1. Technical Field
The present disclosure relates to knotless tissue and suture anchors and, more particularly to radially expandable anchors and methods for use of the expandable anchors.
2. Background of Related Art
During surgery it is often necessary to attach prosthetic implants or soft tissue such as muscle tissue, ligaments, or tendons to hard tissue such as bone. Various types of surgical fasteners are employed for accomplishing this function, including staples, screw and washer systems, suture anchoring devices, and tissue anchors.
The first of these types is illustrated in U.S. Pat. Nos. 4,454,875 and 4,570,623, which show metal staples with spikes on the underside of the crosspiece to secure ligaments.
Fasteners included in the second of these types are available as screw-washer combinations wherein the screw is fabricated from a surgically suitable metal, such as titanium or stainless steel alloy, and is usually of self-tapping design. Suture anchors are adapted to be inserted into predrilled holes in bone and can be made of bioabsorbable material. When securing a ligament or suture within a bore drilled in bone, the self-tapping screws may abrade the ligament or suture as they are threaded in.
Suture anchors are also used to draw tissue adjacent bone. The anchor, having a first end and a suture attached thereto is anchored in bone and a second end of the suture is threaded through tissue and a knot is tied to secure the tissue to the bone.
Expandable tissue fasteners adapted for use in minimally invasive surgical procedures (e.g. arthroscopic procedures) are employed, for example, in the repair of shoulder and knee injuries. In such procedures, the operating instrumentation is usually deployed through a long, narrow cannula inserted through a small incision in the skin. Knots in the suture are typically tied remotely and pushed down to the anchor to secure the tissue and the site.
What is needed is an expandable tissue fastener or anchor for knotlessly securing tissue bone, and for atraumatically securing a graft to bone, especially in minimally invasive surgical procedures.
What is provided is a knotless tissue anchor including an expandable member defining a bore therethrough and having a radially expandable portion. The expandable member may also have an enlarged head portion. Preferably the radially expanding portion includes at least two distally extending legs defining a pair of slots therebetween. The tissue anchor further includes an inner member slidably disposed within the bore of the expandable member and having a camming surface engageable with the distal ends of the legs to force the distal ends of the legs radially outwardly in response to the distal movement of the expandable member relative to the inner member. The inner member also includes a length of suture having a first end affixed to the distal end of the inner member and a second free end and preferably the second free end is affixed to a surgical needle for passing the suture through tissue. More preferably the second end of the suture is affixed to a double pointed surgical needle or surgical incision member configured to pass the suture through tissue. Importantly, a distal end of the inner member is provided with a transverse bore of sufficient diameter to allow the surgical needle and suture to pass therethrough in order to secure tissue or a length of ligament adjacent the distal end of the inner member.
The proximal end of the inner member may be provided with an enlarged head for engagement and retention within a mounting member associated with an implantation apparatus. Furthermore, the inner member may be provided with a plurality of fins configured to slide within and be guided by the slots defined between the legs of the outer member. Ridges may also be provided on a shaft section of the inner member to prevent a distal movement of the inner member relative to the expandable member after the legs have been expanded. Finally, the inner member may also be provided with a breakaway notch such that upon full expansion of the legs of the expandable member, the notch is severed and a portion of the inner member is broken off to leave the surface of the tissue anchor flush with bone.
There is also provided a mounting member configured to releasably receive the disclosed tissue fastener and to be releasably mounted on an implantation apparatus.
