This invention relates to surgical devices in general, and more particularly to suture anchors of the sort adapted to anchor a segment of suture in bone, such that other segments of the suture can be used to secure soft tissue to bone.
Numerous devices are currently available to attach objects to bone. More particularly, screws, staples, cement and sutures have all been used to attach soft tissue (e.g., ligaments, tendons, muscles, etc.), bone and inanimate objects (e.g., prostheses) to bone.
In certain situations it can be desirable to anchor a segment of suture in the bone, such that other segments of the suture can be used to attach a desired object (e.g., a ligament or prosthesis) to the bone. This is traditionally accomplished by first forming a hole in the host bone, then securing a segment of suture to a suture anchor, and then securing the suture anchor in the hole in the bone, with the suture anchor securing the suture to the host bone. Other segments of the suture can then be used to fasten the desired object to the bone. Among other things, such suture anchors have found widespread application in procedures for re-attaching ligaments to bone, e.g., to restore a torn rotator cuff in the shoulder.
Traditionally, suture anchors have anchored an intermediate segment of the suture in the host bone, leaving the two free ends of the suture to secure the object (e.g., a piece of soft tissue such as ligament) to the bone. Such attachment may be effected by passing one or both of the two free ends of the suture through the soft tissue, or by passing one or both of the two free ends of the suture over the soft tissue, and then knotting the two free ends of the suture so as to effectively tie the object to the bone.
While such suture anchors have proven highly effective, it can sometimes be difficult and/or inconvenient to knot the suture at the surgical site where access to the surgical site is limited, e.g., such as in the case of an arthroscopic procedure. In situations such as these, it is common for the suture knot to be formed by (i) forming a first suture throw in the two free ends of the suture in the region outside the body, (ii) running the first suture throw down the two suture ends so as to engage the soft tissue at the interior surgical site, (iii) forming a second suture throw in the two free ends of the suture in the region outside the body, (iv) running the second suture throw down the two suture ends so as to engage the first suture throw disposed at the interior surgical site, and then (v) continuing the aforementioned procedure as many times as may be necessary in order to form a stable knot. This process can be difficult to accomplish, particularly where the knot must maintain proper tension against the soft tissue, and in any case it tends to be tedious and time-consuming.
Furthermore, in some surgeries there may be a substantial number of suture segments disposed at the surgical site, and it can be difficult to efficiently manage those suture segments at the surgical site, particularly where those suture segments may need to be manipulated about the interior surgical site and/or advanced to, or removed from, the interior surgical site.
In addition to the foregoing, it should also be appreciated that the knots used to tie down soft tissue to the bone can present additional complications. By way of example but not limitation, overlying tissue can impinge upon the knots, causing trauma to the tissue and in many cases presenting substantial pain to the patient, particularly when the knots are large. This problem may be exacerbated where the knots are placed close to articulating anatomy, such as the moving bones and/or other tissue of a joint.
As a result, one object of the present invention is to provide a new and improved suture anchor which can be used to attach an object to bone without requiring that a knot be tied.
And another object of the present invention is to provide a new and improved method for attaching an object to bone without requiring that a knot be tied.
These and other objects of the present invention are achieved through the provision and use of a novel suture anchor for anchoring a length of suture to bone.
In one form of the invention, there is provided a suture anchor for anchoring a length of suture to bone, the suture anchor comprising:
In another form of the invention, there is provided a method for securing a suture to a bone, comprising:
These and other objects and features of the present invention will be more fully disclosed or rendered obvious by the following detailed description of the preferred embodiments of the invention, which are intended to be read in conjunction with the accompanying drawings, wherein like numbers refer to like parts, and further wherein:
Looking first at
Elongated body 10 comprises a distal end surface 20, a proximal end surface 25, an exterior sidewall 30 extending between distal end surface 20 and proximal end surface 25, and an interior passageway 35 extending between distal end surface 20 and proximal end surface 25. A pair of diametrically-opposed side slots 40 extend between exterior sidewall 30 and interior passageway 35.
Elongated body 10 has a generally cylindrical configuration, but is formed out of a flexible or otherwise expandable material, such that elongated body 10 can have its cross-sectional profile changed in accordance with the longitudinal position of actuator 15 relative to elongated body 10, as will hereinafter be discussed in further detail. To this end, interior passageway 35 of the elongated body is preferably tapered along its longitudinal length (
The outer surface 30 of elongated body 10 may comprise ribbing 55 (
Actuator 15 comprises a distal end 60, a proximal end 65 and a shaft 70 extending between distal end 60 and proximal end 65. Distal end 60 of actuator 65 comprises a J-hook 75, proximal end 65 of actuator 15 is configured for engagement by a handle (not shown), and shaft 70 is configured to be slidably disposed within interior passageway 35 of elongated body 10. In order to regulate the disposition of actuator 15 relative to elongated body 10, shaft 70 comprises a pair of projections 80, which releasably engage detents 42, 45 and 50 of interior passageway 35, as will hereinafter be discussed in further detail.
