Knowledge-based framework for improving natural language understanding

Information

  • Patent Grant
  • 10733375
  • Patent Number
    10,733,375
  • Date Filed
    Tuesday, June 19, 2018
    6 years ago
  • Date Issued
    Tuesday, August 4, 2020
    4 years ago
Abstract
Systems and processes for operating an intelligent automated assistant are provided. An example process receives natural language input and determines a first and a second parsing result for the natural language input. The first and the second parsing results include respective mappings of one or more properties of a domain corresponding to the natural language input to one or more words of the natural language input. The process determines whether the second parsing result corresponds to a data item in a knowledge base, and in accordance with determining that the second parsing result corresponds to the data item in the knowledge base, the process ranks the second parsing result higher than the first parsing result. Based on the ranking, the process generates a task flow using the second parsing result and executes the task flow to provide an output based on the data item.
Description
FIELD

This relates generally to intelligent automated assistants and, more specifically, to using knowledge bases to improve the natural language understanding capabilities of intelligent automated assistants.


BACKGROUND

Intelligent automated assistants (or digital assistants) can provide a beneficial interface between human users and electronic devices. Such assistants can allow users to interact with devices or systems using natural language in spoken and/or text forms. For example, a user can provide natural language input representing a user request to a digital assistant operating on an electronic device. The digital assistant can interpret the user's intent from the input and operationalize the user's intent into tasks. The tasks can then be performed by executing one or more services of the electronic device, and a relevant output responsive to the user request can be returned to the user.


Digital assistants can interpret natural language input by parsing the natural language input to obtain one or more natural language parsing results. The one or more parsing results can identify relevant semantic information in the natural language input and can be used to generate one or more tasks corresponding to the natural language input. In some instances, the one or more generated tasks, when performed by the digital assistant, may fail to accomplish the user request represented by the natural language input. This may be because the one or more parsing results contain insufficient and/or erroneous semantic information about the natural language input. Accordingly, improved natural language processing techniques are desirable.


SUMMARY

Example methods are disclosed herein. An example method includes, at an electronic device having one or more processors and memory, receiving natural language input and determining, from a plurality of domains, a domain corresponding to the natural language input. The method further includes, in accordance with determining that the domain corresponds to a predetermined type of domain, determining a first and a second parsing result for the natural language input, wherein each of the first and the second parsing results comprises a respective mapping of one or more properties of the domain to one or more words of the natural language input, and wherein a first confidence score of the first parsing result is higher than a second confidence score of the second parsing result. The method further includes determining whether the second parsing result corresponds to a data item of a plurality of data items in a knowledge base, and in accordance with a determination that the second parsing result corresponds to the data item of the plurality of data items in the knowledge base, ranking the second parsing result higher than the first parsing result. The method further includes, based on the ranking, generating a task flow using the second parsing result and executing the task flow to provide an output based on the data item.


An example method includes at an electronic device with one or more processors and memory, obtaining a natural language input and metadata corresponding to an output provided responsive to the natural language input, wherein the natural language input corresponds to a domain of a predetermined type, the output includes a data item, and the metadata includes a set of attributes corresponding to the data item, the set of attributes defining a set of values for a respective set of properties of the domain. The method further includes determining, from the metadata, whether the output satisfies a predetermined criterion and, in accordance with a determination that the output satisfies the predetermined criterion, comparing the set of values to the natural language input to determine a parsing result, the parsing result mapping one or more words of the natural language input to one or more properties of the respective set of properties of the domain. The method further includes providing the natural language input and the determined parsing result to generate a natural language parsing model of the domain.


Exemplary non-transitory computer-readable media are disclosed herein. An example non-transitory computer-readable storage medium stores one or more programs. The one or more programs comprise instructions which, when executed by one or more processors of an electronic device, cause the electronic device to receive natural language input; determine, from a plurality of domains, a domain corresponding to the natural language input; in accordance with determining that the domain corresponds to a predetermined type of domain, determine a first and a second parsing result for the natural language input, wherein each of the first and the second parsing results comprises a respective mapping of one or more properties of the domain to one or more words of the natural language input, and wherein a first confidence score of the first parsing result is higher than a second confidence score of the second parsing result; determine whether the second parsing result corresponds to a data item of a plurality of data items in a knowledge base; in accordance with a determination that the second parsing result corresponds to the data item of the plurality of data items in the knowledge base, rank the second parsing result higher than the first parsing result; based on the ranking, generate a task flow using the second parsing result; and execute the task flow to provide an output based on the data item.


An example non-transitory computer readable storage medium stores one or more programs. The one or more programs comprise instructions which, when executed by one or more processors of an electronic device, cause the electronic device to obtain a natural language input and metadata corresponding to an output provided responsive to the natural language input, wherein the natural language input corresponds to a domain of a predetermined type, the output includes a data item, and the metadata includes a set of attributes corresponding to the data item, the set of attributes defining a set of values for a respective set of properties of the domain; determine from the metadata whether the output satisfies a predetermined criterion; in accordance with a determination that the output satisfies the predetermined criterion, compare the set of values to the natural language input to determine a parsing result, the parsing result mapping one or more words of the natural language input to one or more properties of the respective set of properties of the domain; and provide the natural language input and the determined parsing result to generate a natural language parsing model of the domain.


Exemplary electronic devices are disclosed herein. An example electronic device comprises one or more processors; a memory; and one or more programs, where the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for receiving natural language input; determining, from a plurality of domains, a domain corresponding to the natural language input; in accordance with determining that the domain corresponds to a predetermined type of domain, determining a first and a second parsing result for the natural language input, wherein each of the first and the second parsing results comprises a respective mapping of one or more properties of the domain to one or more words of the natural language input, and wherein a first confidence score of the first parsing result is higher than a second confidence score of the second parsing result; determining whether the second parsing result corresponds to a data item of a plurality of data items in a knowledge base; in accordance with a determination that the second parsing result corresponds to the data item of the plurality of data items in the knowledge base, ranking the second parsing result higher than the first parsing result based on the ranking, generating a task flow using the second parsing result; and executing the task flow to provide an output based on the data item.


An example electronic device comprises one or more processors; a memory; and one or more programs, where the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for obtaining a natural language input and metadata corresponding to an output provided responsive to the natural language input, wherein the natural language input corresponds to a domain of a predetermined type, the output includes a data item, and the metadata includes a set of attributes corresponding to the data item, the set of attributes defining a set of values for a respective set of properties of the domain; determining, from the metadata, whether the output satisfies a predetermined criterion; in accordance with a determination that the output satisfies the predetermined criterion, comparing the set of values to the natural language input to determine a parsing result, the parsing result mapping one or more words of the natural language input to one or more properties of the respective set of properties of the domain; and providing the natural language input and the determined parsing result to generate a natural language parsing model of the domain.


An example electronic device comprises means for receiving natural language input; determining, from a plurality of domains, a domain corresponding to the natural language input; in accordance with determining that the domain corresponds to a predetermined type of domain, determining a first and a second parsing result for the natural language input, wherein each of the first and the second parsing results comprises a respective mapping of one or more properties of the domain to one or more words of the natural language input, and wherein a first confidence score of the first parsing result is higher than a second confidence score of the second parsing result; determining whether the second parsing result corresponds to a data item of a plurality of data items in a knowledge base; in accordance with a determination that the second parsing result corresponds to the data item of the plurality of data items in the knowledge base, ranking the second parsing result higher than the first parsing result based on the ranking, generating a task flow using the second parsing result; and executing the task flow to provide an output based on the data item.


An example electronic device comprises means for obtaining a natural language input and metadata corresponding to an output provided responsive to the natural language input, wherein the natural language input corresponds to a domain of a predetermined type, the output includes a data item, and the metadata includes a set of attributes corresponding to the data item, the set of attributes defining a set of values for a respective set of properties of the domain; determining, from the metadata, whether the output satisfies a predetermined criterion; in accordance with a determination that the output satisfies the predetermined criterion, comparing the set of values to the natural language input to determine a parsing result, the parsing result mapping one or more words of the natural language input to one or more properties of the respective set of properties of the domain; and providing the natural language input and the determined parsing result to generate a natural language parsing model of the domain.


Determining one or more parsing results for natural language input and determining whether the one or more parsing results for the natural language input correspond to respective data items of a plurality of data items in a knowledge base allow an electronic device to validate and/or rank parsing results using data items contained in the knowledge base. Accordingly, parsing results determined to correspond to data items in a knowledge base accessible to the electronic device may be used to execute tasks. This reduces the chance that the electronic device incorrectly, or fails to, provide data items responsive to natural language inputs requesting data items and also increases the accuracy of the response provided to the natural language inputs. Improving the accuracy of the response in this manner enhances the operability of the electronic device and makes the user-device interface more efficient (e.g., by improving interpretation of user requests, by reducing mistakes in interpreting natural language input, and by reducing repetitive user inputs) which, additionally, reduces power usage and improves battery life of the device by enabling the user to user the device more quickly and efficiently.


Obtaining a natural language input and metadata corresponding to an output provided responsive to the natural language input, determining whether the output satisfies a predetermined criterion, and determining a parsing result for the natural language input using the metadata allows an electronic device to generate accurate parsing results that can be used to generate and/or train natural language parsing models. In particular, the above techniques allow the electronic device to use information contained in the metadata to infer whether the output provided responsive to the natural language input was correct. If the output is inferred to be correct, the metadata corresponding to the output can be used to determine an accurate parsing result for the natural language input. Determining accurate parsing results in this manner allows the electronic device to collect large amounts of accurate training data (e.g., the accurate parsing results) and to train natural language parsing models using the training data. Collecting accurate training data and training natural language parsing models in this manner improves the accuracy of parsing results, and therefore the accuracy of the response provided to natural language inputs. Improving the accuracy of response provided to natural language inputs enhances the operability of the electronic device and makes the user-device interface more efficient (e.g., by improving interpretation of user requests, by reducing mistakes in interpreting natural language input, and by reducing repetitive user inputs) which, additionally, reduces power usage and improves battery life of the device by enabling the user to user the device more quickly and efficiently.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram illustrating a system and environment for implementing a digital assistant, according to various examples.



FIG. 2A is a block diagram illustrating a portable multifunction device implementing the client-side portion of a digital assistant, according to various examples.



FIG. 2B is a block diagram illustrating exemplary components for event handling, according to various examples.



FIG. 3 illustrates a portable multifunction device implementing the client-side portion of a digital assistant, according to various examples.



FIG. 4 is a block diagram of an exemplary multifunction device with a display and a touch-sensitive surface, according to various examples.



FIG. 5A illustrates an exemplary user interface for a menu of applications on a portable multifunction device, according to various examples.



FIG. 5B illustrates an exemplary user interface for a multifunction device with a touch-sensitive surface that is separate from the display, according to various examples.



FIG. 6A illustrates a personal electronic device, according to various examples.



FIG. 6B is a block diagram illustrating a personal electronic device, according to various examples.



FIG. 7A is a block diagram illustrating a digital assistant system or a server portion thereof, according to various examples.



FIG. 7B illustrates the functions of the digital assistant shown in FIG. 7A, according to various examples.



FIG. 7C illustrates a portion of an ontology, according to various examples.



FIG. 8 illustrates a natural language parsing system, according to various examples.



FIG. 9 illustrates a neural network configured to generate natural language parsing results for natural language input, according to various examples.



FIG. 10 illustrates a process for using a knowledge base to perform natural language processing, according to various examples.



FIG. 11 illustrates a process for natural language parsing model generation based on user engagement data, according to various examples.



FIG. 12 illustrates parsing results determined for natural language input, according to various examples.





DETAILED DESCRIPTION

In the following description of examples, reference is made to the accompanying drawings in which are shown by way of illustration specific examples that can be practiced. It is to be understood that other examples can be used and structural changes can be made without departing from the scope of the various examples.


Digital assistants can determine one or more parsing results for user natural language inputs to generate task flows to accomplish tasks requested by the user. The parsing results depend on a domain corresponding to the natural language input and map one or more properties of the domain to one or more words of the natural language input. For example, the natural language input “play Hello by Adele” can be determined to correspond to a media domain. In this example, a first parsing result can map “Hello by Adele” to the “musicTitle” property of the media domain and a second parsing result can map “Hello” to the “musicTitle” property of the media domain.


In the present example, a task flow generated using the first parsing result mapping the “musicTitle” domain property to “Hello by Adele” can lead to an error message (e.g., “Sorry I couldn't find the song “Hello by Adele”) when executed because there is no song titled “Hello by Adele.” However, a task flow generated using the second parsing result can correctly cause playback of the song titled “Hello” by the artist “Adele” when executed because there is a song titled “Hello” by the artist “Adele.” Accordingly, before generating task flows using one or more parsing results for natural language input, it may be desirable to validate whether the one or more parsing results correspond to a data item (e.g., a song) available to the digital assistant.


Thus, the present disclosure contemplates using knowledge bases (e.g., information databases comprising data items, such as the iTunes® database by Apple Inc.) to rank and/or validate parsing results before generating and executing task flows based on the parsing results. For example, it can be determined whether the first and the second parsing results for the natural language input “play Hello by Adele” respectively correspond to a data item in a knowledge base. Here, the first parsing result mapping the domain property “musicTitle” to “Hello by Adele” can be determined to not correspond to any data items in the knowledge base, while the second parsing result mapping the domain property “musicTitle” to “Hello” can be determined to correspond to a data item in the knowledge base. Accordingly, the second parsing result can be ranked higher than the first parsing result, and the second parsing result can be used to generate a task flow. The task flow generated using the second parsing result can cause correct playback of the song “Hello” by the artist “Adele” when executed.


The present disclosure further contemplates that parsing results correctly determined for natural language inputs can be used to generate and/or train natural language parsing models that generate parsing results. For example, the correct parsing result mapping “musicTitle” to “Hello” and the natural language input “play Hello by Adele” can be provided to train a natural language parsing model so that subsequent parsing results for the natural language input “play Hello by Adele” correctly map “musicTitle” to “Hello,” instead of incorrectly mapping “musicTitle” to “Hello by Adele.”


To determine correct parsing results for a natural language input, the present disclosure contemplates using “user engagement data” corresponding to outputs provided responsive to the natural language input. User engagement data corresponding to outputs can indicate that the output was played for greater than a predetermined duration (e.g., 30 seconds). For example, user engagement data corresponding to the song “Rolling in the Deep,” correctly provided responsive to the natural language input “play Rolling in the Deep,” can indicate that the song was played for greater than 30 seconds. In some examples, an output provided for greater than the predetermined duration is interpreted as an indication that the output was correct (e.g., because otherwise the user would cancel the output within the predetermined duration). Accordingly, information associated with a data item (e.g., a song) included in the output can be used to determine a correct parsing result for the natural language input. For example, information associated with the song “Rolling in the Deep” can specify that “Rolling in the Deep” is mapped to the “musicTitle” property of the media domain. This information can be compared to the natural language input “play Rolling in the Deep” to determine the correct parsing result mapping “Rolling in the Deep” to the “musicTitle” property of the domain. The correct parsing result for the natural language input and the natural language input can then be provided to train and/or generate a natural language parsing model.


Although the following description uses terms “first,” “second,” etc. to describe various elements, these elements should not be limited by the terms. These terms are only used to distinguish one element from another. For example, a first input could be termed a second input, and, similarly, a second input could be termed a first input, without departing from the scope of the various described examples. The first input and the second input are both inputs and, in some cases, are separate and different inputs.


The terminology used in the description of the various described examples herein is for the purpose of describing particular examples only and is not intended to be limiting. As used in the description of the various described examples and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “includes,” “including,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


The term “if” may be construed to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context. Similarly, the phrase “if it is determined” or “if [a stated condition or event] is detected” may be construed to mean “upon determining” or “in response to determining” or “upon detecting [the stated condition or event]” or “in response to detecting [the stated condition or event],” depending on the context.


1. System and Environment



FIG. 1 illustrates a block diagram of system 100 according to various examples. In some examples, system 100 implements a digital assistant. The terms “digital assistant,” “virtual assistant,” “intelligent automated assistant,” or “automatic digital assistant” refer to any information processing system that interprets natural language input in spoken and/or textual form to infer user intent, and performs actions based on the inferred user intent. For example, to act on an inferred user intent, the system performs one or more of the following: identifying a task flow with steps and parameters designed to accomplish the inferred user intent, inputting specific requirements from the inferred user intent into the task flow; executing the task flow by invoking programs, methods, services, APIs, or the like; and generating output responses to the user in an audible (e.g., speech) and/or visual form.


Specifically, a digital assistant is capable of accepting a user request at least partially in the form of a natural language command, request, statement, narrative, and/or inquiry. Typically, the user request seeks either an informational answer or performance of a task by the digital assistant. A satisfactory response to the user request includes a provision of the requested informational answer, a performance of the requested task, or a combination of the two. For example, a user asks the digital assistant a question, such as “Where am I right now?” Based on the user's current location, the digital assistant answers, “You are in Central Park near the west gate.” The user also requests the performance of a task, for example, “Please invite my friends to my girlfriend's birthday party next week.” In response, the digital assistant can acknowledge the request by saying “Yes, right away,” and then send a suitable calendar invite on behalf of the user to each of the user's friends listed in the user's electronic address book. During performance of a requested task, the digital assistant sometimes interacts with the user in a continuous dialogue involving multiple exchanges of information over an extended period of time. There are numerous other ways of interacting with a digital assistant to request information or performance of various tasks. In addition to providing verbal responses and taking programmed actions, the digital assistant also provides responses in other visual or audio forms, e.g., as text, alerts, music, videos, animations, etc.


As shown in FIG. 1, in some examples, a digital assistant is implemented according to a client-server model. The digital assistant includes client-side portion 102 (hereafter “DA client 102”) executed on user device 104 and server-side portion 106 (hereafter “DA server 106”) executed on server system 108. DA client 102 communicates with DA server 106 through one or more networks 110. DA client 102 provides client-side functionalities such as user-facing input and output processing and communication with DA server 106. DA server 106 provides server-side functionalities for any number of DA clients 102 each residing on a respective user device 104.


In some examples, DA server 106 includes client-facing I/O interface 112, one or more processing modules 114, data and models 116, and I/O interface to external services 118. The client-facing I/O interface 112 facilitates the client-facing input and output processing for DA server 106. One or more processing modules 114 utilize data and models 116 to process speech input and determine the user's intent based on natural language input. Further, one or more processing modules 114 perform task execution based on inferred user intent. In some examples, DA server 106 communicates with external services 120 through network(s) 110 for task completion or information acquisition. I/O interface to external services 118 facilitates such communications.


User device 104 can be any suitable electronic device. In some examples, user device 104 is a portable multifunctional device (e.g., device 200, described below with reference to FIG. 2A), a multifunctional device (e.g., device 400, described below with reference to FIG. 4), or a personal electronic device (e.g., device 600, described below with reference to FIGS. 6A-6B.) A portable multifunctional device is, for example, a mobile telephone that also contains other functions, such as PDA and/or music player functions. Specific examples of portable multifunction devices include the Apple Watch®, iPhone®, iPod Touch®, and iPad® devices from Apple Inc. of Cupertino, Calif. Other examples of portable multifunction devices include, without limitation, earphones/headphones, speakers, and laptop or tablet computers. Further, in some examples, user device 104 is a non-portable multifunctional device. In particular, user device 104 is a desktop computer, a game console, a speaker, a television, or a television set-top box. In some examples, user device 104 includes a touch-sensitive surface (e.g., touch screen displays and/or touchpads). Further, user device 104 optionally includes one or more other physical user-interface devices, such as a physical keyboard, a mouse, and/or a joystick. Various examples of electronic devices, such as multifunctional devices, are described below in greater detail.


Examples of communication network(s) 110 include local area networks (LAN) and wide area networks (WAN), e.g., the Internet. Communication network(s) 110 is implemented using any known network protocol, including various wired or wireless protocols, such as, for example, Ethernet, Universal Serial Bus (USB), FIREWIRE, Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Wi-Fi, voice over Internet Protocol (VoIP), Wi-MAX, or any other suitable communication protocol.


Server system 108 is implemented on one or more standalone data processing apparatus or a distributed network of computers. In some examples, server system 108 also employs various virtual devices and/or services of third-party service providers (e.g., third-party cloud service providers) to provide the underlying computing resources and/or infrastructure resources of server system 108.


In some examples, user device 104 communicates with DA server 106 via second user device 122. Second user device 122 is similar or identical to user device 104. For example, second user device 122 is similar to devices 200, 400, or 600 described below with reference to FIGS. 2A, 4, and 6A-6B. User device 104 is configured to communicatively couple to second user device 122 via a direct communication connection, such as Bluetooth, NFC, BTLE, or the like, or via a wired or wireless network, such as a local Wi-Fi network. In some examples, second user device 122 is configured to act as a proxy between user device 104 and DA server 106. For example, DA client 102 of user device 104 is configured to transmit information (e.g., a user request received at user device 104) to DA server 106 via second user device 122. DA server 106 processes the information and returns relevant data (e.g., data content responsive to the user request) to user device 104 via second user device 122.


In some examples, user device 104 is configured to communicate abbreviated requests for data to second user device 122 to reduce the amount of information transmitted from user device 104. Second user device 122 is configured to determine supplemental information to add to the abbreviated request to generate a complete request to transmit to DA server 106. This system architecture can advantageously allow user device 104 having limited communication capabilities and/or limited battery power (e.g., a watch or a similar compact electronic device) to access services provided by DA server 106 by using second user device 122, having greater communication capabilities and/or battery power (e.g., a mobile phone, laptop computer, tablet computer, or the like), as a proxy to DA server 106. While only two user devices 104 and 122 are shown in FIG. 1, it should be appreciated that system 100, in some examples, includes any number and type of user devices configured in this proxy configuration to communicate with DA server system 106.


Although the digital assistant shown in FIG. 1 includes both a client-side portion (e.g., DA client 102) and a server-side portion (e.g., DA server 106), in some examples, the functions of a digital assistant are implemented as a standalone application installed on a user device. In addition, the divisions of functionalities between the client and server portions of the digital assistant can vary in different implementations. For instance, in some examples, the DA client is a thin-client that provides only user-facing input and output processing functions, and delegates all other functionalities of the digital assistant to a backend server.


2. Electronic Devices


Attention is now directed toward embodiments of electronic devices for implementing the client-side portion of a digital assistant. FIG. 2A is a block diagram illustrating portable multifunction device 200 with touch-sensitive display system 212 in accordance with some embodiments. Touch-sensitive display 212 is sometimes called a “touch screen” for convenience and is sometimes known as or called a “touch-sensitive display system.” Device 200 includes memory 202 (which optionally includes one or more computer-readable storage mediums), memory controller 222, one or more processing units (CPUs) 220, peripherals interface 218, RF circuitry 208, audio circuitry 210, speaker 211, microphone 213, input/output (I/O) subsystem 206, other input control devices 216, and external port 224. Device 200 optionally includes one or more optical sensors 264. Device 200 optionally includes one or more contact intensity sensors 265 for detecting intensity of contacts on device 200 (e.g., a touch-sensitive surface such as touch-sensitive display system 212 of device 200). Device 200 optionally includes one or more tactile output generators 267 for generating tactile outputs on device 200 (e.g., generating tactile outputs on a touch-sensitive surface such as touch-sensitive display system 212 of device 200 or touchpad 455 of device 400). These components optionally communicate over one or more communication buses or signal lines 203.


As used in the specification and claims, the term “intensity” of a contact on a touch-sensitive surface refers to the force or pressure (force per unit area) of a contact (e.g., a finger contact) on the touch-sensitive surface, or to a substitute (proxy) for the force or pressure of a contact on the touch-sensitive surface. The intensity of a contact has a range of values that includes at least four distinct values and more typically includes hundreds of distinct values (e.g., at least 256). Intensity of a contact is, optionally, determined (or measured) using various approaches and various sensors or combinations of sensors. For example, one or more force sensors underneath or adjacent to the touch-sensitive surface are, optionally, used to measure force at various points on the touch-sensitive surface. In some implementations, force measurements from multiple force sensors are combined (e.g., a weighted average) to determine an estimated force of a contact. Similarly, a pressure-sensitive tip of a stylus is, optionally, used to determine a pressure of the stylus on the touch-sensitive surface. Alternatively, the size of the contact area detected on the touch-sensitive surface and/or changes thereto, the capacitance of the touch-sensitive surface proximate to the contact and/or changes thereto, and/or the resistance of the touch-sensitive surface proximate to the contact and/or changes thereto are, optionally, used as a substitute for the force or pressure of the contact on the touch-sensitive surface. In some implementations, the substitute measurements for contact force or pressure are used directly to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is described in units corresponding to the substitute measurements). In some implementations, the substitute measurements for contact force or pressure are converted to an estimated force or pressure, and the estimated force or pressure is used to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is a pressure threshold measured in units of pressure). Using the intensity of a contact as an attribute of a user input allows for user access to additional device functionality that may otherwise not be accessible by the user on a reduced-size device with limited real estate for displaying affordances (e.g., on a touch-sensitive display) and/or receiving user input (e.g., via a touch-sensitive display, a touch-sensitive surface, or a physical/mechanical control such as a knob or a button).