There is also disclosed a method of knotlessly securing a section of tissue to a bone. This is particularly advantageous in surgeries such as shoulder, ligament or muscle repair surgery. The method generally includes providing the disclosed tissue fastener having an expandable outer member defining a bore and the inner member movably mounted within the outer member. Additionally, a length of suture affixed to the distal end of the inner member and having a suturing needle at the opposite end of the suture is also provided. The method further includes the steps of passing the free end of the suture through the tissue to be fastened. Preferably, this is accomplished with a suturing instrument utilized to pass the surgical needle through the tissue. Thereafter, the tissue fastener, having the section of tissue attached thereto, is positioned with a bore formed in bone while the section of tissue remains outside the bore. Additionally, the length of suture extending from the distal end of the inner member is also positioned in the bore formed in the bone and extending parallel to the tissue fastener and outwardly of the bore. The expandable member is expanded by driving the expandable member distally relative to the inner member to thereby expand the expandable member into engagement with the suture against the bone.
The method may also include the step of passing the free end of the suture through a transverse bore in a distal end of the inner member after the suture has been passed through tissue to secure the tissue adjacent the distal end of the inner member. After the suture has been passed through the transverse bore, tension may be applied to the suture to either draw the tissue adjacent the bore drilled in bone.
There is also disclosed a method of securing a ligament within an elongated bore drilled in bone such as that used in knee repair surgery. Method includes providing the tissue fastener described herein and piercing the ligament one or more times with the needle attached to the suture. Thereafter the needle and suture are passed through the hub to a transverse bore in the distal end of an inner member of the tissue fastener and the ligament is snugly secured adjacent the distal end of the inner member. Furthermore, the suture may be wrapped several times about the ligament and distal end of the inner member thereby securely lashing the ligament to the distal end of the inner member. The tissue fastener is either provided with a mounting portion for attachment to an implantation apparatus or may be manually assembled into a mounting member which is then releasably mounted into an implantation member.
Once the assembled tissue fastener and ligament have been mounted on the implantation apparatus, the implantation apparatus may be inserted through an enlarged bore formed through a pair of knee bones. The bores are of sufficient diameter that the attached ligament is not abraded or destroyed as it is advanced through the enlarged bore. Preferably, at the distal most end of the bores, a reduced diameter section is provided for receipt of the tissue fastener and associated ligament. Thereafter the implantation apparatus is actuated to expand the expandable member thus compressing the ligament adjacent the wall of the bore of the bone to secure the ligament between the expandable member and the bone. Thus, the ligament can be implanted with only radially extending forces acting on the ligament thereby providing atraumatic delivery and securement of the ligament within knee bone.
Various embodiments are described below with reference to the drawings wherein:
The preferred embodiments of the apparatus and methods disclosed herein are discussed in terms of orthopedic expandable tissue fastener implantation. It is also envisioned, however, that the disclosure is applicable to a wide variety of procedures including, but not limited to ligament repair, joint repair or replacement, non-union fractures, facial reconstruction, etc. In addition, it is believed that the present apparatus finds application in both open and minimally invasive procedures including endoscopic and arthroscopic procedures wherein access to the surgical site is achieved through a cannula or small incision.
In the description which follows, the term “proximal”, as is traditional, will refer to the portion of the structure which is closest to the operator, while the term “distal” will refer to the portion which is furthest from the operator.
The device and methods described herein are specifically configured for securing tissue or suture material by applying a radially expandable tissue fastener to a predrilled hole in bone and securing the tissue or suture between the fastener and the bone. The orthopedic tissue fastener is preferably provided as part of a disposable loading unit including a mounting unit.
Referring now to
Shaft 14 includes at least two, and preferably four, distally extending legs 18 which arc defined by lengthwise slots 20. Body 12 is fabricated from a material with sufficient flexibility and resiliency to allow legs 18 to radially expand by splaying outward. When body 12 is placed in a hole and legs 18 are expanded, barbs 22 provided on the outer surface of legs 18 engage the wall of bone tissue surrounding the hole and fictionally secure the body therein. Expanded legs 18 also knotlessly secure a section of suture or graft material positioned between legs 18 and adjacent bone. Legs 18 are expanded in response to engagement with a setting pin 24 as described below.