Looking next at
More particularly, and looking at
Furthermore, as shown in
Looking now at
Furthermore, as shown in
Looking now at
Furthermore, by moving actuator 15 into its third, retracted position, the length of suture grappled by J-hook 75 is securely captured inside interior passageway 35 of elongated body 10 so that the suture is secured at distal end surface 20 of elongated body 10, e.g., where J-hook 75 enters interior passageway 35. In this respect it will be appreciated that the size and configuration of J-hook 75 is coordinated with the size and configuration of the diametrically-expanded elongated body 10 (including the size and configuration of the expanded diametrically-opposed side slots 40) so as to ensure that the suture is secured to elongated body 10 when actuator 15 is in its third, retracted position.
In addition, with the diametrical expansion of elongated body 10, elongated body 10 is secured within bone hole 95 and the length of suture is further captured between exterior sidewall 30 of elongated body 10 and a side wall of bone hole 95.
Thus it will be seen that, when suture anchor 5 is fully deployed within bone hole 95, three different types of fastening will occur: (i) elongated body 10 will be secured to the side wall of bone hole 95 due to the cross-sectional expansion of elongated body 10, (ii) suture 85 will be bound to elongated body 10 due to the retraction of actuator 15 into the interior of elongated body 10, and (iii) suture 85 will be pinched between the expanded elongated body 10 and the side wall of bone hole 95.
In use, and looking first at
Next, and looking now at
After elongated body 10 has been seated in bone hole 95, and looking now at
In this way object 105 may be secured to bone 110 without the necessity of tying knots in suture 85.
In connection with the foregoing, it should be appreciated that J-hook 75 may be used to grapple the suture and slidably capture the suture to the suture anchor either (i) within the interior of a patient's body, or (ii) exterior to the patient's body. It will be appreciated that grappling the suture and slidably capturing the suture to the suture anchor within the interior of a patient's body can be highly advantageous, since it provides a fast, easy and reliable way to “pick up” the suture at an interior site. On the other hand, it will be appreciated that grappling the suture and slidably capturing the suture to the suture anchor exterior to the patient's body can also be highly advantageous, since it provides a fast, easy and reliable way to “pick up” the suture exterior to the patient's body.
In additional aspects of the present invention, bone hole 95 can be formed using a bone tunnel dilator (not shown) so as to compact the host bone and thereby form a more stable wall for the bone hole, whereby to enhance fixation.
Also, a groove (not shown) can be formed in the outer wall of elongated body 10, so as to provide a space to accommodate the suture: this can help reduce suture abrasion, particularly at the top end of the bone hole. However, it should be appreciated that seating suture 85 in a groove formed in exterior sidewall 30 of elongated body 10 may be reduce, or even eliminate entirely, binding of the suture between exterior sidewall 30 of elongated body 10 and the side wall of bone hole 95.
And suture anchor 5 can be formed with a thicker wall at the top end of the device, so as to assist fixation.
Also, a suture can have a repeating pattern of expansions, can be made especially coarse, or can carry a sleeve, etc. about a portion of its length so as to increase its effective diameter and thereby facilitate gripping by J-hook 75.
It is also possible to form elongated body with one or more fracture lines (or break points) along its length, so that diametrically-opposed side slots 40 of the elongated body may easily expand outwardly when actuator 15 is moved from its second, intermediate position to its third, retracted position. Furthermore, the side walls of elongated body 10 may include collapsible longitudinal channels for receiving a suture; these collapsible longitudinal channels help maintain the suture along elongated body 10 during insertion of suture anchor 5 into bone hole 95 and then, when actuator 15 is moved from its second intermediate portion to its third, retracted position, the collapsible longitudinal channels collapse so as to help secure suture 85 to elongated body 10 and thereby enhance binding of suture 85 to elongated body 10.
With the suture anchor construction shown in
It is also possible to enlarge the cross-sectional profile of the suture anchor (i.e., in order to bind the suture anchor in a bone hole) by other means.
By way of example but not limitation, elongated body 10 may be formed without diametrically-opposed slots 40; in this form of the invention, elongated body 10 may be formed so that it is otherwise diametrically expandable (e.g., by fracturing open, by flexing open, etc.) when actuator 15 is longitudinally moved within elongated body 10. Thus, in this form of the invention, longitudinal movement of actuator 15 is still used to cam elongated body 10 diametrically outwardly, however, slots 40 are not provided to guide the manner of body expansion.
In one preferred form of the invention, the cross-sectional profile of elongated body 10 is enlarged (i.e., in order to bind the suture anchor in a bone hole) by selectively deploying wings outboard from the elongated body once the suture anchor has been disposed in a bone hole.