As used in the specification and claims, the term “tactile output” refers to physical displacement of a device relative to a previous position of the device, physical displacement of a component (e.g., a touch-sensitive surface) of a device relative to another component (e.g., housing) of the device, or displacement of the component relative to a center of mass of the device that will be detected by a user with the user's sense of touch. For example, in situations where the device or the component of the device is in contact with a surface of a user that is sensitive to touch (e.g., a finger, palm, or other part of a user's hand), the tactile output generated by the physical displacement will be interpreted by the user as a tactile sensation corresponding to a perceived change in physical characteristics of the device or the component of the device. For example, movement of a touch-sensitive surface (e.g., a touch-sensitive display or trackpad) is, optionally, interpreted by the user as a “down click” or “up click” of a physical actuator button. In some cases, a user will feel a tactile sensation such as an “down click” or “up click” even when there is no movement of a physical actuator button associated with the touch-sensitive surface that is physically pressed (e.g., displaced) by the user's movements. As another example, movement of the touch-sensitive surface is, optionally, interpreted or sensed by the user as “roughness” of the touch-sensitive surface, even when there is no change in smoothness of the touch-sensitive surface. While such interpretations of touch by a user will be subject to the individualized sensory perceptions of the user, there are many sensory perceptions of touch that are common to a large majority of users. Thus, when a tactile output is described as corresponding to a particular sensory perception of a user (e.g., an “up click,” a “down click,” “roughness”), unless otherwise stated, the generated tactile output corresponds to physical displacement of the device or a component thereof that will generate the described sensory perception for a typical (or average) user.


It should be appreciated that device 200 is only one example of a portable multifunction device, and that device 200 optionally has more or fewer components than shown, optionally combines two or more components, or optionally has a different configuration or arrangement of the components. The various components shown in FIG. 2A are implemented in hardware, software, or a combination of both hardware and software, including one or more signal processing and/or application-specific integrated circuits.


Memory 202 includes one or more computer-readable storage mediums. The computer-readable storage mediums are, for example, tangible and non-transitory. Memory 202 includes high-speed random access memory and also includes non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices. Memory controller 222 controls access to memory 202 by other components of device 200.


In some examples, a non-transitory computer-readable storage medium of memory 202 is used to store instructions (e.g., for performing aspects of processes described below) for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. In other examples, the instructions (e.g., for performing aspects of the processes described below) are stored on a non-transitory computer-readable storage medium (not shown) of the server system 108 or are divided between the non-transitory computer-readable storage medium of memory 202 and the non-transitory computer-readable storage medium of server system 108.


Peripherals interface 218 is used to couple input and output peripherals of the device to CPU 220 and memory 202. The one or more processors 220 run or execute various software programs and/or sets of instructions stored in memory 202 to perform various functions for device 200 and to process data. In some embodiments, peripherals interface 218, CPU 220, and memory controller 222 are implemented on a single chip, such as chip 204. In some other embodiments, they are implemented on separate chips.


RF (radio frequency) circuitry 208 receives and sends RF signals, also called electromagnetic signals. RF circuitry 208 converts electrical signals to/from electromagnetic signals and communicates with communications networks and other communications devices via the electromagnetic signals. RF circuitry 208 optionally includes well-known circuitry for performing these functions, including but not limited to an antenna system, an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a CODEC chipset, a subscriber identity module (SIM) card, memory, and so forth. RF circuitry 208 optionally communicates with networks, such as the Internet, also referred to as the World Wide Web (WWW), an intranet and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN) and/or a metropolitan area network (MAN), and other devices by wireless communication. The RF circuitry 208 optionally includes well-known circuitry for detecting near field communication (NFC) fields, such as by a short-range communication radio. The wireless communication optionally uses any of a plurality of communications standards, protocols, and technologies, including but not limited to Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), high-speed downlink packet access (HSDPA), high-speed uplink packet access (HSUPA), Evolution, Data-Only (EV-DO), HSPA, HSPA+, Dual-Cell HSPA (DC-HSPDA), long term evolution (LTE), near field communication (NFC), wideband code division multiple access (W-CDMA), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Bluetooth Low Energy (BTLE), Wireless Fidelity (Wi-Fi) (e.g., IEEE 802.11a, IEEE 802.11b, IEEE 802.11g, IEEE 802.11n, and/or IEEE 802.11ac), voice over Internet Protocol (VoIP), Wi-MAX, a protocol for e mail (e.g., Internet message access protocol (IMAP) and/or post office protocol (POP)), instant messaging (e.g., extensible messaging and presence protocol (XMPP), Session Initiation Protocol for Instant Messaging and Presence Leveraging Extensions (SIMPLE), Instant Messaging and Presence Service (IMPS)), and/or Short Message Service (SMS), or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document.


Audio circuitry 210, speaker 211, and microphone 213 provide an audio interface between a user and device 200. Audio circuitry 210 receives audio data from peripherals interface 218, converts the audio data to an electrical signal, and transmits the electrical signal to speaker 211. Speaker 211 converts the electrical signal to human-audible sound waves. Audio circuitry 210 also receives electrical signals converted by microphone 213 from sound waves. Audio circuitry 210 converts the electrical signal to audio data and transmits the audio data to peripherals interface 218 for processing. Audio data are retrieved from and/or transmitted to memory 202 and/or RF circuitry 208 by peripherals interface 218. In some embodiments, audio circuitry 210 also includes a headset jack (e.g., 312, FIG. 3). The headset jack provides an interface between audio circuitry 210 and removable audio input/output peripherals, such as output-only headphones or a headset with both output (e.g., a headphone for one or both ears) and input (e.g., a microphone).


I/O subsystem 206 couples input/output peripherals on device 200, such as touch screen 212 and other input control devices 216, to peripherals interface 218. I/O subsystem 206 optionally includes display controller 256, optical sensor controller 258, intensity sensor controller 259, haptic feedback controller 261, and one or more input controllers 260 for other input or control devices. The one or more input controllers 260 receive/send electrical signals from/to other input control devices 216. The other input control devices 216 optionally include physical buttons (e.g., push buttons, rocker buttons, etc.), dials, slider switches, joysticks, click wheels, and so forth. In some alternate embodiments, input controller(s) 260 are, optionally, coupled to any (or none) of the following: a keyboard, an infrared port, a USB port, and a pointer device such as a mouse. The one or more buttons (e.g., 308, FIG. 3) optionally include an up/down button for volume control of speaker 211 and/or microphone 213. The one or more buttons optionally include a push button (e.g., 306, FIG. 3).


A quick press of the push button disengages a lock of touch screen 212 or begin a process that uses gestures on the touch screen to unlock the device, as described in U.S. patent application Ser. No. 11/322,549, “Unlocking a Device by Performing Gestures on an Unlock Image,” filed Dec. 23, 2005, U.S. Pat. No. 7,657,849, which is hereby incorporated by reference in its entirety. A longer press of the push button (e.g., 306) turns power to device 200 on or off. The user is able to customize a functionality of one or more of the buttons. Touch screen 212 is used to implement virtual or soft buttons and one or more soft keyboards.


Touch-sensitive display 212 provides an input interface and an output interface between the device and a user. Display controller 256 receives and/or sends electrical signals from/to touch screen 212. Touch screen 212 displays visual output to the user. The visual output includes graphics, text, icons, video, and any combination thereof (collectively termed “graphics”). In some embodiments, some or all of the visual output correspond to user-interface objects.


Touch screen 212 has a touch-sensitive surface, sensor, or set of sensors that accepts input from the user based on haptic and/or tactile contact. Touch screen 212 and display controller 256 (along with any associated modules and/or sets of instructions in memory 202) detect contact (and any movement or breaking of the contact) on touch screen 212 and convert the detected contact into interaction with user-interface objects (e.g., one or more soft keys, icons, web pages, or images) that are displayed on touch screen 212. In an exemplary embodiment, a point of contact between touch screen 212 and the user corresponds to a finger of the user.


Touch screen 212 uses LCD (liquid crystal display) technology, LPD (light emitting polymer display) technology, or LED (light emitting diode) technology, although other display technologies may be used in other embodiments. Touch screen 212 and display controller 256 detect contact and any movement or breaking thereof using any of a plurality of touch sensing technologies now known or later developed, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with touch screen 212. In an exemplary embodiment, projected mutual capacitance sensing technology is used, such as that found in the iPhone® and iPod Touch® from Apple Inc. of Cupertino, Calif.


A touch-sensitive display in some embodiments of touch screen 212 is analogous to the multi-touch sensitive touchpads described in the following U.S. Pat. No. 6,323,846 (Westerman et al.), U.S. Pat. No. 6,570,557 (Westerman et al.), and/or U.S. Pat. No. 6,677,932 (Westerman), and/or U.S. Patent Publication 2002/0015024A1, each of which is hereby incorporated by reference in its entirety. However, touch screen 212 displays visual output from device 200, whereas touch-sensitive touchpads do not provide visual output.


A touch-sensitive display in some embodiments of touch screen 212 is as described in the following applications: (1) U.S. patent application Ser. No. 11/381,313, “Multipoint Touch Surface Controller,” filed May 2, 2006; (2) U.S. patent application Ser. No. 10/840,862, “Multipoint Touchscreen,” filed May 6, 2004; (3) U.S. patent application Ser. No. 10/903,964, “Gestures For Touch Sensitive Input Devices,” filed Jul. 30, 2004; (4) U.S. patent application Ser. No. 11/048,264, “Gestures For Touch Sensitive Input Devices,” filed Jan. 31, 2005; (5) U.S. patent application Ser. No. 11/038,590, “Mode-Based Graphical User Interfaces For Touch Sensitive Input Devices,” filed Jan. 18, 2005; (6) U.S. patent application Ser. No. 11/228,758, “Virtual Input Device Placement On A Touch Screen User Interface,” filed Sep. 16, 2005; (7) U.S. patent application Ser. No. 11/228,700, “Operation Of A Computer With A Touch Screen Interface,” filed Sep. 16, 2005; (8) U.S. patent application Ser. No. 11/228,737, “Activating Virtual Keys Of A Touch-Screen Virtual Keyboard,” filed Sep. 16, 2005; and (9) U.S. patent application Ser. No. 11/367,749, “Multi-Functional Hand-Held Device,” filed Mar. 3, 2006. All of these applications are incorporated by reference herein in their entirety.


Touch screen 212 has, for example, a video resolution in excess of 100 dpi. In some embodiments, the touch screen has a video resolution of approximately 160 dpi. The user makes contact with touch screen 212 using any suitable object or appendage, such as a stylus, a finger, and so forth. In some embodiments, the user interface is designed to work primarily with finger-based contacts and gestures, which can be less precise than stylus-based input due to the larger area of contact of a finger on the touch screen. In some embodiments, the device translates the rough finger-based input into a precise pointer/cursor position or command for performing the actions desired by the user.


In some embodiments, in addition to the touch screen, device 200 includes a touchpad (not shown) for activating or deactivating particular functions. In some embodiments, the touchpad is a touch-sensitive area of the device that, unlike the touch screen, does not display visual output. The touchpad is a touch-sensitive surface that is separate from touch screen 212 or an extension of the touch-sensitive surface formed by the touch screen.


Device 200 also includes power system 262 for powering the various components. Power system 262 includes a power management system, one or more power sources (e.g., battery, alternating current (AC)), a recharging system, a power failure detection circuit, a power converter or inverter, a power status indicator (e.g., a light-emitting diode (LED)) and any other components associated with the generation, management and distribution of power in portable devices.


Device 200 also includes one or more optical sensors 264. FIG. 2A shows an optical sensor coupled to optical sensor controller 258 in I/O subsystem 206. Optical sensor 264 includes charge-coupled device (CCD) or complementary metal-oxide semiconductor (CMOS) phototransistors. Optical sensor 264 receives light from the environment, projected through one or more lenses, and converts the light to data representing an image. In conjunction with imaging module 243 (also called a camera module), optical sensor 264 captures still images or video. In some embodiments, an optical sensor is located on the back of device 200, opposite touch screen display 212 on the front of the device so that the touch screen display is used as a viewfinder for still and/or video image acquisition. In some embodiments, an optical sensor is located on the front of the device so that the user's image is obtained for video conferencing while the user views the other video conference participants on the touch screen display. In some embodiments, the position of optical sensor 264 can be changed by the user (e.g., by rotating the lens and the sensor in the device housing) so that a single optical sensor 264 is used along with the touch screen display for both video conferencing and still and/or video image acquisition.


Device 200 optionally also includes one or more contact intensity sensors 265. FIG. 2A shows a contact intensity sensor coupled to intensity sensor controller 259 in I/O subsystem 206. Contact intensity sensor 265 optionally includes one or more piezoresistive strain gauges, capacitive force sensors, electric force sensors, piezoelectric force sensors, optical force sensors, capacitive touch-sensitive surfaces, or other intensity sensors (e.g., sensors used to measure the force (or pressure) of a contact on a touch-sensitive surface). Contact intensity sensor 265 receives contact intensity information (e.g., pressure information or a proxy for pressure information) from the environment. In some embodiments, at least one contact intensity sensor is collocated with, or proximate to, a touch-sensitive surface (e.g., touch-sensitive display system 212). In some embodiments, at least one contact intensity sensor is located on the back of device 200, opposite touch screen display 212, which is located on the front of device 200.


Device 200 also includes one or more proximity sensors 266. FIG. 2A shows proximity sensor 266 coupled to peripherals interface 218. Alternately, proximity sensor 266 is coupled to input controller 260 in I/O subsystem 206. Proximity sensor 266 is performed as described in U.S. patent application Ser. No. 11/241,839, “Proximity Detector In Handheld Device”; Ser. No. 11/240,788, “Proximity Detector In Handheld Device”; Ser. No. 11/620,702, “Using Ambient Light Sensor To Augment Proximity Sensor Output”; Ser. No. 11/586,862, “Automated Response To And Sensing Of User Activity In Portable Devices”; and Ser. No. 11/638,251, “Methods And Systems For Automatic Configuration Of Peripherals,” which are hereby incorporated by reference in their entirety. In some embodiments, the proximity sensor turns off and disables touch screen 212 when the multifunction device is placed near the user's ear (e.g., when the user is making a phone call).


Device 200 optionally also includes one or more tactile output generators 267. FIG. 2A shows a tactile output generator coupled to haptic feedback controller 261 in I/O subsystem 206. Tactile output generator 267 optionally includes one or more electroacoustic devices such as speakers or other audio components and/or electromechanical devices that convert energy into linear motion such as a motor, solenoid, electroactive polymer, piezoelectric actuator, electrostatic actuator, or other tactile output generating component (e.g., a component that converts electrical signals into tactile outputs on the device). Contact intensity sensor 265 receives tactile feedback generation instructions from haptic feedback module 233 and generates tactile outputs on device 200 that are capable of being sensed by a user of device 200. In some embodiments, at least one tactile output generator is collocated with, or proximate to, a touch-sensitive surface (e.g., touch-sensitive display system 212) and, optionally, generates a tactile output by moving the touch-sensitive surface vertically (e.g., in/out of a surface of device 200) or laterally (e.g., back and forth in the same plane as a surface of device 200). In some embodiments, at least one tactile output generator sensor is located on the back of device 200, opposite touch screen display 212, which is located on the front of device 200.


Device 200 also includes one or more accelerometers 268. FIG. 2A shows accelerometer 268 coupled to peripherals interface 218. Alternately, accelerometer 268 is coupled to an input controller 260 in I/O subsystem 206. Accelerometer 268 performs, for example, as described in U.S. Patent Publication No. 20050190059, “Acceleration-based Theft Detection System for Portable Electronic Devices,” and U.S. Patent Publication No. 20060017692, “Methods And Apparatuses For Operating A Portable Device Based On An Accelerometer,” both of which are incorporated by reference herein in their entirety. In some embodiments, information is displayed on the touch screen display in a portrait view or a landscape view based on an analysis of data received from the one or more accelerometers. Device 200 optionally includes, in addition to accelerometer(s) 268, a magnetometer (not shown) and a GPS (or GLONASS or other global navigation system) receiver (not shown) for obtaining information concerning the location and orientation (e.g., portrait or landscape) of device 200.


In some embodiments, the software components stored in memory 202 include operating system 226, communication module (or set of instructions) 228, contact/motion module (or set of instructions) 230, graphics module (or set of instructions) 232, text input module (or set of instructions) 234, Global Positioning System (GPS) module (or set of instructions) 235, Digital Assistant Client Module 229, and applications (or sets of instructions) 236. Further, memory 202 stores data and models, such as user data and models 231. Furthermore, in some embodiments, memory 202 (FIG. 2A) or 470 (FIG. 4) stores device/global internal state 257, as shown in FIGS. 2A and 4. Device/global internal state 257 includes one or more of: active application state, indicating which applications, if any, are currently active; display state, indicating what applications, views or other information occupy various regions of touch screen display 212; sensor state, including information obtained from the device's various sensors and input control devices 216; and location information concerning the device's location and/or attitude.


Operating system 226 (e.g., Darwin, RTXC, LINUX, UNIX, OS X, iOS, WINDOWS, or an embedded operating system such as VxWorks) includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communication between various hardware and software components.


Communication module 228 facilitates communication with other devices over one or more external ports 224 and also includes various software components for handling data received by RF circuitry 208 and/or external port 224. External port 224 (e.g., Universal Serial Bus (USB), FIREWIRE, etc.) is adapted for coupling directly to other devices or indirectly over a network (e.g., the Internet, wireless LAN, etc.). In some embodiments, the external port is a multi-pin (e.g., 30-pin) connector that is the same as, or similar to and/or compatible with, the 30-pin connector used on iPod® (trademark of Apple Inc.) devices.


Contact/motion module 230 optionally detects contact with touch screen 212 (in conjunction with display controller 256) and other touch-sensitive devices (e.g., a touchpad or physical click wheel). Contact/motion module 230 includes various software components for performing various operations related to detection of contact, such as determining if contact has occurred (e.g., detecting a finger-down event), determining an intensity of the contact (e.g., the force or pressure of the contact or a substitute for the force or pressure of the contact), determining if there is movement of the contact and tracking the movement across the touch-sensitive surface (e.g., detecting one or more finger-dragging events), and determining if the contact has ceased (e.g., detecting a finger-up event or a break in contact). Contact/motion module 230 receives contact data from the touch-sensitive surface. Determining movement of the point of contact, which is represented by a series of contact data, optionally includes determining speed (magnitude), velocity (magnitude and direction), and/or an acceleration (a change in magnitude and/or direction) of the point of contact. These operations are, optionally, applied to single contacts (e.g., one finger contacts) or to multiple simultaneous contacts (e.g., “multitouch”/multiple finger contacts). In some embodiments, contact/motion module 230 and display controller 256 detect contact on a touchpad.


In some embodiments, contact/motion module 230 uses a set of one or more intensity thresholds to determine whether an operation has been performed by a user (e.g., to determine whether a user has “clicked” on an icon). In some embodiments, at least a subset of the intensity thresholds are determined in accordance with software parameters (e.g., the intensity thresholds are not determined by the activation thresholds of particular physical actuators and can be adjusted without changing the physical hardware of device 200). For example, a mouse “click” threshold of a trackpad or touch screen display can be set to any of a large range of predefined threshold values without changing the trackpad or touch screen display hardware. Additionally, in some implementations, a user of the device is provided with software settings for adjusting one or more of the set of intensity thresholds (e.g., by adjusting individual intensity thresholds and/or by adjusting a plurality of intensity thresholds at once with a system-level click “intensity” parameter).


Contact/motion module 230 optionally detects a gesture input by a user. Different gestures on the touch-sensitive surface have different contact patterns (e.g., different motions, timings, and/or intensities of detected contacts). Thus, a gesture is, optionally, detected by detecting a particular contact pattern. For example, detecting a finger tap gesture includes detecting a finger-down event followed by detecting a finger-up (liftoff) event at the same position (or substantially the same position) as the finger-down event (e.g., at the position of an icon). As another example, detecting a finger swipe gesture on the touch-sensitive surface includes detecting a finger-down event followed by detecting one or more finger-dragging events, and subsequently followed by detecting a finger-up (liftoff) event.


Graphics module 232 includes various known software components for rendering and displaying graphics on touch screen 212 or other display, including components for changing the visual impact (e.g., brightness, transparency, saturation, contrast, or other visual property) of graphics that are displayed. As used herein, the term “graphics” includes any object that can be displayed to a user, including, without limitation, text, web pages, icons (such as user-interface objects including soft keys), digital images, videos, animations, and the like.


In some embodiments, graphics module 232 stores data representing graphics to be used. Each graphic is, optionally, assigned a corresponding code. Graphics module 232 receives, from applications etc., one or more codes specifying graphics to be displayed along with, if necessary, coordinate data and other graphic property data, and then generates screen image data to output to display controller 256.


Haptic feedback module 233 includes various software components for generating instructions used by tactile output generator(s) 267 to produce tactile outputs at one or more locations on device 200 in response to user interactions with device 200.


Text input module 234, which is, in some examples, a component of graphics module 232, provides soft keyboards for entering text in various applications (e.g., contacts 237, email 240, IM 241, browser 247, and any other application that needs text input).


GPS module 235 determines the location of the device and provides this information for use in various applications (e.g., to telephone 238 for use in location-based dialing; to camera 243 as picture/video metadata; and to applications that provide location-based services such as weather widgets, local yellow page widgets, and map/navigation widgets).


Digital assistant client module 229 includes various client-side digital assistant instructions to provide the client-side functionalities of the digital assistant. For example, digital assistant client module 229 is capable of accepting voice input (e.g., speech input), text input, touch input, and/or gestural input through various user interfaces (e.g., microphone 213, accelerometer(s) 268, touch-sensitive display system 212, optical sensor(s) 229, other input control devices 216, etc.) of portable multifunction device 200. Digital assistant client module 229 is also capable of providing output in audio (e.g., speech output), visual, and/or tactile forms through various output interfaces (e.g., speaker 211, touch-sensitive display system 212, tactile output generator(s) 267, etc.) of portable multifunction device 200. For example, output is provided as voice, sound, alerts, text messages, menus, graphics, videos, animations, vibrations, and/or combinations of two or more of the above. During operation, digital assistant client module 229 communicates with DA server 106 using RF circuitry 208.


User data and models 231 include various data associated with the user (e.g., user-specific vocabulary data, user preference data, user-specified name pronunciations, data from the user's electronic address book, to-do lists, shopping lists, etc.) to provide the client-side functionalities of the digital assistant. Further, user data and models 231 include various models (e.g., speech recognition models, statistical language models, natural language processing models, ontology, task flow models, service models, etc.) for processing user input and determining user intent.


In some examples, digital assistant client module 229 utilizes the various sensors, subsystems, and peripheral devices of portable multifunction device 200 to gather additional information from the surrounding environment of the portable multifunction device 200 to establish a context associated with a user, the current user interaction, and/or the current user input. In some examples, digital assistant client module 229 provides the contextual information or a subset thereof with the user input to DA server 106 to help infer the user's intent. In some examples, the digital assistant also uses the contextual information to determine how to prepare and deliver outputs to the user. Contextual information is referred to as context data.


In some examples, the contextual information that accompanies the user input includes sensor information, e.g., lighting, ambient noise, ambient temperature, images or videos of the surrounding environment, etc. In some examples, the contextual information can also include the physical state of the device, e.g., device orientation, device location, device temperature, power level, speed, acceleration, motion patterns, cellular signals strength, etc. In some examples, information related to the software state of DA server 106, e.g., running processes, installed programs, past and present network activities, background services, error logs, resources usage, etc., and of portable multifunction device 200 is provided to DA server 106 as contextual information associated with a user input.