Setting pin 24 is part of expandable tissue fastener 10 and includes an elongated shaft 26 with at least one, and preferably four, lengthwise extending fins 28 adapted to engage and be guided by slots 20 in body 12. A series of circumferential barbs 30 on the shaft 26 inhibit distal motion of setting pin 14 relative to body 12. Shaft 24 also includes a wider diameter head 32 at its proximal end to facilitate grasping of setting pin 24 by an implantation instrument. At its distal end portion, shaft 26 includes an expanded diameter bulbous portion 34 which includes a proximally facing camming surface 36 and distally facing beveled tip 38. Camming surface 36 is provided to engage and radially expand legs 18 on body 12. A first end 42 of an associated length of suture 40 is affixed to shaft 26 within a bore 44 in tip 38. A needle 46 is affixed to a second end 48 of suture 40. Needle 46 may be a known suturing needle or, preferably, a surgical incision member such as that disclosed in U.S. Pat. No. 5,569,301 to Granger et al., the entire disclosure of which is incorporated by reference herein. A transverse bore 50 for receipt of suture 40 is provided in bulbous portion 38. Shaft 26 also includes a proximal end portion demarcated by a circumferential breakaway notch 52.
A mounting member 100 is provided to mount tissue fastener 10 on an implantation apparatus and together therewith forms a disposable loading unit 150. Mounting member 100 is a tissue fastener mounting portion which is an independent structure for supporting both expandable body 12 of tissue fastener 10 and setting pin 24. The entire disposable loading unit 150 mounts to the distal end of the implantation apparatus, as described below.
Mounting member 100 includes a collar 102 defining a recess 104 into which head 16 of body 12 is received and supported. A shaft 106 defines a lengthwise axis and includes laterally extending bayonet mounting pins 108 for releasably engaging L-shaped slots in the housing tube of an implantation instrument. A mounting slot 110 for retaining setting pin 24 extends lengthwise through collar 102 and includes at least one abutment wall 112 for contacting and retaining head 32 of setting pin 24. An access port 114 enables head 32 to be mounted into mounting slot 110 proximal to abutment wall 112. Mounting member 100 also includes arcuate lengthwise extending access chambers 116 which allow passage therethrough of pusher prongs (discussed below) for contacting and pushing head 16 of body 12.
Referring to
Referring now to
In order to assemble tissue fastener 10 within mounting member 100, elongated shaft 26 of setting pin 24 is inserted into keyhole shaped mounting slot 110 in mounting member 100. Elongated shaft 26 is advanced within slot 110 until head 32 is flexed to a position down into slot 110 and abuts abutment wall 112. Thus, head 16 of expandable body 12 is positioned within recess 104 in collar 102. In this manner the disposable loading unit is assembled and is ready for insertion into an implantation instrument. Attached suture 40 and needle 46 may be provided loose or may be provided in a separate loading unit to facilitate loading needle 46 into a surgical suturing instrument.
Referring now to
A distal end of elongated portion 202 is provided with an L-shaped slot 210 configured to receive bayonet mounting pins 108 of mounting member 100. In order to assemble on disposable loading unit 150 into implantation apparatus 200, mounting member 100 is positioned and advanced into the distal end of elongated member 202 such that bayonet mounting pins 108 enter elongated slot 210. Mounting member 100 is then rotated such that bayonet pins 108 are rotated into the transverse portion 212 of slot 210. Thus, the disposable loading unit 150 including mounting member 100 and tissue fastener 10 are securely attached to the distal end of implantation apparatus 200. As noted above, operation of trigger will drive expandable body 12 distally relative to setting pin 24 to thereby expand legs 18 radially outward.