More particularly, and looking now at
Elongated body 205 is shown in further detail in
Actuator 210 is slidably disposed within bore 227 and diametrically-opposed longitudinal slots 228 of elongated body 205 as will hereinafter be discussed in further detail. Actuator 210 serves to engage one or more strands of suture, and to selectively deploy wings 240 of elongated body 205, as will hereinafter be discussed in further detail. Actuator 210 (
As seen in
As seen in
As seen in
In use, and looking now at
Looking next at
Elongated body 305 generally comprises a distal surface 315, a proximal surface 320 and an outer surface 325 connecting distal surface 315 to proximal surface 320. A bore 327 extends between distal surface 315 and proximal surface 320. Bore 327 includes a pair of diametrically-opposed longitudinal slots 328 (
Actuator 310 is slidably disposed within bore 327 and diametrically-opposed longitudinal slots 328 of elongated body 305 as will hereinafter be discussed in further detail. Actuator 310 serves to engage one or more strands of suture, and to selectively deploy wings 340 of elongated body 305, as will hereinafter be discussed in further detail. Actuator 310 generally comprises an elongated shaft 345. A first tapered projection 350, a second tapered projection 355 and a third tapered projection 360 are disposed on shaft 345 and extend radially outward therefrom. Preferably first tapered projection 350 and second tapered projection 355 are frusto-conical in configuration, and third tapered projection 360 preferably comprises an inverted “arrowhead” configuration. A J-hook 365 is disposed at the distal end of shaft 345. J-hook 365 may comprise an arc extending in excess of 270 degrees, so as to provide a secure seat for engaging one or more strands of suture, as will hereinafter be discussed in further detail.
When actuator 210 is in its first, extended position (
When actuator 310 is moved from its first, extended position to its second, intermediate position (
When actuator 310 moves from its second, intermediate position to its third, retracted position (
Thus it will be seen that, when suture anchor 300 is fully deployed within a bone hole, three different types of fastening will occur: (i) elongated body 305 will be secured to the side wall of the bone hole due to the deployment of wings 340, (ii) suture 85 will be bound to elongated body 305 due to the retraction of actuator 310 into the interior of elongated body 305, and (iii) suture 85 may or may not be pinched between elongated body 305 and the side wall of the bone hole, depending on the diameter of the suture and the depth of the longitudinally-extending grooves 335.
In use, and looking first at
Next, and looking now at
After elongated body 305 has been seated in bone hole 95, and looking now at
In this way object 105 may be secured to bone 110 without the necessity of tying knots in suture 85.
It is also possible to use an actuator with a J-hook to selectively grapple/slidingly capture/bind the suture to the suture anchor, without requiring the actuator to expand the elongated body of the suture anchor.
Thus, in another form of the invention, elongated body 10 may be diametrically expandable independently of longitudinal movement of actuator 15 within elongated body 10. By way of example but not limitation, elongated body 10 may be formed out of a resilient material and the elongated body 10 may compress as it enters a bone hole, and thereafter expand within the bone hole, so as to bind the elongated body to the surrounding bone. Or elongated body 10 may otherwise bind or fixate itself within the bone hole. Thus, in this form of the invention, movement of actuator 15 within elongated body 10 is still used to selectively grapple/slidingly capture/bind the suture, but movement of actuator 15 is not used to diametrically expand elongated body 10.
It will be understood that many changes in the details, materials, steps and arrangements of parts, which have been herein described and illustrated in order to explain the nature of the invention, may be made by those skilled in the art without departing from the principles and scope of the present invention.
This patent application: (1) is a continuation-in-part of pending prior U.S. patent application Ser. No. 11/347,082, filed Feb. 3, 2006 by Joseph H. Sklar for KNOTLESS SUTURE ANCHOR (Attorney's Docket No. SKLAR-32A), which patent application in turn claims benefit of prior U.S. Provisional Patent Application Ser. No. 60/650,759, filed Feb. 7, 2005 by Joseph H. Sklar for KNOTLESS SUTURE ANCHOR (Attorney's Docket No. SKLAR-32A PROV); (2) claims benefit of pending prior U.S. Provisional Patent Application Ser. No. 61/346,954, filed May 21, 2010 by Joseph H. Sklar for KNOTLESS SUTURE ANCHOR FOR SECURING SOFT TISSUE TO BONE (Attorney's Docket No. SKLAR-33 PROV); (3) claims benefit of pending prior U.S. Provisional Patent Application Ser. No. 61/380,909, filed Sep. 8, 2010 by Joseph H. Sklar for KNOTLESS SUTURE ANCHOR FOR SECURING SOFT TISSUE TO BONE (Attorney's Docket No. SKLAR-34 PROV); (4) claims benefit of pending prior U.S. Provisional Patent Application Ser. No. 61/419,275, filed Dec. 3, 2010 by Joseph H. Sklar for KNOTLESS SUTURE ANCHOR FOR SECURING SOFT TISSUE TO BONE (Attorney's Docket No. SKLAR-35 PROV); and (5) claims benefit of pending prior U.S. Provisional Patent Application Ser. No. 61/425,028, filed Dec. 20, 2010 by Joseph H. Sklar for KNOTLESS SUTURE ANCHOR FOR SECURING SOFT TISSUE TO BONE (Attorney's Docket No. SKLAR-36 PROV). The six above-identified patent applications are hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60650759 | Feb 2005 | US | |
61346954 | May 2010 | US | |
61380909 | Sep 2010 | US | |
61419275 | Dec 2010 | US | |
61425028 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11347082 | Feb 2006 | US |
Child | 13113681 | US |