In some examples, the digital assistant client module 229 selectively provides information (e.g., user data 231) stored on the portable multifunction device 200 in response to requests from DA server 106. In some examples, digital assistant client module 229 also elicits additional input from the user via a natural language dialogue or other user interfaces upon request by DA server 106. Digital assistant client module 229 passes the additional input to DA server 106 to help DA server 106 in intent deduction and/or fulfillment of the user's intent expressed in the user request.


A more detailed description of a digital assistant is described below with reference to FIGS. 7A-7C. It should be recognized that digital assistant client module 229 can include any number of the sub-modules of digital assistant module 726 described below.


Applications 236 include the following modules (or sets of instructions), or a subset or superset thereof:

    • Contacts module 237 (sometimes called an address book or contact list);
    • Telephone module 238;
    • Video conference module 239;
    • E-mail client module 240;
    • Instant messaging (IM) module 241;
    • Workout support module 242;
    • Camera module 243 for still and/or video images;
    • Image management module 244;
    • Video player module;
    • Music player module;
    • Browser module 247;
    • Calendar module 248;
    • Widget modules 249, which includes, in some examples, one or more of: weather widget 249-1, stocks widget 249-2, calculator widget 249-3, alarm clock widget 249-4, dictionary widget 249-5, and other widgets obtained by the user, as well as user-created widgets 249-6;
    • Widget creator module 250 for making user-created widgets 249-6;
    • Search module 251;
    • Video and music player module 252, which merges video player module and music player module;
    • Notes module 253;
    • Map module 254; and/or
    • Online video module 255.


Examples of other applications 236 that are stored in memory 202 include other word processing applications, other image editing applications, drawing applications, presentation applications, JAVA-enabled applications, encryption, digital rights management, voice recognition, and voice replication.


In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, contacts module 237 are used to manage an address book or contact list (e.g., stored in application internal state 292 of contacts module 237 in memory 202 or memory 470), including: adding name(s) to the address book; deleting name(s) from the address book; associating telephone number(s), e-mail address(es), physical address(es) or other information with a name; associating an image with a name; categorizing and sorting names; providing telephone numbers or e-mail addresses to initiate and/or facilitate communications by telephone 238, video conference module 239, e-mail 240, or IM 241; and so forth.


In conjunction with RF circuitry 208, audio circuitry 210, speaker 211, microphone 213, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, telephone module 238 are used to enter a sequence of characters corresponding to a telephone number, access one or more telephone numbers in contacts module 237, modify a telephone number that has been entered, dial a respective telephone number, conduct a conversation, and disconnect or hang up when the conversation is completed. As noted above, the wireless communication uses any of a plurality of communications standards, protocols, and technologies.


In conjunction with RF circuitry 208, audio circuitry 210, speaker 211, microphone 213, touch screen 212, display controller 256, optical sensor 264, optical sensor controller 258, contact/motion module 230, graphics module 232, text input module 234, contacts module 237, and telephone module 238, video conference module 239 includes executable instructions to initiate, conduct, and terminate a video conference between a user and one or more other participants in accordance with user instructions.


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, e-mail client module 240 includes executable instructions to create, send, receive, and manage e-mail in response to user instructions. In conjunction with image management module 244, e-mail client module 240 makes it very easy to create and send e-mails with still or video images taken with camera module 243.


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, the instant messaging module 241 includes executable instructions to enter a sequence of characters corresponding to an instant message, to modify previously entered characters, to transmit a respective instant message (for example, using a Short Message Service (SMS) or Multimedia Message Service (MMS) protocol for telephony-based instant messages or using XMPP, SIMPLE, or IMPS for Internet-based instant messages), to receive instant messages, and to view received instant messages. In some embodiments, transmitted and/or received instant messages include graphics, photos, audio files, video files and/or other attachments as are supported in an MMS and/or an Enhanced Messaging Service (EMS). As used herein, “instant messaging” refers to both telephony-based messages (e.g., messages sent using SMS or MMS) and Internet-based messages (e.g., messages sent using XMPP, SIMPLE, or IMPS).


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, GPS module 235, map module 254, and music player module, workout support module 242 includes executable instructions to create workouts (e.g., with time, distance, and/or calorie burning goals); communicate with workout sensors (sports devices); receive workout sensor data; calibrate sensors used to monitor a workout; select and play music for a workout; and display, store, and transmit workout data.


In conjunction with touch screen 212, display controller 256, optical sensor(s) 264, optical sensor controller 258, contact/motion module 230, graphics module 232, and image management module 244, camera module 243 includes executable instructions to capture still images or video (including a video stream) and store them into memory 202, modify characteristics of a still image or video, or delete a still image or video from memory 202.


In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, and camera module 243, image management module 244 includes executable instructions to arrange, modify (e.g., edit), or otherwise manipulate, label, delete, present (e.g., in a digital slide show or album), and store still and/or video images.


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, browser module 247 includes executable instructions to browse the Internet in accordance with user instructions, including searching, linking to, receiving, and displaying web pages or portions thereof, as well as attachments and other files linked to web pages.


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, e-mail client module 240, and browser module 247, calendar module 248 includes executable instructions to create, display, modify, and store calendars and data associated with calendars (e.g., calendar entries, to-do lists, etc.) in accordance with user instructions.


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, and browser module 247, widget modules 249 are mini-applications that can be downloaded and used by a user (e.g., weather widget 249-1, stocks widget 249-2, calculator widget 249-3, alarm clock widget 249-4, and dictionary widget 249-5) or created by the user (e.g., user-created widget 249-6). In some embodiments, a widget includes an HTML (Hypertext Markup Language) file, a CSS (Cascading Style Sheets) file, and a JavaScript file. In some embodiments, a widget includes an XML (Extensible Markup Language) file and a JavaScript file (e.g., Yahoo! Widgets).


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, and browser module 247, the widget creator module 250 are used by a user to create widgets (e.g., turning a user-specified portion of a web page into a widget).


In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, search module 251 includes executable instructions to search for text, music, sound, image, video, and/or other files in memory 202 that match one or more search criteria (e.g., one or more user-specified search terms) in accordance with user instructions.


In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, audio circuitry 210, speaker 211, RF circuitry 208, and browser module 247, video and music player module 252 includes executable instructions that allow the user to download and play back recorded music and other sound files stored in one or more file formats, such as MP3 or AAC files, and executable instructions to display, present, or otherwise play back videos (e.g., on touch screen 212 or on an external, connected display via external port 224). In some embodiments, device 200 optionally includes the functionality of an MP3 player, such as an iPod (trademark of Apple Inc.).


In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, notes module 253 includes executable instructions to create and manage notes, to-do lists, and the like in accordance with user instructions.


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, GPS module 235, and browser module 247, map module 254 are used to receive, display, modify, and store maps and data associated with maps (e.g., driving directions, data on stores and other points of interest at or near a particular location, and other location-based data) in accordance with user instructions.


In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, audio circuitry 210, speaker 211, RF circuitry 208, text input module 234, e-mail client module 240, and browser module 247, online video module 255 includes instructions that allow the user to access, browse, receive (e.g., by streaming and/or download), play back (e.g., on the touch screen or on an external, connected display via external port 224), send an e-mail with a link to a particular online video, and otherwise manage online videos in one or more file formats, such as H.264. In some embodiments, instant messaging module 241, rather than e-mail client module 240, is used to send a link to a particular online video. Additional description of the online video application can be found in U.S. Provisional Patent Application No. 60/936,562, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Jun. 20, 2007, and U.S. patent application Ser. No. 11/968,067, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Dec. 31, 2007, the contents of which are hereby incorporated by reference in their entirety.


Each of the above-identified modules and applications corresponds to a set of executable instructions for performing one or more functions described above and the methods described in this application (e.g., the computer-implemented methods and other information processing methods described herein). These modules (e.g., sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules can be combined or otherwise rearranged in various embodiments. For example, video player module can be combined with music player module into a single module (e.g., video and music player module 252, FIG. 2A). In some embodiments, memory 202 stores a subset of the modules and data structures identified above. Furthermore, memory 202 stores additional modules and data structures not described above.


In some embodiments, device 200 is a device where operation of a predefined set of functions on the device is performed exclusively through a touch screen and/or a touchpad. By using a touch screen and/or a touchpad as the primary input control device for operation of device 200, the number of physical input control devices (such as push buttons, dials, and the like) on device 200 is reduced.


The predefined set of functions that are performed exclusively through a touch screen and/or a touchpad optionally include navigation between user interfaces. In some embodiments, the touchpad, when touched by the user, navigates device 200 to a main, home, or root menu from any user interface that is displayed on device 200. In such embodiments, a “menu button” is implemented using a touchpad. In some other embodiments, the menu button is a physical push button or other physical input control device instead of a touchpad.



FIG. 2B is a block diagram illustrating exemplary components for event handling in accordance with some embodiments. In some embodiments, memory 202 (FIG. 2A) or 470 (FIG. 4) includes event sorter 270 (e.g., in operating system 226) and a respective application 236-1 (e.g., any of the aforementioned applications 237-251, 255, 480-490).


Event sorter 270 receives event information and determines the application 236-1 and application view 291 of application 236-1 to which to deliver the event information. Event sorter 270 includes event monitor 271 and event dispatcher module 274. In some embodiments, application 236-1 includes application internal state 292, which indicates the current application view(s) displayed on touch-sensitive display 212 when the application is active or executing. In some embodiments, device/global internal state 257 is used by event sorter 270 to determine which application(s) is (are) currently active, and application internal state 292 is used by event sorter 270 to determine application views 291 to which to deliver event information.


In some embodiments, application internal state 292 includes additional information, such as one or more of: resume information to be used when application 236-1 resumes execution, user interface state information that indicates information being displayed or that is ready for display by application 236-1, a state queue for enabling the user to go back to a prior state or view of application 236-1, and a redo/undo queue of previous actions taken by the user.


Event monitor 271 receives event information from peripherals interface 218. Event information includes information about a sub-event (e.g., a user touch on touch-sensitive display 212, as part of a multi-touch gesture). Peripherals interface 218 transmits information it receives from I/O subsystem 206 or a sensor, such as proximity sensor 266, accelerometer(s) 268, and/or microphone 213 (through audio circuitry 210). Information that peripherals interface 218 receives from I/O subsystem 206 includes information from touch-sensitive display 212 or a touch-sensitive surface.


In some embodiments, event monitor 271 sends requests to the peripherals interface 218 at predetermined intervals. In response, peripherals interface 218 transmits event information. In other embodiments, peripherals interface 218 transmits event information only when there is a significant event (e.g., receiving an input above a predetermined noise threshold and/or for more than a predetermined duration).


In some embodiments, event sorter 270 also includes a hit view determination module 272 and/or an active event recognizer determination module 273.


Hit view determination module 272 provides software procedures for determining where a sub-event has taken place within one or more views when touch-sensitive display 212 displays more than one view. Views are made up of controls and other elements that a user can see on the display.


Another aspect of the user interface associated with an application is a set of views, sometimes herein called application views or user interface windows, in which information is displayed and touch-based gestures occur. The application views (of a respective application) in which a touch is detected correspond to programmatic levels within a programmatic or view hierarchy of the application. For example, the lowest level view in which a touch is detected is called the hit view, and the set of events that are recognized as proper inputs is determined based, at least in part, on the hit view of the initial touch that begins a touch-based gesture.


Hit view determination module 272 receives information related to sub events of a touch-based gesture. When an application has multiple views organized in a hierarchy, hit view determination module 272 identifies a hit view as the lowest view in the hierarchy which should handle the sub-event. In most circumstances, the hit view is the lowest level view in which an initiating sub-event occurs (e.g., the first sub-event in the sequence of sub-events that form an event or potential event). Once the hit view is identified by the hit view determination module 272, the hit view typically receives all sub-events related to the same touch or input source for which it was identified as the hit view.


Active event recognizer determination module 273 determines which view or views within a view hierarchy should receive a particular sequence of sub-events. In some embodiments, active event recognizer determination module 273 determines that only the hit view should receive a particular sequence of sub-events. In other embodiments, active event recognizer determination module 273 determines that all views that include the physical location of a sub-event are actively involved views, and therefore determines that all actively involved views should receive a particular sequence of sub-events. In other embodiments, even if touch sub-events were entirely confined to the area associated with one particular view, views higher in the hierarchy would still remain as actively involved views.


Event dispatcher module 274 dispatches the event information to an event recognizer (e.g., event recognizer 280). In embodiments including active event recognizer determination module 273, event dispatcher module 274 delivers the event information to an event recognizer determined by active event recognizer determination module 273. In some embodiments, event dispatcher module 274 stores in an event queue the event information, which is retrieved by a respective event receiver 282.


In some embodiments, operating system 226 includes event sorter 270. Alternatively, application 236-1 includes event sorter 270. In yet other embodiments, event sorter 270 is a stand-alone module, or a part of another module stored in memory 202, such as contact/motion module 230.


In some embodiments, application 236-1 includes a plurality of event handlers 290 and one or more application views 291, each of which includes instructions for handling touch events that occur within a respective view of the application's user interface. Each application view 291 of the application 236-1 includes one or more event recognizers 280. Typically, a respective application view 291 includes a plurality of event recognizers 280. In other embodiments, one or more of event recognizers 280 are part of a separate module, such as a user interface kit (not shown) or a higher level object from which application 236-1 inherits methods and other properties. In some embodiments, a respective event handler 290 includes one or more of: data updater 276, object updater 277, GUI updater 278, and/or event data 279 received from event sorter 270. Event handler 290 utilizes or calls data updater 276, object updater 277, or GUI updater 278 to update the application internal state 292. Alternatively, one or more of the application views 291 include one or more respective event handlers 290. Also, in some embodiments, one or more of data updater 276, object updater 277, and GUI updater 278 are included in a respective application view 291.


A respective event recognizer 280 receives event information (e.g., event data 279) from event sorter 270 and identifies an event from the event information. Event recognizer 280 includes event receiver 282 and event comparator 284. In some embodiments, event recognizer 280 also includes at least a subset of: metadata 283, and event delivery instructions 288 (which include sub-event delivery instructions).


Event receiver 282 receives event information from event sorter 270. The event information includes information about a sub-event, for example, a touch or a touch movement. Depending on the sub-event, the event information also includes additional information, such as location of the sub-event. When the sub-event concerns motion of a touch, the event information also includes speed and direction of the sub-event. In some embodiments, events include rotation of the device from one orientation to another (e.g., from a portrait orientation to a landscape orientation, or vice versa), and the event information includes corresponding information about the current orientation (also called device attitude) of the device.


Event comparator 284 compares the event information to predefined event or sub-event definitions and, based on the comparison, determines an event or sub event, or determines or updates the state of an event or sub-event. In some embodiments, event comparator 284 includes event definitions 286. Event definitions 286 contain definitions of events (e.g., predefined sequences of sub-events), for example, event 1 (287-1), event 2 (287-2), and others. In some embodiments, sub-events in an event (287) include, for example, touch begin, touch end, touch movement, touch cancellation, and multiple touching. In one example, the definition for event 1 (287-1) is a double tap on a displayed object. The double tap, for example, comprises a first touch (touch begin) on the displayed object for a predetermined phase, a first liftoff (touch end) for a predetermined phase, a second touch (touch begin) on the displayed object for a predetermined phase, and a second liftoff (touch end) for a predetermined phase. In another example, the definition for event 2 (287-2) is a dragging on a displayed object. The dragging, for example, comprises a touch (or contact) on the displayed object for a predetermined phase, a movement of the touch across touch-sensitive display 212, and liftoff of the touch (touch end). In some embodiments, the event also includes information for one or more associated event handlers 290.


In some embodiments, event definition 287 includes a definition of an event for a respective user-interface object. In some embodiments, event comparator 284 performs a hit test to determine which user-interface object is associated with a sub-event. For example, in an application view in which three user-interface objects are displayed on touch-sensitive display 212, when a touch is detected on touch-sensitive display 212, event comparator 284 performs a hit test to determine which of the three user-interface objects is associated with the touch (sub-event). If each displayed object is associated with a respective event handler 290, the event comparator uses the result of the hit test to determine which event handler 290 should be activated. For example, event comparator 284 selects an event handler associated with the sub-event and the object triggering the hit test.


In some embodiments, the definition for a respective event (287) also includes delayed actions that delay delivery of the event information until after it has been determined whether the sequence of sub-events does or does not correspond to the event recognizer's event type.


When a respective event recognizer 280 determines that the series of sub-events do not match any of the events in event definitions 286, the respective event recognizer 280 enters an event impossible, event failed, or event ended state, after which it disregards subsequent sub-events of the touch-based gesture. In this situation, other event recognizers, if any, that remain active for the hit view continue to track and process sub-events of an ongoing touch-based gesture.


In some embodiments, a respective event recognizer 280 includes metadata 283 with configurable properties, flags, and/or lists that indicate how the event delivery system should perform sub-event delivery to actively involved event recognizers. In some embodiments, metadata 283 includes configurable properties, flags, and/or lists that indicate how event recognizers interact, or are enabled to interact, with one another. In some embodiments, metadata 283 includes configurable properties, flags, and/or lists that indicate whether sub-events are delivered to varying levels in the view or programmatic hierarchy.


In some embodiments, a respective event recognizer 280 activates event handler 290 associated with an event when one or more particular sub-events of an event are recognized. In some embodiments, a respective event recognizer 280 delivers event information associated with the event to event handler 290. Activating an event handler 290 is distinct from sending (and deferred sending) sub-events to a respective hit view. In some embodiments, event recognizer 280 throws a flag associated with the recognized event, and event handler 290 associated with the flag catches the flag and performs a predefined process.


In some embodiments, event delivery instructions 288 include sub-event delivery instructions that deliver event information about a sub-event without activating an event handler. Instead, the sub-event delivery instructions deliver event information to event handlers associated with the series of sub-events or to actively involved views. Event handlers associated with the series of sub-events or with actively involved views receive the event information and perform a predetermined process.


In some embodiments, data updater 276 creates and updates data used in application 236-1. For example, data updater 276 updates the telephone number used in contacts module 237, or stores a video file used in video player module. In some embodiments, object updater 277 creates and updates objects used in application 236-1. For example, object updater 277 creates a new user-interface object or updates the position of a user-interface object. GUI updater 278 updates the GUI. For example, GUI updater 278 prepares display information and sends it to graphics module 232 for display on a touch-sensitive display.


In some embodiments, event handler(s) 290 includes or has access to data updater 276, object updater 277, and GUI updater 278. In some embodiments, data updater 276, object updater 277, and GUI updater 278 are included in a single module of a respective application 236-1 or application view 291. In other embodiments, they are included in two or more software modules.


It shall be understood that the foregoing discussion regarding event handling of user touches on touch-sensitive displays also applies to other forms of user inputs to operate multifunction devices 200 with input devices, not all of which are initiated on touch screens. For example, mouse movement and mouse button presses, optionally coordinated with single or multiple keyboard presses or holds; contact movements such as taps, drags, scrolls, etc. on touchpads; pen stylus inputs; movement of the device; oral instructions; detected eye movements; biometric inputs; and/or any combination thereof are optionally utilized as inputs corresponding to sub-events which define an event to be recognized.



FIG. 3 illustrates a portable multifunction device 200 having a touch screen 212 in accordance with some embodiments. The touch screen optionally displays one or more graphics within user interface (UI) 300. In this embodiment, as well as others described below, a user is enabled to select one or more of the graphics by making a gesture on the graphics, for example, with one or more fingers 302 (not drawn to scale in the figure) or one or more styluses 303 (not drawn to scale in the figure). In some embodiments, selection of one or more graphics occurs when the user breaks contact with the one or more graphics. In some embodiments, the gesture optionally includes one or more taps, one or more swipes (from left to right, right to left, upward and/or downward), and/or a rolling of a finger (from right to left, left to right, upward and/or downward) that has made contact with device 200. In some implementations or circumstances, inadvertent contact with a graphic does not select the graphic. For example, a swipe gesture that sweeps over an application icon optionally does not select the corresponding application when the gesture corresponding to selection is a tap.


Device 200 also includes one or more physical buttons, such as “home” or menu button 304. As described previously, menu button 304 is used to navigate to any application 236 in a set of applications that is executed on device 200. Alternatively, in some embodiments, the menu button is implemented as a soft key in a GUI displayed on touch screen 212.


In one embodiment, device 200 includes touch screen 212, menu button 304, push button 306 for powering the device on/off and locking the device, volume adjustment button(s) 308, subscriber identity module (SIM) card slot 310, headset jack 312, and docking/charging external port 224. Push button 306 is, optionally, used to turn the power on/off on the device by depressing the button and holding the button in the depressed state for a predefined time interval; to lock the device by depressing the button and releasing the button before the predefined time interval has elapsed; and/or to unlock the device or initiate an unlock process. In an alternative embodiment, device 200 also accepts verbal input for activation or deactivation of some functions through microphone 213. Device 200 also, optionally, includes one or more contact intensity sensors 265 for detecting intensity of contacts on touch screen 212 and/or one or more tactile output generators 267 for generating tactile outputs for a user of device 200.



FIG. 4 is a block diagram of an exemplary multifunction device with a display and a touch-sensitive surface in accordance with some embodiments. Device 400 need not be portable. In some embodiments, device 400 is a laptop computer, a desktop computer, a tablet computer, a multimedia player device, a navigation device, an educational device (such as a child's learning toy), a gaming system, or a control device (e.g., a home or industrial controller). Device 400 typically includes one or more processing units (CPUs) 410, one or more network or other communications interfaces 460, memory 470, and one or more communication buses 420 for interconnecting these components. Communication buses 420 optionally include circuitry (sometimes called a chipset) that interconnects and controls communications between system components. Device 400 includes input/output (I/O) interface 430 comprising display 440, which is typically a touch screen display. I/O interface 430 also optionally includes a keyboard and/or mouse (or other pointing device) 450 and touchpad 455, tactile output generator 457 for generating tactile outputs on device 400 (e.g., similar to tactile output generator(s) 267 described above with reference to FIG. 2A), sensors 459 (e.g., optical, acceleration, proximity, touch-sensitive, and/or contact intensity sensors similar to contact intensity sensor(s) 265 described above with reference to FIG. 2A). Memory 470 includes high-speed random access memory, such as DRAM, SRAM, DDR RAM, or other random access solid state memory devices; and optionally includes non-volatile memory, such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid state storage devices. Memory 470 optionally includes one or more storage devices remotely located from CPU(s) 410. In some embodiments, memory 470 stores programs, modules, and data structures analogous to the programs, modules, and data structures stored in memory 202 of portable multifunction device 200 (FIG. 2A), or a subset thereof. Furthermore, memory 470 optionally stores additional programs, modules, and data structures not present in memory 202 of portable multifunction device 200. For example, memory 470 of device 400 optionally stores drawing module 480, presentation module 482, word processing module 484, website creation module 486, disk authoring module 488, and/or spreadsheet module 490, while memory 202 of portable multifunction device 200 (FIG. 2A) optionally does not store these modules.


Each of the above-identified elements in FIG. 4 is, in some examples, stored in one or more of the previously mentioned memory devices. Each of the above-identified modules corresponds to a set of instructions for performing a function described above. The above-identified modules or programs (e.g., sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules are combined or otherwise rearranged in various embodiments. In some embodiments, memory 470 stores a subset of the modules and data structures identified above. Furthermore, memory 470 stores additional modules and data structures not described above.


Attention is now directed towards embodiments of user interfaces that can be implemented on, for example, portable multifunction device 200.