As noted hereinabove, tissue fastener 10 includes a length of suture 40 and a needle 46. Needle 46 may be of any suitable tissue suturing variety. However, the preferred needle 46 is a surgical incision member 46 of the type noted in U.S. Pat. No. 5,569,301 the contents of which were incorporated by reference hereinabove. When utilizing surgical incision member 46, the use of a particular suturing apparatus disclosed in U.S. Pat. No. 5,569,301 is advantageous. Suturing apparatus 250 generally includes a handle portion 252 having a pair of pivoting handles 254 affixed thereto. An elongated member 256 extends distally from handle portion 252 and terminates in a pair of movable jaws 258 and 260. Actuation of handles 254 opens and closes jaws 258 and 260. As discussed in U.S. Pat. No. 5,569,301, operation of a toggle lever 262 functions to releasably and alternatively secure surgical incision member 46 within jaws 258 and 260. Thus, by closing handles 254, jaws 258 and 260 close and cause surgical incision 46 to penetrate tissue positioned therebetween, upon operation of toggle lever 262, surgical incision member 46 can be released from a first jaw and secured in a second jaw to thereby pass the needle through tissue upon opening of jaws 258, 260.
Referring now to
Referring now to
Referring now to
Referring to
As shown in
Referring now to
As shown in
Referring now to
Subsequently, disposable loading unit 150 containing the attached ligament D is mounted to the implant apparatus as described above.
Referring now to
Referring to
It will be understood that various modifications may be made to the embodiments disclosed herein. For example, barbs 22 are an expandable member 12 may be reconfigured as abraded surfaces or other means to frictionally engage suture 12 when cammed against suture 12 in a bore in bone. Additionally, barbs 22 may assume a rounded configuration to be less traumatic to any associated ligament or tissue section engaged by legs 18 as they expand. The above description should not be construed as limiting, but merely as exemplifications of preferred embodiments and methods. Those skilled in the art will envision other modifications and uses within the scope and spirit of the claims appended hereto.
This application is a continuation application of U.S. patent application Ser. No. 09/951,069, filed Sep. 13, 2001, now U.S. Pat. No. 7,037,324 and claims priority to U.S. Provisional Patent Application Ser. No. 60/232,714, filed on Sep. 15, 2000. The disclosures of each of these prior applications are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2121193 | Hanicke | Jun 1938 | A |
2381050 | Hardings | Aug 1945 | A |
2490364 | Livingston | Dec 1949 | A |
2699774 | Livingston | Jan 1955 | A |
3768635 | Eggert | Oct 1973 | A |
3910281 | Kletschka et al. | Oct 1975 | A |
3951261 | Mandel et al. | Apr 1976 | A |
4006747 | Kronenthal et al. | Feb 1977 | A |
4135623 | Thyen | Jan 1979 | A |
4244370 | Furlow et al. | Jan 1981 | A |
4275717 | Bolesky | Jun 1981 | A |
4351069 | Ballintyn et al. | Sep 1982 | A |
4424898 | Thyen et al. | Jan 1984 | A |
4454875 | Pratt et al. | Jun 1984 | A |
4519100 | Wills et al. | May 1985 | A |
4520511 | Gianezio et al. | Jun 1985 | A |
4539981 | Tune | Sep 1985 | A |
4550449 | Tune | Nov 1985 | A |
4570623 | Ellison et al. | Feb 1986 | A |
