, for permitting suture to pass between the pin and a surface of the resilient member.
  • 7. The surgical tensioning device as recited in claim 6, wherein said pressure locking mechanism comprises a plurality of said surfaces.
  • 8. The surgical tensioning device as recited in claim 6, wherein the suture comprises flat suture.
  • 9. The surgical tensioning device as recited in claim 6, wherein said pressure locking mechanism is fabricated from one of fully annealed spring tempered stainless steel or fully annealed titanium.
  • 10. The surgical tensioning device as recited in claim 6, wherein the suture comprises flat suture.
  • 11. A surgical tensioning device for dynamically holding two tissue portions in contact with one another, the device comprising: a spring loop forming a continuous configuration without ends;a length of suture having a first end attached to the spring loop at a first attachment point;a pressure locking mechanism engaging said spring loop at a second attachment point spaced from said first attachment point, the pressure locking mechanism further comprising a pair of flexible arms connected to the spring loop for supporting the pin; anda second end of the length of suture engaging with said pressure locking mechanism, wherein the pressure locking mechanism comprises a movable pin, the pin being spaced from a surface of the spring loop to permit the second suture end to pass freely between the pin and the spring loop surface in a first position, and contacting the spring loop surface to clamp the second suture end in place in a second position.
  • 12. The device as recited in claim 11, wherein when tension in the suture changes, the pin moves to clamp the suture between the spring loop surface and the pin.
  • 13. The surgical tensioning device as recited in claim 11, wherein said spring loop is fabricated from one of spring tempered stainless steel or titanium.
  • 14. The surgical tensioning device as recited in claim 11, wherein said pressure locking mechanism is fabricated from one of fully annealed spring tempered stainless steel or fully annealed titanium.
  • 15. The surgical tensioning device as recited in claim 11, wherein the suture comprises flat suture.
  • 16. The surgical tensioning device as recited in claim 11, wherein said second attachment point is substantially circumferentially opposed to said first attachment point on said resilient member.
Parent Case Info

This application claims the benefit under 35 U.S.C. 119(e) of the filing date of Provisional U.S. Application Ser. No. 61/037,582, entitled Dynamic Ring Compression Device, filed on Mar. 18, 2008, and expressly incorporated herein by reference, in its entirety. This application is also related to co-pending U.S. patent application Ser. No. 12/347,821, entitled Dynamic Suture Tensioning Device and filed on Dec. 31, 2008, and to U.S. patent application Ser. No. 12/406,904, entitled Load Shaping for Dynamic Tensioning Mechanisms and Methods, and Ser. No. 12/406,909, entitled Dynamic Tissue Holding Device with Low Profile Spring, both filed on even date herewith, all of which are commonly assigned and expressly incorporated herein, by reference, in their entirety.

US Referenced Citations (103)
Number Name Date Kind
55854 Gunning Jun 1866 A
93592 Brooks Aug 1869 A
286264 Clough Oct 1883 A
303360 Brunner Aug 1884 A
357597 Hazelton Feb 1887 A
405958 Hall Jun 1889 A
421354 Fish Feb 1890 A
423000 Turnbull Mar 1890 A
434926 Hall Aug 1890 A
627489 Ekstrand Jun 1899 A
651812 Krause Jun 1900 A
663877 Friedenberg Dec 1900 A
685252 Bugbee Oct 1901 A
699790 Collins May 1902 A
714579 Hecht Nov 1902 A
875102 Peterson Dec 1907 A
886732 Sawtell May 1908 A
919947 Plowman Apr 1909 A
950434 Carlson Feb 1910 A
980701 Swafford Jan 1911 A
988617 Bair Apr 1911 A
1045174 Perrine Nov 1912 A
1056211 Peterson Mar 1913 A
1079080 Ward Nov 1913 A
1187836 Hoekstra Jun 1916 A
1219283 Frantz Mar 1917 A
1279206 Wolff Sep 1918 A
1400178 Perrine Dec 1921 A
1538611 Beichl May 1925 A
1779449 Rice Oct 1930 A
1886917 St Pierre Nov 1932 A
1999168 Erb Apr 1935 A
2081385 Shaw May 1937 A
2307120 Elwell Jan 1943 A
2386251 Mefford Oct 1945 A
2552957 Gore May 1951 A
2628399 Gore Feb 1953 A
2965942 Carter Dec 1960 A
2977655 Peters Apr 1961 A
2981994 White May 1961 A
3112543 Derrickson Dec 1963 A
3226791 Garter Jan 1966 A
3822445 Feng Jul 1974 A
3967347 Bickis, Sr. Jul 1976 A
4279248 Gabbay Jul 1981 A
4444181 Wevers et al. Apr 1984 A
4535772 Sheehan Aug 1985 A
4667675 Davis May 1987 A
4670945 Banks Jun 1987 A
4730615 Sutherland et al. Mar 1988 A
4813416 Pollak et al. Mar 1989 A
4840093 Goldman, Jr. Jun 1989 A
4901721 Hakki Feb 1990 A
4938760 Burton et al. Jul 1990 A
4959064 Engelhardt Sep 1990 A
4969892 Burton et al. Nov 1990 A
5063641 Chuan Nov 1991 A
5161351 Woodruff Nov 1992 A
5173996 Chou Dec 1992 A
5330489 Green et al. Jul 1994 A
5339870 Green et al. Aug 1994 A
5366461 Blasnik Nov 1994 A
5571105 Gundolf Nov 1996 A
5593009 King Jan 1997 A
5722976 Brown Mar 1998 A
5797915 Pierson, III et al. Aug 1998 A
5807214 Riazi Sep 1998 A
5810854 Beach Sep 1998 A
5849012 Abboudi Dec 1998 A
5972006 Sciaino, Jr. Oct 1999 A
6051007 Hogendijk et al. Apr 2000 A
6066160 Colvin et al. May 2000 A
6080185 Johnson et al. Jun 2000 A
6471715 Weiss Oct 2002 B1
6540769 Miller, III Apr 2003 B1
6547725 Paolitto et al. Apr 2003 B1
6589246 Hack et al. Jul 2003 B1
6631539 Chang Oct 2003 B1
6648903 Pierson, III Nov 2003 B1
6969398 Stevens et al. Nov 2005 B2
6997189 Biggs et al. Feb 2006 B2
7108710 Anderson Sep 2006 B2
7341558 de la Torre et al. Mar 2008 B2
7416556 Jackson Aug 2008 B2
7722632 Rothstein et al. May 2010 B2
7867251 Colleran et al. Jan 2011 B2
7867253 McMichael et al. Jan 2011 B2
20020147449 Yun Oct 2002 A1
20030093117 Saadat May 2003 A1
20050075653 Saadat et al. Apr 2005 A1
20050090827 Gedebou Apr 2005 A1
20050149121 Crombie et al. Jul 2005 A1
20050240203 Fuseri et al. Oct 2005 A1
20050251209 Saadat et al. Nov 2005 A1
20070073289 Kwak et al. Mar 2007 A1
20070112385 Conlon May 2007 A1
20070213725 Hack Sep 2007 A1
20070276437 Call et al. Nov 2007 A1
20070293863 Reimels et al. Dec 2007 A1
20070293864 Reimels et al. Dec 2007 A1
20080004624 Olroyd Jan 2008 A1
20080015589 Hack Jan 2008 A1
20090062853 McMichael et al. Mar 2009 A1
Provisional Applications (1)
Number Date Country
61037582 Mar 2008 US