FIG. 5A illustrates an exemplary user interface for a menu of applications on portable multifunction device 200 in accordance with some embodiments. Similar user interfaces are implemented on device 400. In some embodiments, user interface 500 includes the following elements, or a subset or superset thereof:

    • Signal strength indicator(s) 502 for wireless communication(s), such as cellular and Wi-Fi signals;
    • Time 504;
    • Bluetooth indicator 505;
    • Battery status indicator 506;
    • Tray 508 with icons for frequently used applications, such as:
    • Icon 516 for telephone module 238, labeled “Phone,” which optionally includes an indicator 514 of the number of missed calls or voicemail messages;
    • Icon 518 for e-mail client module 240, labeled “Mail,” which optionally includes an indicator 510 of the number of unread e-mails;
    • Icon 520 for browser module 247, labeled “Browser;” and
    • Icon 522 for video and music player module 252, also referred to as iPod (trademark of Apple Inc.) module 252, labeled “iPod;” and
    • Icons for other applications, such as:
    • Icon 524 for IM module 241, labeled “Messages;”
    • Icon 526 for calendar module 248, labeled “Calendar;”
    • Icon 528 for image management module 244, labeled “Photos;”
    • Icon 530 for camera module 243, labeled “Camera;”
    • Icon 532 for online video module 255, labeled “Online Video;”
    • Icon 534 for stocks widget 249-2, labeled “Stocks;”
    • Icon 536 for map module 254, labeled “Maps;”
    • Icon 538 for weather widget 249-1, labeled “Weather;”
    • Icon 540 for alarm clock widget 249-4, labeled “Clock;”
    • Icon 542 for workout support module 242, labeled “Workout Support;”
    • Icon 544 for notes module 253, labeled “Notes;” and
    • Icon 546 for a settings application or module, labeled “Settings,” which provides access to settings for device 200 and its various applications 236.


It should be noted that the icon labels illustrated in FIG. 5A are merely exemplary. For example, icon 522 for video and music player module 252 is optionally labeled “Music” or “Music Player.” Other labels are, optionally, used for various application icons. In some embodiments, a label for a respective application icon includes a name of an application corresponding to the respective application icon. In some embodiments, a label for a particular application icon is distinct from a name of an application corresponding to the particular application icon.



FIG. 5B illustrates an exemplary user interface on a device (e.g., device 400, FIG. 4) with a touch-sensitive surface 551 (e.g., a tablet or touchpad 455, FIG. 4) that is separate from the display 550 (e.g., touch screen display 212). Device 400 also, optionally, includes one or more contact intensity sensors (e.g., one or more of sensors 457) for detecting intensity of contacts on touch-sensitive surface 551 and/or one or more tactile output generators 459 for generating tactile outputs for a user of device 400.


Although some of the examples which follow will be given with reference to inputs on touch screen display 212 (where the touch-sensitive surface and the display are combined), in some embodiments, the device detects inputs on a touch-sensitive surface that is separate from the display, as shown in FIG. 5B. In some embodiments, the touch-sensitive surface (e.g., 551 in FIG. 5B) has a primary axis (e.g., 552 in FIG. 5B) that corresponds to a primary axis (e.g., 553 in FIG. 5B) on the display (e.g., 550). In accordance with these embodiments, the device detects contacts (e.g., 560 and 562 in FIG. 5B) with the touch-sensitive surface 551 at locations that correspond to respective locations on the display (e.g., in FIG. 5B, 560 corresponds to 568 and 562 corresponds to 570). In this way, user inputs (e.g., contacts 560 and 562, and movements thereof) detected by the device on the touch-sensitive surface (e.g., 551 in FIG. 5B) are used by the device to manipulate the user interface on the display (e.g., 550 in FIG. 5B) of the multifunction device when the touch-sensitive surface is separate from the display. It should be understood that similar methods are, optionally, used for other user interfaces described herein.


Additionally, while the following examples are given primarily with reference to finger inputs (e.g., finger contacts, finger tap gestures, finger swipe gestures), it should be understood that, in some embodiments, one or more of the finger inputs are replaced with input from another input device (e.g., a mouse-based input or stylus input). For example, a swipe gesture is, optionally, replaced with a mouse click (e.g., instead of a contact) followed by movement of the cursor along the path of the swipe (e.g., instead of movement of the contact). As another example, a tap gesture is, optionally, replaced with a mouse click while the cursor is located over the location of the tap gesture (e.g., instead of detection of the contact followed by ceasing to detect the contact). Similarly, when multiple user inputs are simultaneously detected, it should be understood that multiple computer mice are, optionally, used simultaneously, or a mouse and finger contacts are, optionally, used simultaneously.



FIG. 6A illustrates exemplary personal electronic device 600. Device 600 includes body 602. In some embodiments, device 600 includes some or all of the features described with respect to devices 200 and 400 (e.g., FIGS. 2A-4). In some embodiments, device 600 has touch-sensitive display screen 604, hereafter touch screen 604. Alternatively, or in addition to touch screen 604, device 600 has a display and a touch-sensitive surface. As with devices 200 and 400, in some embodiments, touch screen 604 (or the touch-sensitive surface) has one or more intensity sensors for detecting intensity of contacts (e.g., touches) being applied. The one or more intensity sensors of touch screen 604 (or the touch-sensitive surface) provide output data that represents the intensity of touches. The user interface of device 600 responds to touches based on their intensity, meaning that touches of different intensities can invoke different user interface operations on device 600.


Techniques for detecting and processing touch intensity are found, for example, in related applications: International Patent Application Serial No. PCT/US2013/040061, titled “Device, Method, and Graphical User Interface for Displaying User Interface Objects Corresponding to an Application,” filed May 8, 2013, and International Patent Application Serial No. PCT/US2013/069483, titled “Device, Method, and Graphical User Interface for Transitioning Between Touch Input to Display Output Relationships,” filed Nov. 11, 2013, each of which is hereby incorporated by reference in their entirety.


In some embodiments, device 600 has one or more input mechanisms 606 and 608. Input mechanisms 606 and 608, if included, are physical. Examples of physical input mechanisms include push buttons and rotatable mechanisms. In some embodiments, device 600 has one or more attachment mechanisms. Such attachment mechanisms, if included, can permit attachment of device 600 with, for example, hats, eyewear, earrings, necklaces, shirts, jackets, bracelets, watch straps, chains, trousers, belts, shoes, purses, backpacks, and so forth. These attachment mechanisms permit device 600 to be worn by a user.



FIG. 6B depicts exemplary personal electronic device 600. In some embodiments, device 600 includes some or all of the components described with respect to FIGS. 2A, 2B, and 4. Device 600 has bus 612 that operatively couples I/O section 614 with one or more computer processors 616 and memory 618. I/O section 614 is connected to display 604, which can have touch-sensitive component 622 and, optionally, touch-intensity sensitive component 624. In addition, I/O section 614 is connected with communication unit 630 for receiving application and operating system data, using Wi-Fi, Bluetooth, near field communication (NFC), cellular, and/or other wireless communication techniques. Device 600 includes input mechanisms 606 and/or 608. Input mechanism 606 is a rotatable input device or a depressible and rotatable input device, for example. Input mechanism 608 is a button, in some examples.


Input mechanism 608 is a microphone, in some examples. Personal electronic device 600 includes, for example, various sensors, such as GPS sensor 632, accelerometer 634, directional sensor 640 (e.g., compass), gyroscope 636, motion sensor 638, and/or a combination thereof, all of which are operatively connected to I/O section 614.


Memory 618 of personal electronic device 600 is a non-transitory computer-readable storage medium, for storing computer-executable instructions, which, when executed by one or more computer processors 616, for example, cause the computer processors to perform the techniques and processes described below. The computer-executable instructions, for example, are also stored and/or transported within any non-transitory computer-readable storage medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. Personal electronic device 600 is not limited to the components and configuration of FIG. 6B, but can include other or additional components in multiple configurations.


As used here, the term “affordance” refers to a user-interactive graphical user interface object that is, for example, displayed on the display screen of devices 200, 400, and/or 600 (FIGS. 2A, 4, and 6A-6B). For example, an image (e.g., icon), a button, and text (e.g., hyperlink) each constitutes an affordance.


As used herein, the term “focus selector” refers to an input element that indicates a current part of a user interface with which a user is interacting. In some implementations that include a cursor or other location marker, the cursor acts as a “focus selector” so that when an input (e.g., a press input) is detected on a touch-sensitive surface (e.g., touchpad 455 in FIG. 4 or touch-sensitive surface 551 in FIG. 5B) while the cursor is over a particular user interface element (e.g., a button, window, slider or other user interface element), the particular user interface element is adjusted in accordance with the detected input. In some implementations that include a touch screen display (e.g., touch-sensitive display system 212 in FIG. 2A or touch screen 212 in FIG. 5A) that enables direct interaction with user interface elements on the touch screen display, a detected contact on the touch screen acts as a “focus selector” so that when an input (e.g., a press input by the contact) is detected on the touch screen display at a location of a particular user interface element (e.g., a button, window, slider, or other user interface element), the particular user interface element is adjusted in accordance with the detected input. In some implementations, focus is moved from one region of a user interface to another region of the user interface without corresponding movement of a cursor or movement of a contact on a touch screen display (e.g., by using a tab key or arrow keys to move focus from one button to another button); in these implementations, the focus selector moves in accordance with movement of focus between different regions of the user interface. Without regard to the specific form taken by the focus selector, the focus selector is generally the user interface element (or contact on a touch screen display) that is controlled by the user so as to communicate the user's intended interaction with the user interface (e.g., by indicating, to the device, the element of the user interface with which the user is intending to interact). For example, the location of a focus selector (e.g., a cursor, a contact, or a selection box) over a respective button while a press input is detected on the touch-sensitive surface (e.g., a touchpad or touch screen) will indicate that the user is intending to activate the respective button (as opposed to other user interface elements shown on a display of the device).


As used in the specification and claims, the term “characteristic intensity” of a contact refers to a characteristic of the contact based on one or more intensities of the contact. In some embodiments, the characteristic intensity is based on multiple intensity samples. The characteristic intensity is, optionally, based on a predefined number of intensity samples, or a set of intensity samples collected during a predetermined time period (e.g., 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10 seconds) relative to a predefined event (e.g., after detecting the contact, prior to detecting liftoff of the contact, before or after detecting a start of movement of the contact, prior to detecting an end of the contact, before or after detecting an increase in intensity of the contact, and/or before or after detecting a decrease in intensity of the contact). A characteristic intensity of a contact is, optionally based on one or more of: a maximum value of the intensities of the contact, a mean value of the intensities of the contact, an average value of the intensities of the contact, a top 10 percentile value of the intensities of the contact, a value at the half maximum of the intensities of the contact, a value at the 90 percent maximum of the intensities of the contact, or the like. In some embodiments, the duration of the contact is used in determining the characteristic intensity (e.g., when the characteristic intensity is an average of the intensity of the contact over time). In some embodiments, the characteristic intensity is compared to a set of one or more intensity thresholds to determine whether an operation has been performed by a user. For example, the set of one or more intensity thresholds includes a first intensity threshold and a second intensity threshold. In this example, a contact with a characteristic intensity that does not exceed the first threshold results in a first operation, a contact with a characteristic intensity that exceeds the first intensity threshold and does not exceed the second intensity threshold results in a second operation, and a contact with a characteristic intensity that exceeds the second threshold results in a third operation. In some embodiments, a comparison between the characteristic intensity and one or more thresholds is used to determine whether or not to perform one or more operations (e.g., whether to perform a respective operation or forgo performing the respective operation) rather than being used to determine whether to perform a first operation or a second operation.


In some embodiments, a portion of a gesture is identified for purposes of determining a characteristic intensity. For example, a touch-sensitive surface receives a continuous swipe contact transitioning from a start location and reaching an end location, at which point the intensity of the contact increases. In this example, the characteristic intensity of the contact at the end location is based on only a portion of the continuous swipe contact, and not the entire swipe contact (e.g., only the portion of the swipe contact at the end location). In some embodiments, a smoothing algorithm is applied to the intensities of the swipe contact prior to determining the characteristic intensity of the contact. For example, the smoothing algorithm optionally includes one or more of: an unweighted sliding-average smoothing algorithm, a triangular smoothing algorithm, a median filter smoothing algorithm, and/or an exponential smoothing algorithm. In some circumstances, these smoothing algorithms eliminate narrow spikes or dips in the intensities of the swipe contact for purposes of determining a characteristic intensity.


The intensity of a contact on the touch-sensitive surface is characterized relative to one or more intensity thresholds, such as a contact-detection intensity threshold, a light press intensity threshold, a deep press intensity threshold, and/or one or more other intensity thresholds. In some embodiments, the light press intensity threshold corresponds to an intensity at which the device will perform operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, the deep press intensity threshold corresponds to an intensity at which the device will perform operations that are different from operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, when a contact is detected with a characteristic intensity below the light press intensity threshold (e.g., and above a nominal contact-detection intensity threshold below which the contact is no longer detected), the device will move a focus selector in accordance with movement of the contact on the touch-sensitive surface without performing an operation associated with the light press intensity threshold or the deep press intensity threshold. Generally, unless otherwise stated, these intensity thresholds are consistent between different sets of user interface figures.


An increase of characteristic intensity of the contact from an intensity below the light press intensity threshold to an intensity between the light press intensity threshold and the deep press intensity threshold is sometimes referred to as a “light press” input. An increase of characteristic intensity of the contact from an intensity below the deep press intensity threshold to an intensity above the deep press intensity threshold is sometimes referred to as a “deep press” input. An increase of characteristic intensity of the contact from an intensity below the contact-detection intensity threshold to an intensity between the contact-detection intensity threshold and the light press intensity threshold is sometimes referred to as detecting the contact on the touch-surface. A decrease of characteristic intensity of the contact from an intensity above the contact-detection intensity threshold to an intensity below the contact-detection intensity threshold is sometimes referred to as detecting liftoff of the contact from the touch-surface. In some embodiments, the contact-detection intensity threshold is zero. In some embodiments, the contact-detection intensity threshold is greater than zero.


In some embodiments described herein, one or more operations are performed in response to detecting a gesture that includes a respective press input or in response to detecting the respective press input performed with a respective contact (or a plurality of contacts), where the respective press input is detected based at least in part on detecting an increase in intensity of the contact (or plurality of contacts) above a press-input intensity threshold. In some embodiments, the respective operation is performed in response to detecting the increase in intensity of the respective contact above the press-input intensity threshold (e.g., a “down stroke” of the respective press input). In some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the press-input threshold (e.g., an “up stroke” of the respective press input).


In some embodiments, the device employs intensity hysteresis to avoid accidental inputs sometimes termed “jitter,” where the device defines or selects a hysteresis intensity threshold with a predefined relationship to the press-input intensity threshold (e.g., the hysteresis intensity threshold is X intensity units lower than the press-input intensity threshold or the hysteresis intensity threshold is 75%, 90%, or some reasonable proportion of the press-input intensity threshold). Thus, in some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the hysteresis intensity threshold that corresponds to the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the hysteresis intensity threshold (e.g., an “up stroke” of the respective press input). Similarly, in some embodiments, the press input is detected only when the device detects an increase in intensity of the contact from an intensity at or below the hysteresis intensity threshold to an intensity at or above the press-input intensity threshold and, optionally, a subsequent decrease in intensity of the contact to an intensity at or below the hysteresis intensity, and the respective operation is performed in response to detecting the press input (e.g., the increase in intensity of the contact or the decrease in intensity of the contact, depending on the circumstances).


For ease of explanation, the descriptions of operations performed in response to a press input associated with a press-input intensity threshold or in response to a gesture including the press input are, optionally, triggered in response to detecting either: an increase in intensity of a contact above the press-input intensity threshold, an increase in intensity of a contact from an intensity below the hysteresis intensity threshold to an intensity above the press-input intensity threshold, a decrease in intensity of the contact below the press-input intensity threshold, and/or a decrease in intensity of the contact below the hysteresis intensity threshold corresponding to the press-input intensity threshold. Additionally, in examples where an operation is described as being performed in response to detecting a decrease in intensity of a contact below the press-input intensity threshold, the operation is, optionally, performed in response to detecting a decrease in intensity of the contact below a hysteresis intensity threshold corresponding to, and lower than, the press-input intensity threshold.


3. Digital Assistant System



FIG. 7A illustrates a block diagram of digital assistant system 700 in accordance with various examples. In some examples, digital assistant system 700 is implemented on a standalone computer system. In some examples, digital assistant system 700 is distributed across multiple computers. In some examples, some of the modules and functions of the digital assistant are divided into a server portion and a client portion, where the client portion resides on one or more user devices (e.g., devices 104, 122, 200, 400, or 600) and communicates with the server portion (e.g., server system 108) through one or more networks, e.g., as shown in FIG. 1. In some examples, digital assistant system 700 is an implementation of server system 108 (and/or DA server 106) shown in FIG. 1. It should be noted that digital assistant system 700 is only one example of a digital assistant system, and that digital assistant system 700 can have more or fewer components than shown, can combine two or more components, or can have a different configuration or arrangement of the components. The various components shown in FIG. 7A are implemented in hardware, software instructions for execution by one or more processors, firmware, including one or more signal processing and/or application specific integrated circuits, or a combination thereof.


Digital assistant system 700 includes memory 702, one or more processors 704, input/output (I/O) interface 706, and network communications interface 708. These components can communicate with one another over one or more communication buses or signal lines 710.


In some examples, memory 702 includes a non-transitory computer-readable medium, such as high-speed random access memory and/or a non-volatile computer-readable storage medium (e.g., one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices).


In some examples, I/O interface 706 couples input/output devices 716 of digital assistant system 700, such as displays, keyboards, touch screens, and microphones, to user interface module 722. I/O interface 706, in conjunction with user interface module 722, receives user inputs (e.g., voice input, keyboard inputs, touch inputs, etc.) and processes them accordingly. In some examples, e.g., when the digital assistant is implemented on a standalone user device, digital assistant system 700 includes any of the components and I/O communication interfaces described with respect to devices 200, 400, or 600 in FIGS. 2A, 4, 6A-6B, respectively. In some examples, digital assistant system 700 represents the server portion of a digital assistant implementation, and can interact with the user through a client-side portion residing on a user device (e.g., devices 104, 200, 400, or 600).


In some examples, the network communications interface 708 includes wired communication port(s) 712 and/or wireless transmission and reception circuitry 714. The wired communication port(s) receives and send communication signals via one or more wired interfaces, e.g., Ethernet, Universal Serial Bus (USB), FIREWIRE, etc. The wireless circuitry 714 receives and sends RF signals and/or optical signals from/to communications networks and other communications devices. The wireless communications use any of a plurality of communications standards, protocols, and technologies, such as GSM, EDGE, CDMA, TDMA, Bluetooth, Wi-Fi, VoIP, Wi-MAX, or any other suitable communication protocol. Network communications interface 708 enables communication between digital assistant system 700 with networks, such as the Internet, an intranet, and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN), and/or a metropolitan area network (MAN), and other devices.


In some examples, memory 702, or the computer-readable storage media of memory 702, stores programs, modules, instructions, and data structures including all or a subset of: operating system 718, communications module 720, user interface module 722, one or more applications 724, and digital assistant module 726. In particular, memory 702, or the computer-readable storage media of memory 702, stores instructions for performing the processes described below. One or more processors 704 execute these programs, modules, and instructions, and reads/writes from/to the data structures.


Operating system 718 (e.g., Darwin, RTXC, LINUX, UNIX, iOS, OS X, WINDOWS, or an embedded operating system such as VxWorks) includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communications between various hardware, firmware, and software components.


Communications module 720 facilitates communications between digital assistant system 700 with other devices over network communications interface 708. For example, communications module 720 communicates with RF circuitry 208 of electronic devices such as devices 200, 400, and 600 shown in FIGS. 2A, 4, 6A-6B, respectively. Communications module 720 also includes various components for handling data received by wireless circuitry 714 and/or wired communications port 712.


User interface module 722 receives commands and/or inputs from a user via I/O interface 706 (e.g., from a keyboard, touch screen, pointing device, controller, and/or microphone), and generate user interface objects on a display. User interface module 722 also prepares and delivers outputs (e.g., speech, sound, animation, text, icons, vibrations, haptic feedback, light, etc.) to the user via the I/O interface 706 (e.g., through displays, audio channels, speakers, touch-pads, etc.).


Applications 724 include programs and/or modules that are configured to be executed by one or more processors 704. For example, if the digital assistant system is implemented on a standalone user device, applications 724 include user applications, such as games, a calendar application, a navigation application, or an email application. If digital assistant system 700 is implemented on a server, applications 724 include resource management applications, diagnostic applications, or scheduling applications, for example.


Memory 702 also stores digital assistant module 726 (or the server portion of a digital assistant). In some examples, digital assistant module 726 includes the following sub-modules, or a subset or superset thereof: input/output processing module 728, speech-to-text (STT) processing module 730, natural language processing module 732, dialogue flow processing module 734, task flow processing module 736, service processing module 738, and speech synthesis processing module 740. Each of these modules has access to one or more of the following systems or data and models of the digital assistant module 726, or a subset or superset thereof: ontology 760, vocabulary index 744, user data 748, task flow models 754, service models 756, and ASR systems 758.


In some examples, using the processing modules, data, and models implemented in digital assistant module 726, the digital assistant can perform at least some of the following: converting speech input into text; identifying a user's intent expressed in a natural language input received from the user; actively eliciting and obtaining information needed to fully infer the user's intent (e.g., by disambiguating words, games, intentions, etc.); determining the task flow for fulfilling the inferred intent; and executing the task flow to fulfill the inferred intent.


In some examples, as shown in FIG. 7B, I/O processing module 728 interacts with the user through I/O devices 716 in FIG. 7A or with a user device (e.g., devices 104, 200, 400, or 600) through network communications interface 708 in FIG. 7A to obtain user input (e.g., a speech input) and to provide responses (e.g., as speech outputs) to the user input. I/O processing module 728 optionally obtains contextual information associated with the user input from the user device, along with or shortly after the receipt of the user input. The contextual information includes user-specific data, vocabulary, and/or preferences relevant to the user input. In some examples, the contextual information also includes software and hardware states of the user device at the time the user request is received, and/or information related to the surrounding environment of the user at the time that the user request was received. In some examples, I/O processing module 728 also sends follow-up questions to, and receive answers from, the user regarding the user request. When a user request is received by I/O processing module 728 and the user request includes speech input, I/O processing module 728 forwards the speech input to STT processing module 730 (or speech recognizer) for speech-to-text conversions.


STT processing module 730 includes one or more ASR systems 758. The one or more ASR systems 758 can process the speech input that is received through I/O processing module 728 to produce a recognition result. Each ASR system 758 includes a front-end speech pre-processor. The front-end speech pre-processor extracts representative features from the speech input. For example, the front-end speech pre-processor performs a Fourier transform on the speech input to extract spectral features that characterize the speech input as a sequence of representative multi-dimensional vectors. Further, each ASR system 758 includes one or more speech recognition models (e.g., acoustic models and/or language models) and implements one or more speech recognition engines. Examples of speech recognition models include Hidden Markov Models, Gaussian-Mixture Models, Deep Neural Network Models, n-gram language models, and other statistical models. Examples of speech recognition engines include the dynamic time warping based engines and weighted finite-state transducers (WFST) based engines. The one or more speech recognition models and the one or more speech recognition engines are used to process the extracted representative features of the front-end speech pre-processor to produce intermediate recognitions results (e.g., phonemes, phonemic strings, and sub-words), and ultimately, text recognition results (e.g., words, word strings, or sequence of tokens). In some examples, the speech input is processed at least partially by a third-party service or on the user's device (e.g., device 104, 200, 400, or 600) to produce the recognition result. Once STT processing module 730 produces recognition results containing a text string (e.g., words, or sequence of words, or sequence of tokens), the recognition result is passed to natural language processing module 732 for intent deduction. In some examples, STT processing module 730 produces multiple candidate text representations of the speech input. Each candidate text representation is a sequence of words or tokens corresponding to the speech input. In some examples, each candidate text representation is associated with a speech recognition confidence score. Based on the speech recognition confidence scores, STT processing module 730 ranks the candidate text representations and provides the n-best (e.g., n highest ranked) candidate text representation(s) to natural language processing module 732 for intent deduction, where n is a predetermined integer greater than zero. For example, in one example, only the highest ranked (n=1) candidate text representation is passed to natural language processing module 732 for intent deduction. In another example, the five highest ranked (n=5) candidate text representations are passed to natural language processing module 732 for intent deduction.


More details on the speech-to-text processing are described in U.S. Utility application Ser. No. 13/236,942 for “Consolidating Speech Recognition Results,” filed on Sep. 20, 2011, the entire disclosure of which is incorporated herein by reference.