4586502 | Bedi et al. | May 1986 | A |
4590928 | Hunt et al. | May 1986 | A |
4590930 | Kurth et al. | May 1986 | A |
4591048 | Eldridge, Jr. | May 1986 | A |
4621640 | Mulhollan et al. | Nov 1986 | A |
4632100 | Somers et al. | Dec 1986 | A |
4655777 | Dunn et al. | Apr 1987 | A |
4669473 | Richards et al. | Jun 1987 | A |
4699271 | Lincoln et al. | Oct 1987 | A |
4713076 | Draenert | Dec 1987 | A |
4738255 | Goble et al. | Apr 1988 | A |
4741330 | Hayhurst | May 1988 | A |
4760843 | Fischer et al. | Aug 1988 | A |
4790304 | Rosenberg | Dec 1988 | A |
4828562 | Kenna | May 1989 | A |
4870957 | Goble et al. | Oct 1989 | A |
4871289 | Choiniere | Oct 1989 | A |
4895148 | Bays et al. | Jan 1990 | A |
4898156 | Gatturna et al. | Feb 1990 | A |
4898505 | Froehlich | Feb 1990 | A |
4899743 | Nicholson et al. | Feb 1990 | A |
4921383 | Fischer | May 1990 | A |
4927421 | Goble et al. | May 1990 | A |
4946468 | Li | Aug 1990 | A |
4968315 | Gatturna | Nov 1990 | A |
4969892 | Burton et al. | Nov 1990 | A |
4976680 | Hayman et al. | Dec 1990 | A |
5002550 | Li | Mar 1991 | A |
5013316 | Goble et al. | May 1991 | A |
5015250 | Foster | May 1991 | A |
5037422 | Hayhurst et al. | Aug 1991 | A |
5041129 | Hayhurst et al. | Aug 1991 | A |
5046513 | Gatturna et al. | Sep 1991 | A |
5053047 | Yoon | Oct 1991 | A |
5078730 | Li et al. | Jan 1992 | A |
5080543 | Murphy | Jan 1992 | A |
5084050 | Draenert | Jan 1992 | A |
5085661 | Moss | Feb 1992 | A |
5100417 | Cerier et al. | Mar 1992 | A |
5101421 | Nishiki | Mar 1992 | A |
5102421 | Anspach, Jr. | Apr 1992 | A |
5131533 | Alpern | Jul 1992 | A |
5144961 | Chen et al. | Sep 1992 | A |
5156616 | Meadows et al. | Oct 1992 | A |
5167664 | Hodorek | Dec 1992 | A |
5169400 | Muhling et al. | Dec 1992 | A |
5176682 | Chow | Jan 1993 | A |
5207679 | Li | May 1993 | A |
5209753 | Biedermann et al. | May 1993 | A |
5217486 | Rice et al. | Jun 1993 | A |
5236445 | Hayhurst et al. | Aug 1993 | A |
5258016 | DiPoto et al. | Nov 1993 | A |
5268001 | Nicholson et al. | Dec 1993 | A |
5354298 | Lee et al. | Oct 1994 | A |
5464427 | Curtis et al. | Nov 1995 | A |
5480403 | Lee et al. | Jan 1996 | A |
5486197 | Le et al. | Jan 1996 | A |
5569301 | Granger et al. | Oct 1996 | A |
5618314 | Harwin et al. | Apr 1997 | A |
5645547 | Coleman | Jul 1997 | A |
5733307 | Dinsdale | Mar 1998 | A |
5782866 | Wenstrom, Jr. | Jul 1998 | A |
5868789 | Huebner | Feb 1999 | A |
5928244 | Tovey et al. | Jul 1999 | A |
5964766 | Shaw | Oct 1999 | A |
6056771 | Proto | May 2000 | A |
6139565 | Stone et al. | Oct 2000 | A |
6319252 | McDevitt et al. | Nov 2001 | B1 |
7037324 | Martinek | May 2006 | B2 |
20010053913 | Freedland | Dec 2001 | A1 |
20030130695 | McDevitt et al. | Jul 2003 | A1 |
Number | Date | Country |
---|---|---|
2622430 | Oct 1987 | FR |
2784020 | Apr 2000 | FR |
2084468 | Sep 1981 | GB |
584855 | Dec 1977 | SU |
WO 8603666 | Jul 1986 | WO |
WO 8909030 | Oct 1989 | WO |
WO 8910096 | Nov 1989 | WO |
WO 9204874 | Apr 1992 | WO |
WO 9308747 | May 1993 | WO |
WO 9515726 | Jun 1995 | WO |
WO 0110312 | Feb 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20060116719 A1 | Jun 2006 | US |
Number | Date | Country | |
---|---|---|---|
60232714 | Sep 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09951069 | Sep 2001 | US |
Child | 11313401 | US |