In some examples, STT processing module 730 includes and/or accesses a vocabulary of recognizable words via phonetic alphabet conversion module 731. Each vocabulary word is associated with one or more candidate pronunciations of the word represented in a speech recognition phonetic alphabet. In particular, the vocabulary of recognizable words includes a word that is associated with a plurality of candidate pronunciations. For example, the vocabulary includes the word “tomato” that is associated with the candidate pronunciations of /custom character/ and /custom character/. Further, vocabulary words are associated with custom candidate pronunciations that are based on previous speech inputs from the user. Such custom candidate pronunciations are stored in STT processing module 730 and are associated with a particular user via the user's profile on the device. In some examples, the candidate pronunciations for words are determined based on the spelling of the word and one or more linguistic and/or phonetic rules. In some examples, the candidate pronunciations are manually generated, e.g., based on known canonical pronunciations.


In some examples, the candidate pronunciations are ranked based on the commonness of the candidate pronunciation. For example, the candidate pronunciation /custom character/ is ranked higher than /custom character/, because the former is a more commonly used pronunciation (e.g., among all users, for users in a particular geographical region, or for any other appropriate subset of users). In some examples, candidate pronunciations are ranked based on whether the candidate pronunciation is a custom candidate pronunciation associated with the user. For example, custom candidate pronunciations are ranked higher than canonical candidate pronunciations. This can be useful for recognizing proper nouns having a unique pronunciation that deviates from canonical pronunciation. In some examples, candidate pronunciations are associated with one or more speech characteristics, such as geographic origin, nationality, or ethnicity. For example, the candidate pronunciation /custom character/ is associated with the United States, whereas the candidate pronunciation /custom character/ is associated with Great Britain. Further, the rank of the candidate pronunciation is based on one or more characteristics (e.g., geographic origin, nationality, ethnicity, etc.) of the user stored in the user's profile on the device. For example, it can be determined from the user's profile that the user is associated with the United States. Based on the user being associated with the United States, the candidate pronunciation /custom character/ (associated with the United States) is ranked higher than the candidate pronunciation /custom character/ (associated with Great Britain). In some examples, one of the ranked candidate pronunciations is selected as a predicted pronunciation (e.g., the most likely pronunciation).


When a speech input is received, STT processing module 730 is used to determine the phonemes corresponding to the speech input (e.g., using an acoustic model), and then attempt to determine words that match the phonemes (e.g., using a language model). For example, if STT processing module 730 first identifies the sequence of phonemes /custom character/ corresponding to a portion of the speech input, it can then determine, based on vocabulary index 744, that this sequence corresponds to the word “tomato.”


In some examples, STT processing module 730 uses approximate matching techniques to determine words in an utterance. Thus, for example, the STT processing module 730 determines that the sequence of phonemes /custom character/ corresponds to the word “tomato,” even if that particular sequence of phonemes is not one of the candidate sequence of phonemes for that word.


Natural language processing module 732 (“natural language processor”) of the digital assistant takes the n-best candidate text representation(s) (“word sequence(s)” or “token sequence(s)”) generated by STT processing module 730, and attempts to associate each of the candidate text representations with one or more “actionable intents” recognized by the digital assistant. An “actionable intent” (or “user intent”) represents a task that can be performed by the digital assistant, and can have an associated task flow implemented in task flow models 754. The associated task flow is a series of programmed actions and steps that the digital assistant takes in order to perform the task. The scope of a digital assistant's capabilities is dependent on the number and variety of task flows that have been implemented and stored in task flow models 754, or in other words, on the number and variety of “actionable intents” that the digital assistant recognizes. The effectiveness of the digital assistant, however, also dependents on the assistant's ability to infer the correct “actionable intent(s)” from the user request expressed in natural language.


In some examples, in addition to the sequence of words or tokens obtained from STT processing module 730, natural language processing module 732 also receives contextual information associated with the user request, e.g., from I/O processing module 728. The natural language processing module 732 optionally uses the contextual information to clarify, supplement, and/or further define the information contained in the candidate text representations received from STT processing module 730. The contextual information includes, for example, user preferences, hardware, and/or software states of the user device, sensor information collected before, during, or shortly after the user request, prior interactions (e.g., dialogue) between the digital assistant and the user, and the like. As described herein, contextual information is, in some examples, dynamic, and changes with time, location, content of the dialogue, and other factors.


In some examples, the natural language processing is based on, e.g., ontology 760. Ontology 760 is a hierarchical structure containing many nodes, each node representing either an “actionable intent” or a “property” relevant to one or more of the “actionable intents” or other “properties.” As noted above, an “actionable intent” represents a task that the digital assistant is capable of performing, i.e., it is “actionable” or can be acted on. A “property” represents a parameter associated with an actionable intent or a sub-aspect of another property. A linkage between an actionable intent node and a property node in ontology 760 defines how a parameter represented by the property node pertains to the task represented by the actionable intent node.


In some examples, ontology 760 is made up of actionable intent nodes and property nodes. Within ontology 760, each actionable intent node is linked to one or more property nodes either directly or through one or more intermediate property nodes. Similarly, each property node is linked to one or more actionable intent nodes either directly or through one or more intermediate property nodes. For example, as shown in FIG. 7C, ontology 760 includes a “restaurant reservation” node (i.e., an actionable intent node). Property nodes “restaurant,” “date/time” (for the reservation), and “party size” are each directly linked to the actionable intent node (i.e., the “restaurant reservation” node).


In addition, property nodes “cuisine,” “price range,” “phone number,” and “location” are sub-nodes of the property node “restaurant,” and are each linked to the “restaurant reservation” node (i.e., the actionable intent node) through the intermediate property node “restaurant.” For another example, as shown in FIG. 7C, ontology 760 also includes a “set reminder” node (i.e., another actionable intent node). Property nodes “date/time” (for setting the reminder) and “subject” (for the reminder) are each linked to the “set reminder” node. Since the property “date/time” is relevant to both the task of making a restaurant reservation and the task of setting a reminder, the property node “date/time” is linked to both the “restaurant reservation” node and the “set reminder” node in ontology 760.


An actionable intent node, along with its linked property nodes, is described as a “domain.” In the present discussion, each domain is associated with a respective actionable intent, and refers to the group of nodes (and the relationships there between) associated with the particular actionable intent. For example, ontology 760 shown in FIG. 7C includes an example of restaurant reservation domain 762 and an example of reminder domain 764 within ontology 760. The restaurant reservation domain includes the actionable intent node “restaurant reservation,” property nodes “restaurant,” “date/time,” and “party size,” and sub-property nodes “cuisine,” “price range,” “phone number,” and “location.” Reminder domain 764 includes the actionable intent node “set reminder,” and property nodes “subject” and “date/time.” In some examples, ontology 760 is made up of many domains. Each domain shares one or more property nodes with one or more other domains. For example, the “date/time” property node is associated with many different domains (e.g., a scheduling domain, a travel reservation domain, a movie ticket domain, etc.), in addition to restaurant reservation domain 762 and reminder domain 764.


While FIG. 7C illustrates two example domains within ontology 760, other domains include, for example, “search media,” “play media,” “find a movie,” “initiate a phone call,” “find directions,” “schedule a meeting,” “send a message,” and “provide an answer to a question,” “read a list,” “providing navigation instructions,” “provide instructions for a task” and so on. A “send a message” domain is associated with a “send a message” actionable intent node, and further includes property nodes such as “recipient(s),” “message type,” and “message body.” The property node “recipient” is further defined, for example, by the sub-property nodes such as “recipient name” and “message address.”


In some examples, ontology 760 includes all the domains (and hence actionable intents) that the digital assistant is capable of understanding and acting upon. In some examples, ontology 760 is modified, such as by adding or removing entire domains or nodes, or by modifying relationships between the nodes within the ontology 760.


In some examples, nodes associated with multiple related actionable intents are clustered under a “super domain” in ontology 760. For example, a “travel” super-domain includes a cluster of property nodes and actionable intent nodes related to travel. The actionable intent nodes related to travel includes “airline reservation,” “hotel reservation,” “car rental,” “get directions,” “find points of interest,” and so on. The actionable intent nodes under the same super domain (e.g., the “travel” super domain) have many property nodes in common. For example, the actionable intent nodes for “airline reservation,” “hotel reservation,” “car rental,” “get directions,” and “find points of interest” share one or more of the property nodes “start location,” “destination,” “departure date/time,” “arrival date/time,” and “party size.” In another example, a “media” super-domain includes a cluster of property nodes and actionable intent nodes related to media. The actionable intent nodes related to media include, for example, “search media,” “play media item,” “buy media item,” or the like.


In some examples, each node in ontology 760 is associated with a set of words and/or phrases that are relevant to the property or actionable intent represented by the node. The respective set of words and/or phrases associated with each node are the so-called “vocabulary” associated with the node. The respective set of words and/or phrases associated with each node are stored in vocabulary index 744 in association with the property or actionable intent represented by the node. For example, returning to FIG. 7B, the vocabulary associated with the node for the property of “restaurant” includes words such as “food,” “drinks,” “cuisine,” “hungry,” “eat,” “pizza,” “fast food,” “meal,” and so on. For another example, the vocabulary associated with the node for the actionable intent of “initiate a phone call” includes words and phrases such as “call,” “phone,” “dial,” “ring,” “call this number,” “make a call to,” and so on. The vocabulary index 744 optionally includes words and phrases in different languages.


Natural language processing module 732 receives the candidate text representations (e.g., text string(s) or token sequence(s)) from STT processing module 730, and for each candidate representation, determines what nodes are implicated by the words in the candidate text representation. In some examples, if a word or phrase in the candidate text representation is found to be associated with one or more nodes in ontology 760 (via vocabulary index 744), the word or phrase “triggers” or “activates” those nodes. Based on the quantity and/or relative importance of the activated nodes, natural language processing module 732 selects one of the actionable intents as the task that the user intended the digital assistant to perform. In some examples, the domain that has the most “triggered” nodes is selected. In some examples, the domain having the highest confidence value (e.g., based on the relative importance of its various triggered nodes) is selected. In some examples, the domain is selected based on a combination of the number and the importance of the triggered nodes. In some examples, additional factors are considered in selecting the node as well, such as whether the digital assistant has previously correctly interpreted a similar request from a user.


User data 748 includes user-specific information, such as user-specific vocabulary, user preferences, user address, user's default and secondary languages, user's contact list, and other short-term or long-term information for each user. In some examples, natural language processing module 732 uses the user-specific information to supplement the information contained in the user input to further define the user intent. For example, for a user request “invite my friends to my birthday party,” natural language processing module 732 is able to access user data 748 to determine who the “friends” are and when and where the “birthday party” would be held, rather than requiring the user to provide such information explicitly in his/her request.


It should be recognized that in some examples, natural language processing module 732 is implemented using one or more machine learning mechanisms (e.g., neural networks). In particular, the one or more machine learning mechanisms are configured to receive a candidate text representation and contextual information associated with the candidate text representation. Based on the candidate text representation and the associated contextual information, the one or more machine learning mechanisms are configured to determine intent confidence scores over a set of candidate actionable intents. Natural language processing module 732 can select one or more candidate actionable intents from the set of candidate actionable intents based on the determined intent confidence scores. In some examples, an ontology (e.g., ontology 760) is also used to select the one or more candidate actionable intents from the set of candidate actionable intents.


Other details of searching an ontology based on a token string are described in U.S. Utility application Ser. No. 12/341,743 for “Method and Apparatus for Searching Using An Active Ontology,” filed Dec. 22, 2008, the entire disclosure of which is incorporated herein by reference.


In some examples, once natural language processing module 732 identifies an actionable intent (or domain) based on the user request, natural language processing module 732 generates a structured query to represent the identified actionable intent. In some examples, the structured query includes parameters for one or more nodes within the domain for the actionable intent, and at least some of the parameters are populated with the specific information and requirements specified in the user request. For example, the user says “Make me a dinner reservation at a sushi place at 7.” In this case, natural language processing module 732 is able to correctly identify the actionable intent to be “restaurant reservation” based on the user input. According to the ontology, a structured query for a “restaurant reservation” domain includes parameters such as {Cuisine}, {Time}, {Date}, {Party Size}, and the like. In some examples, based on the speech input and the text derived from the speech input using STT processing module 730, natural language processing module 732 generates a partial structured query for the restaurant reservation domain, where the partial structured query includes the parameters {Cuisine=“Sushi”} and {Time=“7 pm”}. However, in this example, the user's utterance contains insufficient information to complete the structured query associated with the domain. Therefore, other necessary parameters such as {Party Size} and {Date} are not specified in the structured query based on the information currently available. In some examples, natural language processing module 732 populates some parameters of the structured query with received contextual information. For example, in some examples, if the user requested a sushi restaurant “near me,” natural language processing module 732 populates a {location} parameter in the structured query with GPS coordinates from the user device.


In some examples, natural language processing module 732 identifies multiple candidate actionable intents for each candidate text representation received from STT processing module 730. Further, in some examples, a respective structured query (partial or complete) is generated for each identified candidate actionable intent. Natural language processing module 732 determines an intent confidence score for each candidate actionable intent and ranks the candidate actionable intents based on the intent confidence scores. In some examples, natural language processing module 732 passes the generated structured query (or queries), including any completed parameters, to task flow processing module 736 (“task flow processor”). In some examples, the structured query (or queries) for the m-best (e.g., m highest ranked) candidate actionable intents are provided to task flow processing module 736, where m is a predetermined integer greater than zero. In some examples, the structured query (or queries) for the m-best candidate actionable intents are provided to task flow processing module 736 with the corresponding candidate text representation(s).


Other details of inferring a user intent based on multiple candidate actionable intents determined from multiple candidate text representations of a speech input are described in U.S. Utility application Ser. No. 14/298,725 for “System and Method for Inferring User Intent From Speech Inputs,” filed Jun. 6, 2014, the entire disclosure of which is incorporated herein by reference.


Task flow processing module 736 is configured to receive the structured query (or queries) from natural language processing module 732, complete the structured query, if necessary, and perform the actions required to “complete” the user's ultimate request. In some examples, the various procedures necessary to complete these tasks are provided in task flow models 754. In some examples, task flow models 754 include procedures for obtaining additional information from the user and task flows for performing actions associated with the actionable intent.


As described above, in order to complete a structured query, task flow processing module 736 needs to initiate additional dialogue with the user in order to obtain additional information, and/or disambiguate potentially ambiguous utterances. When such interactions are necessary, task flow processing module 736 invokes dialogue flow processing module 734 to engage in a dialogue with the user. In some examples, dialogue flow processing module 734 determines how (and/or when) to ask the user for the additional information and receives and processes the user responses. The questions are provided to and answers are received from the users through I/O processing module 728. In some examples, dialogue flow processing module 734 presents dialogue output to the user via audio and/or visual output, and receives input from the user via spoken or physical (e.g., clicking) responses. Continuing with the example above, when task flow processing module 736 invokes dialogue flow processing module 734 to determine the “party size” and “date” information for the structured query associated with the domain “restaurant reservation,” dialogue flow processing module 734 generates questions such as “For how many people?” and “On which day?” to pass to the user. Once answers are received from the user, dialogue flow processing module 734 then populates the structured query with the missing information, or pass the information to task flow processing module 736 to complete the missing information from the structured query.


Once task flow processing module 736 has completed the structured query for an actionable intent, task flow processing module 736 proceeds to perform the ultimate task associated with the actionable intent. Accordingly, task flow processing module 736 executes the steps and instructions in the task flow model according to the specific parameters contained in the structured query. For example, the task flow model for the actionable intent of “restaurant reservation” includes steps and instructions for contacting a restaurant and actually requesting a reservation for a particular party size at a particular time. For example, using a structured query such as: {restaurant reservation, restaurant=ABC Café, date=3/12/2012, time=7 pm, party size=5}, task flow processing module 736 performs the steps of: (1) logging onto a server of the ABC Café or a restaurant reservation system such as OPENTABLE®, (2) entering the date, time, and party size information in a form on the website, (3) submitting the form, and (4) making a calendar entry for the reservation in the user's calendar.


In some examples, task flow processing module 736 employs the assistance of service processing module 738 (“service processing module”) to complete a task requested in the user input or to provide an informational answer requested in the user input. For example, service processing module 738 acts on behalf of task flow processing module 736 to make a phone call, set a calendar entry, invoke a map search, invoke or interact with other user applications installed on the user device, and invoke or interact with third-party services (e.g., a restaurant reservation portal, a social networking website, a banking portal, etc.). In some examples, the protocols and application programming interfaces (API) required by each service are specified by a respective service model among service models 756. Service processing module 738 accesses the appropriate service model for a service and generates requests for the service in accordance with the protocols and APIs required by the service according to the service model.


For example, if a restaurant has enabled an online reservation service, the restaurant submits a service model specifying the necessary parameters for making a reservation and the APIs for communicating the values of the necessary parameter to the online reservation service. When requested by task flow processing module 736, service processing module 738 establishes a network connection with the online reservation service using the web address stored in the service model, and sends the necessary parameters of the reservation (e.g., time, date, party size) to the online reservation interface in a format according to the API of the online reservation service.


In some examples, natural language processing module 732, dialogue flow processing module 734, and task flow processing module 736 are used collectively and iteratively to infer and define the user's intent, obtain information to further clarify and refine the user intent, and finally generate a response (i.e., an output to the user, or the completion of a task) to fulfill the user's intent. The generated response is a dialogue response to the speech input that at least partially fulfills the user's intent. Further, in some examples, the generated response is output as a speech output. In these examples, the generated response is sent to speech synthesis processing module 740 (e.g., speech synthesizer) where it can be processed to synthesize the dialogue response in speech form. In yet other examples, the generated response is data content relevant to satisfying a user request in the speech input.


In examples where task flow processing module 736 receives multiple structured queries from natural language processing module 732, task flow processing module 736 initially processes the first structured query of the received structured queries to attempt to complete the first structured query and/or execute one or more tasks or actions represented by the first structured query. In some examples, the first structured query corresponds to the highest ranked actionable intent. In other examples, the first structured query is selected from the received structured queries based on a combination of the corresponding speech recognition confidence scores and the corresponding intent confidence scores. In some examples, if task flow processing module 736 encounters an error during processing of the first structured query (e.g., due to an inability to determine a necessary parameter), the task flow processing module 736 can proceed to select and process a second structured query of the received structured queries that corresponds to a lower ranked actionable intent. The second structured query is selected, for example, based on the speech recognition confidence score of the corresponding candidate text representation, the intent confidence score of the corresponding candidate actionable intent, a missing necessary parameter in the first structured query, or any combination thereof.


Speech synthesis processing module 740 is configured to synthesize speech outputs for presentation to the user. Speech synthesis processing module 740 synthesizes speech outputs based on text provided by the digital assistant. For example, the generated dialogue response is in the form of a text string. Speech synthesis processing module 740 converts the text string to an audible speech output. Speech synthesis processing module 740 uses any appropriate speech synthesis technique in order to generate speech outputs from text, including, but not limited, to concatenative synthesis, unit selection synthesis, diphone synthesis, domain-specific synthesis, formant synthesis, articulatory synthesis, hidden Markov model (HMM) based synthesis, and sinewave synthesis. In some examples, speech synthesis processing module 740 is configured to synthesize individual words based on phonemic strings corresponding to the words. For example, a phonemic string is associated with a word in the generated dialogue response. The phonemic string is stored in metadata associated with the word. Speech synthesis processing module 740 is configured to directly process the phonemic string in the metadata to synthesize the word in speech form.


In some examples, instead of (or in addition to) using speech synthesis processing module 740, speech synthesis is performed on a remote device (e.g., the server system 108), and the synthesized speech is sent to the user device for output to the user. For example, this can occur in some implementations where outputs for a digital assistant are generated at a server system. And because server systems generally have more processing power or resources than a user device, it is possible to obtain higher quality speech outputs than would be practical with client-side synthesis.


Additional details on digital assistants can be found in the U.S. Utility application Ser. No. 12/987,982, entitled “Intelligent Automated Assistant,” filed Jan. 10, 2011, and U.S. Utility application Ser. No. 13/251,088, entitled “Generating and Processing Task Items That Represent Tasks to Perform,” filed Sep. 30, 2011, the entire disclosures of which are incorporated herein by reference.



FIG. 8 illustrates a block diagram of a natural language parsing system 800 in accordance with some examples. In some examples, natural language parsing system 800 is implemented on a standalone computer system. In some examples, natural language parsing system 800 is distributed across multiple devices. In some examples, some of the modules and functions of the natural language parsing system are divided into a server portion and a client portion, where the client portion resides on one or more user devices (e.g., devices 104, 122, 200, 400, or 600) and communicates with the server portion (e.g., server system 108) through one or more networks, e.g., as shown in FIG. 1. It should be noted that natural language parsing system 800 is only one example of a natural language parsing system, and that natural language parsing system 800 can have more or fewer components than shown, can combine two or more components, or can have a different configuration or arrangement of the components. Further, although the below discussion describes functions being performed at a single component of natural language parsing system 800, it is to be understood that such functions can be performed at other components of natural language parsing system 808 and that such functions can be performed at more than one component of natural language parsing system 808.


Natural language parsing system 800 includes natural language parsing module 802, knowledge base 804, post-processing module 806, and natural language parsing model generating module 808. In some examples, natural language parsing system 800 is at least partially implemented within natural language processing module 732 discussed above and the output of natural language parsing system 800 (e.g., the output of post-processing module 806) is provided as a structured query to task flow processing module 736.


As discussed in greater detail below, in some examples, natural language parsing module 802 uses information contained in knowledge base 804 and a natural language parsing model to generate parsing results for natural language input. In some examples, the parsing results have confidence scores and are ranked based on their respective confidence scores. In some examples, post-processing module 806 re-ranks parsing results generated by natural language parsing module 802 (e.g., by adjusting the respective confidence scores of the parsing results) and generates new parsing results using the parsing results generated by natural language parsing module 802. In some examples, natural language parsing model generating module 808 generates and/or trains natural language parsing models. For example, generating module 808 generates any natural language parsing model that is implemented within natural language parsing module 802.


Natural language parsing module 802 generates parsing results for natural language input based on a domain determined to correspond to the natural language input. In particular, natural language parsing module 802 generates one or more parsing results for natural language input using a determined domain corresponding to the natural language input (e.g., determined by natural language processing module 732) and a received text representation of the natural language input (e.g., received from STT processing module 730). Each parsing result comprises a mapping of one or more properties of the determined domain to one or more words of the natural language input. In some examples, the one or more parsing results are generated using a neural network (e.g., neural network 900 discussed with respect to FIG. 9 below) implemented within natural language parsing module 802.


For example, the natural language input “play Don't Let Me down by the Chainsmokers” is determined by natural language processing module 732 to correspond to the media domain. The media domain is a domain (e.g., a domain of ontology 760) associated with the actionable intents of searching for and playing media items such as songs, movies, books, video games etc. The media domain includes properties such as “default,” “mediaPlayerItem,” “mediaPlayerMood,” “musicArtist,” “musicAlbum,” “musicTitle,” and “musicGenre.” When these properties are mapped to words of the natural language input, they respectively indicate one or more default words, one or more words associated with media items, one or more words associated with a music artist, one or more words associated with a music album, one or more words associated with a music title (e.g., a song title), and one or more words associated with a music genre.


In some examples, natural language parsing module 802 generates a first and a second parsing result for the natural language input. For example, a first parsing result comprises the mapping of “Don't Let Me Down by the Chainsmokers” to “musicArtist” and a second parsing result comprises the mappings of “Don't Let Me Down” to “musicTitle” and “Chainsmokers” to “musicArtist.” In the present example, the first parsing result indicates that the words “Don't Let Me Down by the Chainsmokers” are interpreted as a music artist and the second parsing result indicates that the words “Don't Let Me Down” are interpreted as a music title (e.g., a song title) and that the word “Chainsmokers” is interpreted as a music artist.


In some examples, natural language parsing module 802 generates respective confidence scores and/or rankings for the parsing results it generates (e.g., using neural network 900). For example, a first confidence score of the first parsing result is higher than a second confidence score of the second parsing result and the first parsing result is thus initially ranked higher than the second parsing result.


In some examples, natural language parsing module 802 uses information contained in knowledge base 804 when generating and/or ranking parsing results. Knowledge base 804 includes a plurality of data items (e.g., songs, books, audiobooks, movies, video games, emails, websites, contacts, calendar events, etc.) and, in some examples, includes additional information related to the data items (e.g., the number of views, plays, and/or purchases of the data items, the ranking of the data items, the popularity of the data items, the length of the data items, the source of the data items, etc.). In one example, knowledge base 804 is a media database (e.g., iTunes® by Apple Inc.). In some examples, the data items comprising knowledge base 804 and the additional information about the data items in knowledge base 804 are updated in real-time (e.g., live updates, daily updates, etc.). For example, a media database such as iTunes® is updated live as new data items are added and information associated with the data items changes (e.g., a song gets more plays and/or purchases).


In some examples, knowledge base 804 is embedded in natural language parsing module 802. For example, knowledge base 804 is embedded into neural network 900 implemented within natural language parsing module 802. Exemplary techniques for embedding knowledge bases into neural networks are described in Bishan Yang's and Tom Mitchell's, “Leveraging Knowledge Bases in LSTMs for Improving Machine Reading,” Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2017, pp. 1436-1446, the content of which is incorporated by reference herein in its entirety.


Embedding knowledge base 804 in natural language parsing module 802 enables natural language parsing module 802 to use information stored in knowledge base 804 when determining parsing results and their respective confidence scores. For example, because knowledge base 804 includes the song “Don't Let Me Down” by the artist “The Chainsmokers,” natural language parsing module 802 (with embedded knowledge base 804) determines a high confidence score for a parsing result indicating that the words “Don't Let Me Down” are interpreted as a music title and that the word “Chainsmokers” is interpreted as an artist. In contrast, natural language parsing module 802 determines a low confidence score for a parsing result indicating that “Don't Let Me Down by the Chainsmokers” is interpreted as a music artist because knowledge base 804 does not include a music artist titled “Don't Let Me Down by the Chainsmokers.”


In some examples, knowledge base 804 validates parsing results generated by natural language parsing module 802. In particular, natural language parsing module 802 determines whether generated parsing results correspond to any one of a plurality of data items included in knowledge base 804. For example, natural language parsing module 802 determines that the first parsing result comprising the mapping of “Don't Let Me Down by the Chainsmokers” to “musicArtist” does not correspond to any one of the plurality of data items in knowledge base 804 because there is no data item in knowledge base 804 by the music artist “Don't Let Me Down by the Chainsmokers.” However, natural language parsing module 802 determines that the second parsing result comprising the mappings of “Don't Let Me Down” to “musicTitle” and “Chainsmokers” to “musicArtist corresponds to one of the plurality of data items in knowledge base 804 because knowledge base 804 includes the song “Don't′ Let Me Down” by the artist “The Chainsmokers.”


Post-processing module 806 re-ranks parsing results generated by natural language parsing module 802 using validation results determined from knowledge base 804. For example, because the first parsing result comprising the mapping of “Don't Let Me Down by the Chainsmokers” to “musicArtist” does not correspond to any one of the plurality of data items in knowledge base 804 and the second parsing result comprising the mappings of “Don't Let Me Down” to “musicTitle” and “Chainsmokers” to “musicArtist” is determined to correspond to a data item in knowledge base 804, post-processing module 806 ranks the second parsing result higher than the first parsing result. As discussed, the second parsing result is initially ranked lower than the first parsing result (e.g., because the first parsing result had a higher confidence value). Accordingly, in some examples, post-processing module 806 adjusts the respective confidence scores associated with parsing results generated by natural language parsing module 802 to re-rank the parsing results.


In some examples, post-processing module 806 generates a final parsing result using parsing results generated by natural language parsing module 802. In particular, in some examples, the final parsing result is generated using parsing results output from different output layers of a neural network (e.g., output layers 906 and 908 of neural network 900 within parsing module 802). For example, the second parsing result discussed above is generated by a first output layer of a neural network (e.g., output layer 906) and a third parsing result is generated by a second output layer of a neural network (e.g., output layer 908). Post-processing module 806 uses the first parsing result and the second parsing result to generate the final parsing result. In the present example, the third parsing result for the natural language input “play Don't Let Me Down by the Chainsmokers” comprises the mapping of the “default” property to “play” and the mappings of the “mediaPlayerItem” property to “Don't Let Me Down” and to “Chainsmokers.” To generate the final parsing result, post-processing module 806 replaces the mapping of the “mediaPlayerItem” property to “Don't Let Me Down” with the mapping of “musicTitle” to “Don't Let Me Down” and replaces the mapping of the “mediaPlayerItem” property to “Chainsmokers” with the mapping of “musicArtist” to “Chainsmokers.” Accordingly, the final parsing result comprises the mappings of “default” to “play,” “musicTitle” to “Don't Let Me Down,” and “musicArtist” to “Chainsmokers.”


In some examples, post-processing module 806 provides one or more parsing results (e.g., the first, second, third, and/or final parsing results) to task flow processing module 736. In some examples, natural language parsing module 802 provides one or more parsing results to task flow processing module 736 without having post-processing 806 module re-rank parsing results and/or generate a final parsing result.


Natural language parsing model generating module 808 is configured to generate and/or train natural language parsing models of domains (e.g., a natural language parsing model within natural language parsing module 802). In some examples, generating module 808 obtains a data item (e.g., a song) and a natural language input that caused the data item to be provided. Generating module 808 then trains a natural language parsing model using the data item and the natural language input. For example, generating module 808 uses the data item and the natural language input to train a neural network (e.g., neural network 900 discussed below).


In some examples, natural language parsing model generating module 808 uses natural language input and metadata corresponding to an output provided responsive to the natural language input (e.g., from I/O processing module 728 and/or from STT processing module 730) to generate training data for natural language parsing models and to train natural language parsing models. For example, natural language parsing model generating module 808 uses information included in the metadata to determine parsing results for the natural language input as training data. Generating module 808 then uses the natural language input and the determined parsing result to train a natural language parsing model. In some examples, before determining the parsing result using the metadata, generating module 808 determines, using the metadata, whether the output satisfies a predetermined criterion, such as a predetermined duration of the output (e.g., 30 seconds).


For example, generating module 808 obtains the natural language input “Play Hello by Adele” and metadata corresponding to the song “Hello” by “Adele” provided responsive to the natural language input. The metadata specifies the song “Hello” by “Adele” is played for over 30 seconds and that “Hello” is mapped to “musicTitle” and “Adele” is mapped to “musicArtist.” Because the output of the song “Hello” is played for over 30 seconds, the output satisfies the predetermined criterion, and thus generating module 808 determines a parsing result for “Play Hello by Adele” by comparing the mappings of “Hello” to “musicTitle” and “Adele” to “musicArtist” to “Play Hello by Adele.” In the present example, the parsing result is determined to include the mappings of “Hello” to “musicTitle” and “Adele” to “musicArtist.” In some examples, generating module 808 compares the mappings specified in the metadata to the natural language input to determine the parsing result using fuzzy matching techniques. Generating module 808 then uses the natural language input “Play Hello by Adele” and the determined parsing result to generate and/or train a natural language parsing model.



FIG. 9. illustrates neural network 900 in accordance with some examples. Neural network 900 is configured to receive a textual representation of natural language input (e.g., the text representations from STT processing module 730) and generate one or more parsing results for the natural language input. In some examples, neural network 900 is implemented within natural language parsing module 802 described above and neural network 900 generates the one or more parsing results for natural language parsing module 802. Further, in some examples, neural network 900 generates respective confidence scores for the one or more parsing results.


Neural network 900 includes multiple layers. In particular, neural network 900 includes input layer 902, one or more hidden layers 904, first output layer 906, and second output layer 908. As shown in FIG. 9, one or more hidden layers 904 includes four hidden layers. However, in some examples, one or more hidden layers 904 includes any number of hidden layers.


Each layer of neural network 900 includes multiple units. The units are the basic computational elements of neural network 900 and are referred to as dimensions, neurons, or nodes. As shown in FIG. 9, input layer 902 includes input units 910, one or more hidden layers 904 includes hidden units 912, first output layer 906 includes first output layer units 914, and second output layer 908 includes second output layer units 916. The units are interconnected by connections 918. Specifically, connections 918 connect the units of one layer to the units of a subsequent layer. Further, each connection 918 is associated with a weighting value. For simplicity, the weighting values are not shown in FIG. 9.


Input layer 902 is configured to receive a textual representation of natural language input and the output of input layer 902 is provided to one or more hidden layers 904. The output of one or more hidden layers 904 is provided to first output layer 906 and to second output layer 908. In particular, as shown in FIG. 9, first output layer 906 and second output layer 908 both receive the same output from one or more hidden layers 904.


In some examples, first output layer 906 and second output layer 908 each generate one or more parsing results for the natural language input. In some examples, first output layer 906 is a named entity recognition (NER) output layer configured to map properties of the domain corresponding to named entities (e.g., domain properties such as “musicTitle,” “musicArtist,” and “musicAlbum”) to one or more words of the natural language input. In some examples, second output layer 908 is a shallow parsing output layer configured to map properties of the domain to the natural language input.


In some examples, first output layer 906 and second output layer 908 map different properties of the domain to one or more words of the natural language input. For example, second output layer 908 maps the media domain property “mediaPlayerMood” to one or more words of the natural language input, while first output layer 906 is not configured to map the “mediaPlayerMood” property to one or more words of natural language input. Similarly, in some examples, first output layer 906 maps the media domain property “musicArtist” to one or more words of the natural language input, while second output layer 908 is not configured to map the “musicArtist” property to one or more words of natural language input.


Because in some examples first output layer 906 and second output layer 908 respectively map different properties of a domain to one or more words of the natural language input in some examples, using both first output layer 906 and second output layer 908 to generate parsing results enables use of many different domain properties when generating parsing results for natural language input. This can improve the accuracy of the parsing results and thus the accuracy of the task flows generated using the parsing results (e.g., generated by task flow processing module 754) by providing more detailed information about the natural language input (e.g., which words correspond to song titles, which words correspond to moods, etc.).


4. Process for Using a Knowledge Base to Perform Natural Language Processing



FIG. 10 illustrates process 1000 for using a knowledge base to perform natural language processing according to various examples. Process 1000 is performed, for example, using one or more electronic devices implementing a digital assistant. In some examples, process 1000 is performed using a client-server system (e.g., system 100), and the blocks of process 1000 are divided up in any manner between the server (e.g., DA server 106) and a client device. In other examples, the blocks of process 1000 are divided up between the server and multiple client devices (e.g., a mobile phone and a smart watch). Thus, while portions of process 1000 are described herein as being performed by particular devices of a client-server system, it will be appreciated that process 1000 is not so limited. In other examples, process 1000 is performed using only a client device (e.g., user device 104) or only multiple client devices. In process 1000, some blocks are, optionally, combined, the order of some blocks is, optionally, changed, and some blocks are, optionally, omitted. In some examples, additional steps may be performed in combination with the process 1000.


At block 1002, the electronic device (e.g., device 200, 400, 600 and/or server system 108) receives natural language input. In some examples, the natural language input comprises a request for a media item (e.g., “play Hello by Adele”). In some examples, the natural language input is received from a user of the electronic device, or from a second electronic device separate from the electronic device. Exemplary natural language inputs include speech, text, or a combination of speech and text.


At block 1004, the electronic device determines, from a plurality of domains, a domain corresponding to the natural language input. For example, the electronic device determines that the natural language input “play Hello by Adele” corresponds to the media domain. In some examples, the plurality of domains are domains of an ontology (e.g., ontology 760). The domain corresponding to the natural language input is determined, for example, using any of the techniques described with respect to FIGS. 7A-7C above.


At block 1006, the electronic device determines whether the domain corresponds to a predetermined type of domain. The predetermined type of domain corresponds to a specific domain of the ontology. For example, the predetermined type of domain is the media domain. As discussed, in some examples, the media domain is associated with the actionable intents of searching for and playing media items such as music, videos, books, video games, etc. The determined domain is associated with one or more properties. In some examples, the one or more properties each correspond to a named entity (e.g., any object that can be given a proper name). For instance, in examples where the determined domain corresponds to a media domain, the one or more properties each correspond to media-related named entities, such as artists, song titles, albums, authors and the like.


In some examples, in accordance with determining that the domain does not correspond to a predetermined type of domain, the device forgoes performing the operations described with respect to blocks 1008-1016 below. Rather, for example, the electronic device processes the natural language input to determine parsing results using a domain that is not of the predetermined type (e.g., domains other than the media domain). In some examples, parsing results determined using domains not of the predetermined type do not include mappings of domain properties corresponding to named entities to one or more words of the natural language input. In some examples, parsing results determined using domains not of the predetermined type are not validated and/or re-ranked using a knowledge base. Processing the natural language input with respect to domains not of the predetermined type to determine parsing results to execute one or more tasks is described with respect to FIGS. 7A-7C above.


At block 1008, in accordance with determining that the domain corresponds to a predetermined type of domain, the device determines parsing results for the natural language input (e.g., using neural network 900 and/or using natural language parsing system 800). As discussed, each parsing result represents a semantic interpretation of the natural language input and each parsing result comprises respective mappings of one or more domain properties to one or more words of the natural language input. In determining the parsing results, one or more words of the natural language input are mapped to one or more properties of the domain to obtain the parsing results. The parsing results represent, for example, which words in the natural language input correspond to song titles, music albums, music artists, etc.


For example, at block 1008, in accordance with determining that the domain corresponds to a predetermined type of domain, the device determines a first and a second parsing result for the natural language input. The first and the second parsing results each comprise a respective mapping of one or more properties of the domain to one or more words of the natural language input. A first confidence score of the first parsing result is higher than a second confidence score of the second parsing result.


For example, as shown in FIG. 12, an exemplary first parsing result for the natural language input “play Hello by Adele” comprises the mapping of “Hello by Adele” to the “musicArtist” property of the domain. The first parsing result represents the semantic interpretation of “Hello by Adele” as a music artist. An exemplary second parsing result for the natural language input “play Hello by Adele” comprises the mappings of “Hello” to the “musicTitle” property of the domain and “Adele” to the “musicArtist” property of the domain. The second parsing result represents the semantic interpretations of “Hello” as a music title (e.g., a song title) and “Adele” as a music Artist. In some examples, one or more words in the natural language input that do not correspond to named entities and do not correspond to other properties of the domain, are mapped to the “default” property. For example, as shown in FIG. 12, the word “Play” is mapped to the “default” property in both the first and the second parsing results.


As shown in FIG. 12, in some examples, the first parsing result comprises a mapping of a first property of the domain (e.g., “musicArtist”) to a first word of the natural language input (e.g., “Hello”) and the second parsing result comprises a mapping of a second property of the domain (e.g., “musicTitle”) to the first word (e.g., “Hello”). In some examples, the second property differs from the first property. Accordingly, in some examples, the first parsing result and the second parsing result respectively comprise one or more mappings of different properties of the domain to the same one or more words in the natural language input.


In some examples, the first parsing result and the second parsing result respectively comprise one or more mappings of the same property of the domain to the same one or more words in the natural language input. For example, for the natural language input “play Frozen Let It Go by Idina Menzel” (determined to correspond to the media domain) a first parsing result maps the media domain property “musicArtist” to “Idina Menzel” while a second parsing result also maps the media domain property “musicArtist” to “Idina Menzel.”


Although block 1008 is described above with respect to a first and a second parsing result for the natural language input, it is to be understood that, in some examples, more than two parsing results are determined for the natural language input. In particular, in some examples, a plurality of parsing results are determined for the natural language input, where each parsing result of the plurality of parsing results respectively includes a mapping of one or more properties of the domain to one or more words of the natural language input. In some examples, each parsing result of the plurality of parsing results is generated using a neural network (e.g., neural network 900). For example, the first parsing result and the second parsing result are each generated by neural network 900. In some examples, the first and the second parsing result for the natural language input are each generated by a first output layer of a neural network (e.g., output layer 906 of neural network 900), while a third parsing result for the natural language input is generated by a second output layer of a neural network (e.g., output layer 908 of neural network 900) different from the first output layer. The third parsing result comprises a mapping of a set of one or more properties of the domain (e.g., the domain determined at step 1004) to the one or more words of the natural language input.


As discussed, in some examples, the first output layer and the second output layer are configured to map different properties of the domain to one or more words of the natural language input. For example, the first output layer is a named entity recognition (NER) output layer configured to map properties of the domain corresponding to named entities (e.g., domain properties such as “musicTitle,” “musicArtist,” and “musicAlbum,”) to one or more words of the natural language input and the second output layer is a shallow parsing output layer configured to coarsely map properties of the domain to one or more words of the natural language input. For the exemplary natural language input “Play Hello by Adele,” the first output layer generates the second parsing result mapping “Hello” to “musicTitle” and “Adele” to “musicArtist shown in FIG. 12 and the second output layer generates the third parsing result shown in FIG. 12 mapping “Play” to the property “default” of the media domain and mapping “Hello by Adele” to the property “mediaPlayerItem” of the domain.


In some examples, the parsing results generated by the second output layer (e.g., the third parsing result) provide coarser information about the natural language input than the parsing results generated using the first output layer. For example, the third parsing result mapping the domain property “mediaPlayerItem” to “Hello by Adele” generated by the second output layer does not provide as detailed information about the natural language input as the parsing result mapping the domain properties “musicTitle” and “musicArtist” respectively to “Hello” and “Adele” generated by the first output layer. However, in some examples, the parsing results generated by the second output layer provide semantic interpretations of the natural language input that the parsing results generated by the first output layer are unable to provide. In particular, in some examples, the parsing results generated using the second output layer map a set of properties of the domain to the one or more words of the natural language input, where the first output layer is not configured to map the set of properties of the domain to the one or more words.


For example, for the natural language input “play me a sad song by Adele,” (determined to correspond to the media domain) the second output layer generates a parsing result mapping the “mediaPlayerMood” property of the media domain to “sad song.” The “mediaPlayerMood” property of the domain indicates a mood (e.g., sad, happy, angry) of a media item specified in the natural language input. In the present example, the first output layer is not configured to map the “mediaPlayerMood” property of the domain to the one or more words of the natural language input. Accordingly, using both the first output layer and the second output layer to generate parsing results for natural language input can allow for a greater variety of domain properties to be mapped to one or more words of the natural language input. This in turn can allow for more accurate processing and generation of task flows from natural language input.


As discussed, in some examples, each of the parsing results of the plurality of the parsing results has a respective confidence score. The respective confidence score indicates a likelihood or probability (e.g., determined by the device) that the respective parsing result is correct for the natural language input. For example, the first parsing result mapping “Hello by Adele” to the “musicArtist” property of the domain has a first confidence score and the second parsing result mapping “Hello” to the “musicTitle” property of the domain and mapping “Adele” to the “musicArtist” property of the domain has a second confidence score. In some examples, the confidence score of the first parsing result is higher than the confidence score of the second parsing result when the first and the second parsing result are initially generated.


In some examples, each of the parsing results of the plurality of parsing results is initially ranked based on their respective confidence scores. For example, because the confidence score of the first parsing result is higher than the confidence score of the second parsing result, the first parsing result is ranked higher than the second parsing result. In some examples including more than two parsing results, the respective confidence score of each parsing result determines the respective ranking of the respective parsing result. In some examples, the ranking of the plurality of parsing results is independent of the respective confidence scores of the plurality of parsing results or the respective confidence scores of the plurality of parsing results are only one factor considered in ranking the plurality of parsing results.


At block 1010, in accordance with determining that the domain corresponds to a predetermined type of domain, the electronic device determines whether the parsing results determined for the natural language input correspond to respective data items of a plurality of data items in a knowledge base. For example, the electronic device determines whether the second parsing result corresponds to a data item of a plurality of data items in a knowledge base (e.g., knowledge base 804). In some examples, in addition to determining whether the second parsing result corresponds to a data item of the plurality of data items in the knowledge base, the electronic device determines whether the first parsing result corresponds to any of the plurality of data items in the knowledge base. In some examples, the data item is a media item (e.g., a song, book, movie, video game, etc.) and the knowledge base is a database of media items (e.g., the iTunes® database by Apple Inc.). As will be discussed in greater detail below, in some examples, the parsing results are re-ranked based on whether they are determined to correspond to respective data items in the knowledge base. In this way, parsing results determined to correspond to respective data items have their rankings increased, which allows for execution of task flows using knowledge base validated parsing results.


In the example shown in FIG. 12, where the first parsing result comprises a mapping of the “musicArtist” property to “Hello by Adele,” and where the second parsing result comprises the mappings of the “musicTitle” property to “Hello,” and the “musicArtist” property to “Adele,” the first parsing result is determined to not correspond to any of the plurality of items in the knowledge base because no data item associated with the mapping of “musicArtist” to “Hello by Adele” exists in the knowledge base. In other words, the first parsing result is determined to not correspond to any of the plurality of data items in the knowledge base because there is no music artist named “Hello by Adele.” However, the second parsing result is determined to correspond to a data item of the plurality of data items in the knowledge base because a song exists in the knowledge base titled “Hello” by the music Artist “Adele.”


As discussed, determining whether a parsing result corresponds to any of a plurality of data items in a knowledge base comprises determining whether a data item exists in the knowledge base that is associated with a mapping that matches one or more mappings comprising the parsing result. In particular, in some examples, the second parsing result comprises a mapping of a fourth property of the domain to a first set of one or more words of the natural language input (e.g., the property “musicTitle” to the first set of one or more words “Hello”) and the data item is associated with a mapping of a fifth property of the domain to one or more words (e.g., the property “musicTitle” to the one or more words “Hello”). The device determines that the mapping of the fourth property of the domain to the first set of one or more words matches the mapping of the fifth property of the domain to the one or more words. In the present example, the second parsing result is determined to correspond to the data item because there is a data item (e.g., the song “Hello”) associated with the mapping of the fifth property of the domain to the one or more words that matches the mapping of the fourth property of the domain to the first set of one or more words. In other words, because the second parsing result indicates a song titled “Hello,” and there is a song titled “Hello” in the knowledge base, the second parsing result is determined to correspond to a data item of the plurality of data items in the knowledge base.


At block 1012, in accordance with determining that the domain corresponds to a predetermined type of domain, the electronic device re-ranks parsing results in accordance with determining whether the parsing results respectively correspond to a data item in the knowledge base. In some examples, any parsing result determined to correspond to a data item in the knowledge base has its ranking increased relative to any parsing result determined not to correspond to a data item in the knowledge base. For example, the confidence scores of the parsing results determined to correspond to respective data items in the knowledge base are increased relative to the confidence scores of the parsing results determined not to correspond to respective data items in the knowledge base. In some examples, this is accomplished by decreasing the respective confidence scores of the parsing results determined to not correspond to respective data items and/or by increasing the respective confidence scores of the parsing results determined to correspond to data items. In the event that none of the parsing results are determined to correspond to a data item in the knowledge base, the respective ranking of each of the parsing results is unchanged, and the respective confidence score of each of the parsing results is also unchanged.


As an example of the process implemented at block 1012, in accordance with a determination that the second parsing result corresponds to the data item of the plurality of data items in the knowledge base, and in accordance with a determination that the first parsing result does not correspond to any of the plurality of data items in the knowledge base, the electronic device ranks the second parsing result higher than the first parsing result (e.g., using post-processing module 806). As discussed, the first parsing result (mapping “Hello by Adele” to the “musicArtist” property) is initially ranked higher than the second parsing result (mapping “Hello” to the “musicTitle” property and “Adele” to the “musicArtist” property) because the first parsing result initially has a confidence score higher than the second parsing result. However, because the first parsing result is determined not to correspond to any of the plurality of items in the knowledge base and because the second parsing result is determined to correspond to the data item of the plurality of data items in the knowledge base, the second parsing result is ranked higher than the first parsing result. For example, the second confidence score of the second parsing result is adjusted to be greater than the first confidence score of the first parsing result. Thus, in the present example, the second parsing result is the highest ranked parsing result of a plurality of parsing results determined for the natural language input.


For some natural language inputs, more than one of the determined parsing results is determined to correspond to a respective data item in the knowledge base. This occurs, for example, when one or more words of the natural language input correspond to both a song name and a music artist name. For example, for the natural language input “play Death Cab for Cutie” a first parsing result comprises a mapping of “musicTitle” to “Death Cab for Cutie” and a second parsing result comprises a mapping of “musicArtist” to “Death Cab for Cutie.” Because “Death Cab for Cutie” refers to both a song name and an artist name, both the first parsing result and the second parsing result are determined to correspond to a respective data item of the plurality of data items of the knowledge base.


In examples where more than one parsing result corresponds to a respective data item in the knowledge base, the electronic device uses the multiple techniques discussed below, alone or in combination, to determine the respective rankings (and/or the respective confidence scores) of the parsing results.


In some examples, the electronic device uses the number of words of the natural language input mapped to a same property to determine the respective rankings of the parsing results. For example, for the natural language input “play Death Cab for Cutie,” a first parsing result maps “musicTitle” to “Death Cab” and a second parsing result maps “musicTitle” to “Death Cab for Cutie.” In this example, because the number of words the second parsing result maps to “musicTitle” (e.g., four words) is greater than the number of words the first parsing result maps to “musicTitle” (e.g., two words), the second parsing result is ranked higher than the first parsing result. In other examples, the parsing result that maps the lesser number of words to the same property is ranked higher.


In some examples, the electronic device uses the number of mapped domain properties of the natural language input to determine the respective rankings of the parsing results. For example, for the natural language input “play Thriller by Michael Jackson,” the first parsing result includes mapping of “Thriller by Michael Jackson” to “musicTitle” and the second parsing result includes the mappings of “Thriller” to “musicTitle” and “Michael Jackson” to “musicArtist.” Because the number of domain properties mapped to the natural language input in the second parsing result (e.g., two) is greater than the number of domain properties mapped to the natural language input in the first parsing result (e.g., one), the second parsing result is ranked higher than the first parsing result. In other examples, the parsing result mapping the lesser number of domain properties to the natural language input is ranked higher.


In some examples, the electronic device uses the popularity of the respective data items in the knowledge base to determine the respective rankings of the parsing results. Accordingly, in some examples, ranking the second parsing result higher than the first parsing result is performed in accordance with the electronic device determining that a popularity of a second data item corresponding to the second parsing result is greater than a popularity of a first data item corresponding to the first parsing result. In some examples, the popularity of a data item is determined using information in the knowledge base containing the data item. For example, the popularity of a data item is based on the number of views (and/or listens) of the data item, the number of purchases of the data item, the position of the data item on a chart, and the like.


Accordingly, in the example where the first parsing result comprises a mapping of “musicTitle” to “Death Cab for Cutie” and the second parsing result comprises a mapping of “musicArtist” to “Death Cab for Cutie,” the second parsing result is ranked higher than the first parsing result because the popularity of the music artist “Death Cab for Cutie” is greater than the popularity of the song “Death Cab for Cutie.” For example, there are more plays of songs by the artist “Death Cab for Cutie” than there are plays of the song “Death Cab for Cutie.”


As discussed, using knowledge base (e.g., knowledge base 804) information to rank parsing results for natural language input both validates parsing results (e.g., by ranking parsing results determined not to correspond to data items lower) and provides techniques for selecting between multiple parsing results each corresponding to a respective data item (e.g., by determining which parsing result corresponds to a data item with the greatest popularity). In addition, because exemplary knowledge bases contain real-time information about the popularity of data items, using a knowledge base to rank parsing results provides the benefit of selecting parsing results corresponding to relevant (e.g., currently popular) data items to execute task flows. This can increase the accuracy with which digital assistants process natural language inputs to execute user requests, thus improving the efficiency of the man-machine interface, and conserving battery power on electronic devices.


In some examples, instead of, or in addition to, using the knowledge base to re-rank and/or validate parsing results (e.g., block 1012), the knowledge base (e.g., knowledge base 804) is directly incorporated into the natural language processing module 732 (e.g., directly incorporated into neural network 900 and/or natural language parsing module 802). By directly incorporating knowledge base 804 into neural network 900 and/or natural language parsing module 802, parsing results (and their respective confidence scores) generated by neural network 900 and/or natural language parsing module 802 for natural language inputs account for information about the data items in knowledge base 804. For example, because the knowledge base indicates that “Death Cab for Cutie” is more likely to be a music artist than to be a song title (e.g., based on popularity), parsing results mapping “Death Cab for Cutie” to “musicArtist” have a greater confidence score than parsing results mapping “Death Cab for Cutie” to “musicTitle.” Exemplary techniques for incorporating knowledge bases into neural networks are described in Bishan Yang's and Tom Mitchell's, “Leveraging Knowledge Bases in LSTMs for Improving Machine Reading,” Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2017, pp. 1436-1446, the content of which is incorporated by reference herein in its entirety.


Additionally, in some examples, parsing results generated for natural language input (e.g., generated using parsing module 802) implicitly account for the popularity of data items respectively corresponding to the parsing results. In particular, as discussed below with respect to FIG. 11, in some examples, a parsing model that generates parsing results (e.g., a parsing model within parsing module 802) is trained using user-engagement data. Training a parsing model using user-engagement data allows for parsing results corresponding to data items preferred by users (e.g., more popular data items) to be ranked higher than parsing results corresponding to data items not preferred by users, even when the parsing results all correspond to respective data items in a knowledge base. In this way, the rankings (and respective confidence scores) of parsing results reflect the popularity of data items respectively corresponding to the parsing results.


For example, for the natural language input “play Death Cab for Cutie,” the first parsing result maps “musicTitle” to “Death Cab for Cutie,” and the second parsing result maps “musicArtist” to “Death Cab for Cutie.” The second parsing result is ranked higher than the first parsing result when the parsing results are initially generated because more people intend to play a song by the artist “Death Cab for Cutie” than the song “Death Cab for Cutie.” As discussed below, the parsing model generating the parsing results accounts for this popularity information because it is trained using user-engagement data. For example, user engagement data indicates that most users are dissatisfied with the output of the song “Death Cab for Cutie” responsive to “play Death Cab for Cutie” and instead intend to play a song by the artist “Death Cab for Cutie.” Accordingly, a parsing model is trained using this user engagement data to prefer (e.g., rank higher) parsing results mapping “Death Cab for Cutie” to “musicArtist.”


In some examples, in accordance with ranking the second parsing result higher than the first parsing result, the electronic device (e.g., post-processing module 806) generates a final parsing result for the natural language input based on the second parsing result and a third parsing result In some examples, the second parsing result is generated by a first output layer of a neural network (e.g., output layer 906) and the third parsing result is generated by a second output layer of a neural network (e.g., output layer 908). The third parsing result comprises a mapping of a third property of the domain to a second word of the natural language input and the second parsing result comprises a mapping of a sixth property of the domain to the second word. As discussed below, in some examples, the final parsing result combines mappings from a plurality of parsing results to provide the parsing result with the greatest specificity for the natural language input (e.g., when mapped to one or more words, the property “musicArtist” provides greater specificity than the property “default”). The parsing result with the greatest specificity may provide the most detailed information about the natural language input, which allows for accurate task flows to be generated responsive to the natural language input.


In some examples, to generate the final parsing result, the device determines whether the second confidence score of the second parsing result exceeds a confidence threshold. In accordance with a determination that the second confidence score of the second parsing result exceeds the confidence threshold, the device uses the mapping of the sixth property of the domain to the second word to generate the final parsing result. In some examples, the mapping of the third property of the domain to the second word is not used to generate the final parsing result.


In some examples, the device uses the mapping of the third property of the domain to the second word to generate the final parsing result. For example, as shown in FIG. 12, for the natural language input “play Hello by Adele,” the second parsing result comprises mappings of the media domain properties “musicTitle” and “musicArtist” respectively to “Hello” and “Adele.” The third parsing result comprises a mapping of the media domain property “mediaPlayerItem” to “Hello by Adele” (e.g., the “mediaPlayerItem” property is mapped to “Hello,” “by,” and “Adele”). In this example, the mapping of the third property of the domain to the second word of the natural language input is “mediaPlayerItem” to “Hello.” The mapping of the sixth property of the domain to the second word is “musicTitle” to “Hello.” The final parsing result is generated by replacing the mapping of the third property of the domain to the second word with the mapping of the sixth property of the domain to the second word. In particular, the final parsing result is generated by replacing the mapping of “mediaPlayerItem” to “Hello” comprising the third parsing result with the mapping of “musicTitle” to “Hello” comprising the second parsing result.


In the above example, the mapping of “mediaPlayerItem” property to “Hello” is replaced by the mapping of the “musicTitle” property to “Hello” because the “mediaPlayerItem” property does not provide as specific information about the word “Hello” as the “musicTitle” property does. Accordingly, in some examples, only properties that do not provide specific named-entity information about the natural language input (e.g., the “mediaPlayerItem” property and the “default” property) are replaced. As discussed, this may provide the advantage of determining a final parsing result for the natural language input that provides the greatest specificity for the natural language input.


Accordingly, in some examples, using the mapping (comprising the second parsing result) of the sixth property of the domain to the second word to generate the final parsing result is performed in accordance with a determination that the third property of the domain (comprising the third parsing result) is of a predetermined type. In some examples, the predetermined type of property is a property of the domain that does not provide named entity information about the natural language input (e.g., “default” or “mediaPlayerItem”). In some examples, the predetermined type of property is any property of a domain included in ontology 760 discussed above. For example, with respect to the media domain, the predetermined type of properties are selected from the “mediaPlayerItem,” “musicArtist,” “musicTitle,” “musicAlbum,” and “default” properties.


As discussed, in some examples, parsing results generated by the second output layer (e.g., the third parsing result) provide information that parsing results generated by the first output layer (e.g., the second parsing result) are unable to provide. Thus, in some examples, parsing results generated by the second output layer provide more specific information about the natural language input than parsing results generated by the first output layer. To prevent this specific information included in the parsing results generated by the second output layer from being excluded in the final parsing result, in some examples, replacing the mapping (comprising the third parsing result) of the third property of the domain to the second word with the mapping (comprising the second parsing result) of the sixth property of the domain to the second word is not performed if the third property of the domain is of a predetermined type. Exemplary predetermined types of properties of the domain are properties that only the second output layer is configured to map to the one or more words of the natural language input. For example, the predetermined type of property is the “mediaPlayerMood” property. Accordingly, the above technique preserves properties of the domain that the first output layer is not configured to map to the one or more words of the natural language input in the final parsing result.


For example, for the natural language input “play me a sad song by Adele,” the second parsing result (e.g., determined using the first output layer) maps the media domain properties “default” and “musicArtist” respectively to the words “sad” and “Adele.” The third parsing result (e.g., determined using the second output layer) maps the media domain properties “mediaPlayerMood” and “mediaPlayerItem” respectively to the words “sad” and “Adele.” Because the “mediaPlayerMood” property is a predetermined type of property, the mapping of “mediaPlayerMood” to “sad” is not replaced by the mapping of “default” to “sad” when the final parsing result is generated using the second parsing result and the third parsing result. Accordingly, in the present example, the final parsing result comprises the mappings of “sad” to “mediaPlayerMood” and “Adele” to “musicArtist.”


At block 1014, in accordance with determining that the domain corresponds to a predetermined type of domain, based on the ranking (e.g., the ranking of the second parsing result higher than the first parsing result), the device generates a task flow using the second parsing result. For example, the second parsing result for the natural language input “play Hello by Adele” is used to generate the task flow of searching for and playing the song “Hello” by the artist “Adele.” In some examples, the device uses the final parsing result when generating the task flow at block 1014.


At block 1016, in accordance with determining that the domain corresponds to a predetermined type of domain, the device executes the task flow (e.g., using task flow processing module 736) to provide an output based on the data item. For example, the generated task flow is executed to provide the output of (e.g., play and/or display) the data item of the song “Hello” by the artist “Adele.” In some examples, the generated task flow is executed to provide output to an external electronic device, the output comprising instructions for the external electronic device (e.g., any of devices 200, 400, and/or 600) to provide the data item.


In some examples, the device receives an updated natural language parsing model of the domain (e.g., an updated version of a natural language parsing model within natural language parsing module 802). In some examples, the first and the second parsing results have been determined using an initial natural language parsing model of the domain. The updated natural language parsing model is trained using the natural language input and the data item.


For example, the device provides the natural language input and the data item to natural language parsing model generating module 808, and generating module 808 uses the data item and the natural language input to train a natural language parsing model within system 800 to obtain the updated natural language parsing model. For example, the natural language input and the data item are provided to train neural network 900. Generating module 808 trains neural network 900 using the data item and the natural language input to update one or more weighting values associated with connections 918. Updated neural network 900 is then provided to the device.


In some examples, the device receives the updated natural parsing language model in accordance with determining that the output satisfies a predetermined criterion. For example, the predetermined criterion comprises a duration for which the output is provided.


Receiving an updated natural language model in accordance with a determination that the output satisfies a predetermined criterion (e.g., a predetermined duration) may allow the received updated natural language parsing model to be trained and/or updated using a data item that was correctly determined to correspond to the natural language input. For example, if the electronic device correctly provides the output of playing the song “Hello” by the artist “Adele,” the output is provided for greater than a predetermined duration (e.g., 30 seconds) because the user was satisfied with the output. In other words, provision of outputs for greater than the predetermined duration indicates user satisfaction with the provided output, which in turn indicates that the correct data item was determined to correspond to the natural language input. Accordingly, in some examples, natural language parsing system 800 is trained using the data item of the song “Hello” by the “Artist” Adele and the natural language input of “play Hello by Adele,” where the data item was correctly determined to correspond to the natural language input. This provides the benefit of using both natural language input and the correct data item determined to correspond to the natural language input to train natural language parsing models, resulting in more accurate natural language parsing results.


The operations described above with reference to FIG. 10 are optionally implemented by components depicted in FIGS. 1-4, 6A-6B, 7A-7C, 8 and 9. For example, the operations of process 1000 may be implemented by natural language parsing system 800, neural network 900, natural language processing module 732, and task flow processing module 736. It would be clear to a person having ordinary skill in the art how other processes are implemented based on the components depicted in FIGS. 1-4, 6A-B, 7A-C, 8, and 9.


5. Process for Natural Language Parsing Model Generation Based on User Engagement Data



FIG. 11 illustrates a process for natural language parsing model (e.g., a natural language parsing model included in natural language parsing system 800) training based on user engagement data. Process 1100 is performed, for example, using one or more electronic devices implementing a digital assistant. In some examples, process 1100 is performed using a client-server system (e.g., system 100), and the blocks of process 1100 are divided up in any manner between the server (e.g., DA server 106) and a client device. In other examples, the blocks of process 1100 are divided up between the server and multiple client devices (e.g., a mobile phone and a smart watch). Thus, while portions of process 1100 are described herein as being performed by particular devices of a client-server system, it will be appreciated that process 1100 is not so limited. In other examples, process 1100 is performed using only a client device (e.g., user device 104) or only multiple client devices. In process 1100, some blocks are, optionally, combined, the order of some blocks is, optionally, changed, and some blocks are, optionally, omitted. In some examples, additional steps may be performed in combination with the process 1100.


At block 1102, an electronic device obtains a natural language input and metadata corresponding to an output provided responsive to the natural language input. For example, generating module 808 obtains the natural language input and the metadata (e.g., from I/O processing module 728 and/or STT processing module 730.) The natural language input corresponds to a domain of a predetermined type (e.g., the media domain, or any other domain that can be within ontology 760.) The output provided responsive to the natural language input includes a data item (e.g., a media item such as a song, movie, book, and the like). The metadata includes a set of attributes corresponding to the data item, where the set of attributes defines a set of values for a respective set of properties of the domain. For example, the metadata includes attributes such as the name of the data item (e.g., a song title), the artist of the data item (e.g., a music artist), and the album of the data item (e.g., the album a song is from). These attributes define a set of values for the respective “musicTitle,” “musicArtist,” and “musicAlbum” properties of the media domain.


In some examples, the metadata includes additional information about the output provided responsive to the natural language input. For example, the metadata includes one or more of: a duration for which the output is provided, whether the user cancelled or interrupted the output within a predetermined duration, and a timestamp of when the output was provided. This additional information about the output included in the metadata is referred to as “user engagement data” (e.g., user generated data about the output). In some examples, the user engagement data is collected (e.g., collected by any one of devices 200, 400, and/or 600) for a predetermined duration after provision of the output. In some examples, the predetermined duration is 30 seconds, 1 minute, 2 minutes, 5 minutes, etc. As discussed below, user engagement data indicates a user's satisfaction with the output provided responsive to the natural language input. Accordingly, positive user engagement data can indicate that a correct output was provided responsive to the natural language input and thus information corresponding to the correct output and the natural language input is be provided as “user-validated” training data for a natural language parsing model of the domain.


As an example of the process described with respect to block 1102, the electronic device obtains the natural language input “play Rolling in the Deep” that corresponds to the media domain. The output provided responsive to the natural language input includes the data item of the song “Rolling in the Deep” by the music artist “Adele.” The electronic device receives metadata corresponding to the output including the song “Rolling in the Deep.” For example, the metadata corresponding to the output includes the attributes of the song name “Rolling in the Deep,” the music artist name “Adele,” and the music album name “21.” These attributes respectively define a set of values for the respective “musicTitle,” “musicArtist,” and “musicAlbum” properties of the media domain. The additional information included in the metadata specifies that the song “Rolling in the Deep” by “Adele” was played for 3 minutes and 48 seconds (the entire length of “Rolling in the Deep” by Adele) and that the user did not cancel playback of the song for 3 minutes and 48 seconds.


At block 1104, the electronic device determines, from the metadata, whether the output satisfies a predetermined criterion (e.g., using generating module 808). In some examples, the predetermined criterion is a duration for which the output is provided (e.g., 30 seconds). For example, the electronic device determines from the metadata specifying that the song “Rolling in the Deep” was played for 3 minutes and 48 seconds that the output including the song “Rolling in the Deep” satisfies the predetermined criterion. In some examples, the predetermined criterion is whether or not the user cancelled and/or interrupted the output within a predetermined duration (e.g., 30 seconds). For example, the electronic device determines from the metadata specifying that playback of the song “Rolling in the Deep” was not canceled by the user within 30 seconds that the output including the song “Rolling in the Deep” satisfies the predetermined criterion.


An output provided for more than a predetermined duration (e.g., 30 seconds) is interpreted by the device as a strong indication of user satisfaction with the output provided responsive to the natural language input. For example, if the output provided responsive to the natural language input “Play Rolling in the Deep” includes playback of the song “Rolling in the Deep” by “Adele” for more than 30 seconds, the user is likely satisfied with the output. In contrast, if the output provided responsive to “Play Rolling in the Deep” includes playback of the song “Hello” by “Adele,” the user quickly (e.g., within less than 30 seconds) cancels playback of the song because he or she is dissatisfied with the output. Accordingly, determining whether the output satisfies a predetermined criterion allows for determining whether a correct output was provided responsive to a natural language input based on user engagement data. As described below, in some examples, information corresponding to the correct output and the natural language input is thus provided as “user validated” training data for a natural language parsing model of the domain.


At block 1106, in accordance with a determination that the output satisfies the predetermined criterion, the device compares the set of values to the natural language input to determine a parsing result (e.g., using generating module 808). The parsing result maps one or more words of the natural language input to one or more properties of the respective set of properties of the domain. For example, for the natural language input “play Rolling in the Deep,” the value “Rolling in the Deep” (for the “musicTitle” property of the domain) is compared to the natural language input to determine the parsing result mapping the domain property “musicTitle” to “Rolling in the Deep.”


In some examples, comparing the set of values to the natural language input to determine the parsing result comprises comparing the set of values to the natural language input using fuzzy matching. Comparing the set of values to the natural language input using fuzzy matching can be desirable in situations where the natural language input does not contain an exact match to one or more values specified in the metadata (corresponding to output provided responsive to the natural language input). For example, for the natural language input “play Roll in the Deep by Adele” and the output provided responsive to the natural language input including the song of “Rolling in the Deep,” the metadata specifies the set of values “Rolling in the Deep,” “Adele,” and “21.” However, despite the value “Rolling in the Deep” not matching “Roll in the Deep” of the natural language input, fuzzy matching techniques still associate the value “Rolling in the Deep” with the words “Roll in the Deep.” Accordingly, the parsing result maps the words “Roll in the Deep” to the “musicTitle” property of the domain.


In some examples, the parsing result determined by comparing the set of values to the natural language input is associated with a confidence score determined using the fuzzy matching. For example, the parsing result mapping the “musicTitle” property of the domain to “Roll in the Deep” is associated with a relatively high confidence score because the fuzzy matching algorithm determines that the value “Rolling in the Deep” (for the “musicTitle” property) closely matches the words “Roll in the Deep” of the natural language input. In contrast, if the value does not closely match one or more words of the natural language input, the parsing result mapping one or more words of natural language input to a property of the domain is determined to have a low confidence score.


At block 1108, in accordance with a determination that the output satisfies the predetermined criterion, the electronic device provides the natural language input and the determined parsing result to generate and/or train a natural language parsing model of the domain. For example, the natural language input and the determined parsing result are provided to natural language parsing model generating module 808 and generating module 808 generates and/or trains a natural language model of the domain. For example, the electronic device provides the natural language input “play Rolling in the Deep” and the parsing result mapping “Rolling in the Deep” to “musicTitle” to generating module 808. Accordingly, the generated natural language parsing model of the domain is trained to generate parsing results mapping the words “Rolling in the Deep” to “musicTitle.”


In some examples, the device provides the natural language input and the determined parsing result in accordance with a determination that the confidence score associated with the parsing result exceeds a threshold. Providing the natural language input and the determined parsing result in accordance with determining that the confidence score exceeds a threshold may be desirable to allow parsing results with sufficient confidence scores to be provided to train and/or generate a natural language parsing model of the domain. For example, for the natural language input “Play Rolling in the Deep by Adele,” the confidence score associated with the parsing result mapping “Rolling in the Deep” to the domain property “musicTitle” and “Adele” to the domain property “musicArtist” exceeds the threshold. Accordingly, the natural language input and the parsing result are provided to generate a natural language parsing model of the domain.


In some examples, generating and/or training the natural language parsing model of the domain using the natural language input and the determined parsing result comprises providing the natural language input and the determined parsing result as training data for a neural network (e.g., neural network 900). For example, a set of optimal weighting values for the connections (e.g., connections 918) in a neural network are determined using the training data. The neural network is thus trained (e.g., trained by generating module 808) to generate parsing results mapping, for example, “Rolling in the Deep” to “musicTitle” when the natural language input including “Rolling in the Deep” is input into the neural network.


In some examples, the natural language parsing model of the domain is configured to receive a second natural language input and to generate a plurality of candidate parsing results. Each candidate parsing result of the plurality of candidate parsing results comprises a respective mapping of one or more properties of the domain to one or more words of the second natural language input. For example, the second natural language input is a subsequent natural language input of “Play Rolling in the Deep by Adele” and the generated plurality of candidate parsing results includes a first parsing result mapping “Rolling in the Deep” to “musicTitle” and a second parsing result mapping “Rolling in the Deep by Adele” to “musicTitle.” Because the natural language parsing model of the domain has been trained to prefer parsing results mapping “Rolling in the Deep” to “musicTitle,” the first parsing result is ranked higher than the second parsing result.


In some examples, the electronic device provides the natural language parsing model of the domain to a second electronic device, the second electronic device configured to perform natural language processing services. For example, the device that performs blocks 1102-1108 provides the natural language parsing model to one or more devices (e.g., devices 200, 400, or, 600).


In some examples, in accordance with a determination that the output does not satisfy the predetermined criterion, the electronic device forgoes performing the operations described with respect to blocks 1106 and 1108. In particular, the parsing result is not determined using the metadata corresponding to the output and thus the parsing result is not provided to generate a natural language parsing model of the domain. Rather, in some examples, in accordance with a determination that the output does not satisfy the predetermined criterion, the metadata corresponding to the output is discarded.


Forgoing the operations in block 1106 and 1108 when the output provided responsive to the natural language input does not satisfy the predetermined criterion can be desirable, as the electronic device does not waste processing power and/or battery resources determining a parsing result using metadata corresponding to an output the device interprets as an incorrect response to the natural language input. In this way, the generation of erroneous parsing results as training data for the natural language parsing model may be avoided.


At block 1110, in accordance with a determination that the output does not satisfy the predetermined criterion, the electronic device obtains a second set of metadata corresponding to a second output provided after the output responsive to the natural language input. The second output is output within a second predetermined duration of the first output ceasing to be provided. The second output includes a second data item and the second set of metadata includes a second set of attributes corresponding to the second data item. The second set of attributes defines a second set of values for a second respective set of properties of the domain.


For example, suppose the output provided responsive to the natural language input “Play Rolling in the Deep by Adele” erroneously includes playback of the data item “Hello” by “Adele.” In some examples, this is because the parsing result used to generate the task flow of searching for and playing a song erroneously maps “in the Deep” to “musicTitle” and “Adele” to “musicArtist.” Because “in the Deep” is not a song by the artist “Adele,” the electronic device causes playback of a random erroneous song by the artist “Adele” (e.g., the song “Hello”). A user cancels playback of “Hello” by “Adele” within a predetermined duration (e.g., within 30 seconds) because the user intended to play “Rolling in the Deep” by “Adele,” not “Hello” by “Adele.” Within the second predetermined duration (e.g., a short duration such as thirty seconds) of cancelling playback of “Hello” by “Adele,” the user manually searches for the song “Rolling in the Deep” by Adele and causes it to be played. Accordingly, in the present example, the electronic device determines from the metadata corresponding to the output including the song “Hello,” that the output does not satisfy the predetermined criterion (e.g., a duration of 30 seconds) and determines that the second output “Rolling in the Deep” is output within the second predetermined duration of canceling the output of the song “Hello.” Because the second output (e.g., “Rolling in the Deep”) is output within a short duration of the previous output ceasing to be provided, the second output is likely the correct output that should be provided responsive to the natural language input. Thus, in the present example, the electronic device obtains a second set of metadata corresponding to the second output including the song “Rolling in the Deep” by “Adele.” The second set of metadata includes the second set of attributes of “Rolling in the Deep,” “Adele,” and “21” corresponding to the song “Rolling in the Deep” by “Adele.” The second set of attributes defines a second set of values for the second set of respective “musicTitle,” “musicArtist,” and “musicAlbum” properties of the domain.


In some examples, after the electronic device obtains the second set of metadata corresponding to the second output provided responsive to the natural language input, process 1100 returns to block 1104, where the electronic device determines from the second set of metadata, whether the second output satisfies the predetermined criterion. For example, because the user intended to play the song “Rolling in the Deep” by “Adele,” the song “Rolling in the Deep” is played for a predetermined duration that satisfies the predetermined criterion. Accordingly, the electronic device determines that the second output including the song “Rolling in the Deep” satisfies the predetermined criterion. At block, 1106 in accordance with a determination that the second output satisfies the predetermined criterion, the electronic device compares the second set of values to the natural language input to determine a second parsing result. The second parsing result maps one or more words of the natural language input to one or more properties of the second respective set of properties of the domain. For example, the electronic device compares the values of “Rolling in the Deep,” “Adele,” and, “21” to the natural language input “Play Rolling in the Deep by Adele” to determine the second parsing result mapping “Rolling in the Deep” to “musicTitle” and “Adele” to “musicArtist.”


At block 1108, in accordance with a determination that the second output satisfies the predetermined criterion, the electronic device provides the natural language input and the determined second parsing result to generate a natural language parsing model of the domain.


As described, providing the natural language input and the determined second parsing result to generate a natural language parsing model of the domain can allow the device to generate correct training data even when the initial output provided responsive to the natural language input was incorrect (e.g., determined not to satisfy a predetermined criterion). In particular, as described, the device uses metadata corresponding to a correct output that should have been provided responsive to the natural language input to generate a second parsing result for the natural language input. The second parsing result for the natural language input and the natural language input can thus be provided as correct training data to generate a natural language parsing model of the domain.


The operations described above with reference to FIG. 11 are optionally implemented by components depicted in FIGS. 1-4, 6A-6B, 7A-7C, 8 and 9. For example, the operations of process 1100 may be implemented by natural language parsing system 800, neural network 900, natural language processing module 732, and task flow processing module 736. It would be clear to a person having ordinary skill in the art how other processes are implemented based on the components depicted in FIGS. 1-4, 6A-6B, 7A-7C, 8, and 9.


In accordance with some implementations, a computer-readable storage medium (e.g., a non-transitory computer readable storage medium) is provided, the computer-readable storage medium storing one or more programs for execution by one or more processors of an electronic device, the one or more programs including instructions for performing any of the methods or processes described herein.


In accordance with some implementations, an electronic device (e.g., a portable electronic device) is provided that comprises means for performing any of the methods or processes described herein.


In accordance with some implementations, an electronic device (e.g., a portable electronic device) is provided that comprises a processing unit configured to perform any of the methods or processes described herein.


In accordance with some implementations, an electronic device (e.g., a portable electronic device) is provided that comprises one or more processors and memory storing one or more programs for execution by the one or more processors, the one or more programs including instructions for performing any of the methods or processes described herein.


The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the techniques and their practical applications. Others skilled in the art are thereby enabled to best utilize the techniques and various embodiments with various modifications as are suited to the particular use contemplated.


Although the disclosure and examples have been fully described with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of the disclosure and examples as defined by the claims.


As described above, one aspect of the present technology is the gathering and use of data available from various sources to improve natural language processing. The present disclosure contemplates that in some instances, this gathered data may include personal information data that uniquely identifies or can be used to contact or locate a specific person. Such personal information data can include demographic data, location-based data, telephone numbers, email addresses, twitter IDs, home addresses, data or records relating to a user's health or level of fitness (e.g., vital signs measurements, medication information, exercise information), date of birth, or any other identifying or personal information.


The present disclosure recognizes that the use of such personal information data, in the present technology, can be used to the benefit of users. For example, the personal information data can be used to improve natural language processing and to more accurately provide media items to users. Further, other uses for personal information data that benefit the user are also contemplated by the present disclosure. For instance, health and fitness data may be used to provide insights into a user's general wellness, or may be used as positive feedback to individuals using technology to pursue wellness goals.


The present disclosure contemplates that the entities responsible for the collection, analysis, disclosure, transfer, storage, or other use of such personal information data will comply with well-established privacy policies and/or privacy practices. In particular, such entities should implement and consistently use privacy policies and practices that are generally recognized as meeting or exceeding industry or governmental requirements for maintaining personal information data private and secure. Such policies should be easily accessible by users, and should be updated as the collection and/or use of data changes. Personal information from users should be collected for legitimate and reasonable uses of the entity and not shared or sold outside of those legitimate uses. Further, such collection/sharing should occur after receiving the informed consent of the users. Additionally, such entities should consider taking any needed steps for safeguarding and securing access to such personal information data and ensuring that others with access to the personal information data adhere to their privacy policies and procedures. Further, such entities can subject themselves to evaluation by third parties to certify their adherence to widely accepted privacy policies and practices. In addition, policies and practices should be adapted for the particular types of personal information data being collected and/or accessed and adapted to applicable laws and standards, including jurisdiction-specific considerations. For instance, in the US, collection of or access to certain health data may be governed by federal and/or state laws, such as the Health Insurance Portability and Accountability Act (HIPAA); whereas health data in other countries may be subject to other regulations and policies and should be handled accordingly. Hence different privacy practices should be maintained for different personal data types in each country.


Despite the foregoing, the present disclosure also contemplates embodiments in which users selectively block the use of, or access to, personal information data. That is, the present disclosure contemplates that hardware and/or software elements can be provided to prevent or block access to such personal information data. For example, in the case of collecting user engagement data, the present technology can be configured to allow users to select to “opt in” or “opt out” of participation in the collection of personal information data during registration for services or anytime thereafter. In another example, users can select not to provide user engagement data to train natural language parsing models. In yet another example, users can select to limit the length of time user engagement data is maintained or entirely prohibit the collection of user engagement data. In addition to providing “opt in” and “opt out” options, the present disclosure contemplates providing notifications relating to the access or use of personal information. For instance, a user may be notified upon downloading an app that their personal information data will be accessed and then reminded again just before personal information data is accessed by the app.


Moreover, it is the intent of the present disclosure that personal information data should be managed and handled in a way to minimize risks of unintentional or unauthorized access or use. Risk can be minimized by limiting the collection of data and deleting data once it is no longer needed. In addition, and when applicable, including in certain health related applications, data de-identification can be used to protect a user's privacy. De-identification may be facilitated, when appropriate, by removing specific identifiers (e.g., date of birth, etc.), controlling the amount or specificity of data stored (e.g., collecting location data at a city level rather than at an address level), controlling how data is stored (e.g., aggregating data across users), and/or other methods.


Therefore, although the present disclosure broadly covers use of personal information data to implement one or more various disclosed embodiments, the present disclosure also contemplates that the various embodiments can also be implemented without the need for accessing such personal information data. That is, the various embodiments of the present technology are not rendered inoperable due to the lack of all or a portion of such personal information data. For example, natural language parsing results and the presentation of media items can be based on non-personal information data or a bare minimum amount of personal information, such as the content being requested by the device associated with a user, other non-personal information available to natural language parsing models, or publicly available information.

Claims
  • 1. An electronic device, comprising: one or more processors;a memory; andone or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for: receiving natural language input;determining, from a plurality of domains, a domain corresponding to the natural language input;in accordance with determining that the domain corresponds to a predetermined type of domain: determining a first and a second parsing result for the natural language input, wherein each of the first and the second parsing results comprises a respective mapping of one or more properties of the domain to one or more words of the natural language input and wherein a first confidence score of the first parsing result is higher than a second confidence score of the second parsing result;determining whether the first parsing result corresponds to any of a plurality of data items in a knowledge base;determining whether the second parsing result corresponds to a data item of the plurality of data items in the knowledge base; andin accordance with a determination that the first parsing result does not correspond to any of the plurality of data items in the knowledge base and in accordance with a determination that the second parsing result corresponds to the data item of the plurality of data items in the knowledge base, ranking, using the knowledge base, the second parsing result higher than the first parsing result;after ranking, using the knowledge base, the second parsing result higher than the first parsing result, generating a task flow using the second parsing result based on the ranking; andexecuting the task flow to provide an output based on the data item.
  • 2. The device of claim 1, wherein the predetermined type of domain is a media domain.
  • 3. The device of claim 1, wherein the one or more properties of the domain each correspond to a named entity.
  • 4. The device of claim 1, wherein the first parsing result comprises a mapping of a first property of the domain to a first word of the natural language input, wherein the second parsing result comprises a mapping of a second property of the domain to the first word, and wherein the first property is different from the second property.
  • 5. The device of claim 1, wherein the first parsing result and the second parsing result are each generated by a neural network, and wherein the first confidence score and the second confidence score are each generated by the neural network.
  • 6. The device of claim 5, wherein the first parsing result and the second parsing result are each generated by a first output layer of the neural network, and wherein a third parsing result is generated by a second output layer of the neural network, the second output layer differing from the first output layer.
  • 7. The device of claim 1, the one or more programs further including instructions for: determining a third parsing result for the natural language input, wherein the third parsing result comprises a mapping of a set of one or more properties of the domain to the one or more words of the natural language input.
  • 8. The device of claim 7, the one or more programs further including instructions for: in accordance with ranking the second parsing result higher than the first parsing result, generating a final parsing result for the natural language input based on the second parsing result and the third parsing result, wherein generating the task flow using the second parsing result comprises generating the task flow using the final parsing result.
  • 9. The device of claim 8, wherein the third parsing result comprises a mapping of a third property of the domain to a second word of the natural language input, wherein the second parsing result comprises a mapping of a fourth property of the domain to the second word, and wherein generating the final parsing result comprises: determining whether the second confidence score of the second parsing result exceeds a confidence threshold; andin accordance with a determination that the second confidence score of the second parsing result exceeds the confidence threshold, using the mapping of the fourth property of the domain to the second word to generate the final parsing result.
  • 10. The device of claim 9, wherein using the mapping of the fourth property of the domain to the second word to generate the final parsing result is performed in accordance with a determination that the third property of the domain is of a predetermined type.
  • 11. The device of claim 1, wherein the second parsing result comprises a mapping of a fifth property of the domain to a first set of one or more words of the natural language input, wherein the data item is associated with a mapping of a sixth property of the domain to one or more words, and wherein determining whether the second parsing result corresponds to the data item of the plurality of data items in the knowledge base comprises determining whether the mapping of the fifth property of the domain to the first set of one or more words of the natural language input matches the mapping of the sixth property of the domain to the one or more words.
  • 12. The device of claim 1, the one or more programs further including instructions for: receiving an updated natural language parsing model of the domain, wherein the first parsing result and the second parsing result are determined using an initial natural language parsing model of the domain, and wherein the updated natural language parsing model is trained using the natural language input and the data item.
  • 13. The device of claim 12, wherein the updated natural language parsing model is received in accordance with a determination that the output satisfies a predetermined criterion.
  • 14. The device of claim 13, wherein the predetermined criterion comprises a duration for which the output is provided.
  • 15. A method for processing natural language requests, the method comprising: at an electronic device with one or more processors and memory: receiving natural language input;determining, from a plurality of domains, a domain corresponding to the natural language input;in accordance with determining that the domain corresponds to a predetermined type of domain: determining a first and a second parsing result for the natural language input, wherein each of the first and the second parsing results comprises a respective mapping of one or more properties of the domain to one or more words of the natural language input and wherein a first confidence score of the first parsing result is higher than a second confidence score of the second parsing result;determining whether the first parsing result corresponds to any of a plurality of data items in a knowledge base;determining whether the second parsing result corresponds to a data item of the plurality of data items in the knowledge base; andin accordance with a determination that the first parsing result does not correspond to any of the plurality of data items in the knowledge base and in accordance with a determination that the second parsing result corresponds to the data item of the plurality of data items in the knowledge base, ranking, using the knowledge base, the second parsing result higher than the first parsing result;after ranking, using the knowledge base, the second parsing result higher than the first parsing result, generating a task flow using the second parsing result based on the ranking; andexecuting the task flow to provide an output based on the data item.
  • 16. A non-transitory computer-readable storage medium storing one or more programs, the one or more programs comprising instructions, which when executed by one or more processors of a first electronic device, cause the first electronic device to: receive natural language input;determine, from a plurality of domains, a domain corresponding to the natural language input;in accordance with determining that the domain corresponds to a predetermined type of domain: determine a first and a second parsing result for the natural language input, wherein each of the first and the second parsing results comprises a respective mapping of one or more properties of the domain to one or more words of the natural language input and wherein a first confidence score of the first parsing result is higher than a second confidence score of the second parsing result;determine whether the first parsing result corresponds to any of a plurality of data items in a knowledge base;determine whether the second parsing result corresponds to a data item of the plurality of data items in the knowledge base; andin accordance with a determination that the first parsing result does not correspond to any of the plurality of data items in the knowledge base and in accordance with a determination that the second parsing result corresponds to the data item of the plurality of data items in the knowledge base, rank, using the knowledge base, the second parsing result higher than the first parsing result;after ranking, using the knowledge base, the second parsing result higher than the first parsing result, generate a task flow using the second parsing result based on the ranking; andexecute the task flow to provide an output based on the data item.
  • 17. The method of claim 15, wherein the predetermined type of domain is a media domain.
  • 18. The method of claim 15, wherein the one or more properties of the domain each correspond to a named entity.
  • 19. The method of claim 15, wherein the first parsing result comprises a mapping of a first property of the domain to a first word of the natural language input, wherein the second parsing result comprises a mapping of a second property of the domain to the first word, and wherein the first property is different from the second property.
  • 20. The method of claim 15, wherein the first parsing result and the second parsing result are each generated by a neural network, and wherein the first confidence score and the second confidence score are each generated by the neural network.
  • 21. The method of claim 20, wherein the first parsing result and the second parsing result are each generated by a first output layer of the neural network, and wherein a third parsing result is generated by a second output layer of the neural network, the second output layer differing from the first output layer.
  • 22. The method of claim 15, further comprising: determining a third parsing result for the natural language input, wherein the third parsing result comprises a mapping of a set of one or more properties of the domain to the one or more words of the natural language input.
  • 23. The method of claim 22, further comprising: in accordance with ranking the second parsing result higher than the first parsing result, generating a final parsing result for the natural language input based on the second parsing result and the third parsing result, wherein generating the task flow using the second parsing result comprises generating the task flow using the final parsing result.
  • 24. The method of claim 23, wherein the third parsing result comprises a mapping of a third property of the domain to a second word of the natural language input, wherein the second parsing result comprises a mapping of a fourth property of the domain to the second word, and wherein generating the final parsing result comprises: determining whether the second confidence score of the second parsing result exceeds a confidence threshold; andin accordance with a determination that the second confidence score of the second parsing result exceeds the confidence threshold, using the mapping of the fourth property of the domain to the second word to generate the final parsing result.
  • 25. The method of claim 24, wherein using the mapping of the fourth property of the domain to the second word to generate the final parsing result is performed in accordance with a determination that the third property of the domain is of a predetermined type.
  • 26. The method of claim 15, wherein the second parsing result comprises a mapping of a fifth property of the domain to a first set of one or more words of the natural language input, wherein the data item is associated with a mapping of a sixth property of the domain to one or more words, and wherein determining whether the second parsing result corresponds to the data item of the plurality of data items in the knowledge base comprises determining whether the mapping of the fifth property of the domain to the first set of one or more words of the natural language input matches the mapping of the sixth property of the domain to the one or more words.
  • 27. The method of claim 15, further comprising: receiving an updated natural language parsing model of the domain, wherein the first parsing result and the second parsing result are determined using an initial natural language parsing model of the domain, and wherein the updated natural language parsing model is trained using the natural language input and the data item.
  • 28. The method of claim 27, wherein the updated natural language parsing model is received in accordance with a determination that the output satisfies a predetermined criterion.
  • 29. The method of claim 28, wherein the predetermined criterion comprises a duration for which the output is provided.
  • 30. The non-transitory computer-readable storage medium of claim 16, wherein the predetermined type of domain is a media domain.
  • 31. The non-transitory computer-readable storage medium of claim 16, wherein the one or more properties of the domain each correspond to a named entity.
  • 32. The non-transitory computer-readable storage medium of claim 16, wherein the first parsing result comprises a mapping of a first property of the domain to a first word of the natural language input, wherein the second parsing result comprises a mapping of a second property of the domain to the first word, and wherein the first property is different from the second property.
  • 33. The non-transitory computer-readable storage medium of claim 16, wherein the first parsing result and the second parsing result are each generated by a neural network, and wherein the first confidence score and the second confidence score are each generated by the neural network.
  • 34. The non-transitory computer-readable storage medium of claim 33, wherein the first parsing result and the second parsing result are each generated by a first output layer of the neural network, and wherein a third parsing result is generated by a second output layer of the neural network, the second output layer differing from the first output layer.
  • 35. The non-transitory computer-readable storage medium of claim 16, wherein the one or more programs further comprise instructions, which when executed by the one or more processors of the first electronic device, cause the first electronic device to: determine a third parsing result for the natural language input, wherein the third parsing result comprises a mapping of a set of one or more properties of the domain to the one or more words of the natural language input.
  • 36. The non-transitory computer-readable storage medium of claim 35, wherein the one or more programs further comprise instructions, which when executed by the one or more processors of the first electronic device, cause the first electronic device to: in accordance with ranking the second parsing result higher than the first parsing result, generate a final parsing result for the natural language input based on the second parsing result and the third parsing result, wherein generating the task flow using the second parsing result comprises generating the task flow using the final parsing result.
  • 37. The non-transitory computer-readable storage medium of claim 16, wherein the third parsing result comprises a mapping of a third property of the domain to a second word of the natural language input, wherein the second parsing result comprises a mapping of a fourth property of the domain to the second word, and wherein generating the final parsing result comprises: determining whether the second confidence score of the second parsing result exceeds a confidence threshold; andin accordance with a determination that the second confidence score of the second parsing result exceeds the confidence threshold, using the mapping of the fourth property of the domain to the second word to generate the final parsing result.
  • 38. The non-transitory computer-readable storage medium of claim 37, wherein using the mapping of the fourth property of the domain to the second word to generate the final parsing result is performed in accordance with a determination that the third property of the domain is of a predetermined type.
  • 39. The non-transitory computer-readable storage medium of claim 16, wherein the second parsing result comprises a mapping of a fifth property of the domain to a first set of one or more words of the natural language input, wherein the data item is associated with a mapping of a sixth property of the domain to one or more words, and wherein determining whether the second parsing result corresponds to the data item of the plurality of data items in the knowledge base comprises determining whether the mapping of the fifth property of the domain to the first set of one or more words of the natural language input matches the mapping of the sixth property of the domain to the one or more words.
  • 40. The non-transitory computer-readable storage medium of claim 16, wherein the one or more programs further comprise instructions, which when executed by the one or more processors of the first electronic device, cause the first electronic device to: receive an updated natural language parsing model of the domain, wherein the first parsing result and the second parsing result are determined using an initial natural language parsing model of the domain, and wherein the updated natural language parsing model is trained using the natural language input and the data item.
  • 41. The non-transitory computer-readable storage medium of claim 40, wherein the updated natural language parsing model is received in accordance with a determination that the output satisfies a predetermined criterion.
  • 42. The non-transitory computer-readable storage medium of claim 41, wherein the predetermined criterion comprises a duration for which the output is provided.
Parent Case Info

This application claims priority to U.S. Application No. 62/624,464, entitled “KNOWLEDGE-BASED FRAMEWORK FOR IMPROVING NATURAL LANGUAGE UNDERSTANDING,” filed on Jan. 31, 2018, the content of which is hereby incorporated by reference herein in its entirety.

US Referenced Citations (2599)
Number Name Date Kind
7315809 Xun Jan 2008 B2
7315818 Stevens et al. Jan 2008 B2
7318020 Kim Jan 2008 B1
7319957 Robinson et al. Jan 2008 B2
7321783 Kim, II Jan 2008 B2
7322023 Shulman et al. Jan 2008 B2
7324833 White et al. Jan 2008 B2
7324947 Jordan et al. Jan 2008 B2
7328155 Endo et al. Feb 2008 B2
7328250 Wang et al. Feb 2008 B2
7333998 Heckerman et al. Feb 2008 B2
7337108 Florencio et al. Feb 2008 B2
7345670 Armstrong Mar 2008 B2
7345671 Robbin et al. Mar 2008 B2
7349953 Lisitsa et al. Mar 2008 B2
7353139 Burrell et al. Apr 2008 B1
7356748 Taleb Apr 2008 B2
7359493 Wang et al. Apr 2008 B1
7359671 Richenstein et al. Apr 2008 B2
7359851 Tong et al. Apr 2008 B2
7360158 Beeman Apr 2008 B1
7362738 Taube et al. Apr 2008 B2
7363227 Mapes-Riordan et al. Apr 2008 B2
7363586 Briggs et al. Apr 2008 B1
7365260 Kawashima Apr 2008 B2
7366461 Brown Apr 2008 B1
7369984 Fairweather May 2008 B2
7369993 Atal May 2008 B1
7373291 Garst May 2008 B2
7373612 Risch et al. May 2008 B2
7376556 Bennett May 2008 B2
7376632 Sadek et al. May 2008 B1
7376645 Bernard May 2008 B2
7378963 Begault et al. May 2008 B1
7379874 Schmid et al. May 2008 B2
7380203 Keely et al. May 2008 B2
7383170 Mills et al. Jun 2008 B2
7386110 Petrunka et al. Jun 2008 B2
7386438 Franz et al. Jun 2008 B1
7386449 Sun et al. Jun 2008 B2
7386799 Clanton et al. Jun 2008 B1
7389224 Elworthy Jun 2008 B1
7389225 Jensen et al. Jun 2008 B1
7392185 Bennett Jun 2008 B2
7394947 Li et al. Jul 2008 B2
7398209 Kennewick et al. Jul 2008 B2
7401300 Nurmi Jul 2008 B2
7403938 Harrison et al. Jul 2008 B2
7403941 Bedworth et al. Jul 2008 B2
7404143 Freelander et al. Jul 2008 B2
7409337 Potter et al. Aug 2008 B1
7409347 Bellegarda Aug 2008 B1
7412389 Yang Aug 2008 B2
7412470 Masuno et al. Aug 2008 B2
7415100 Cooper et al. Aug 2008 B2
7415469 Singh et al. Aug 2008 B2
7418382 Maes Aug 2008 B1
7418389 Chu et al. Aug 2008 B2
7418392 Mozer et al. Aug 2008 B1
7426467 Nashida et al. Sep 2008 B2
7426468 Coifman et al. Sep 2008 B2
7427024 Gazdzinski et al. Sep 2008 B1
7428541 Houle Sep 2008 B2
7430508 Williamson et al. Sep 2008 B2
7433869 Gollapudi, Sr. Oct 2008 B2
7433921 Ludwig et al. Oct 2008 B2
7436947 Wadler et al. Oct 2008 B2
7441184 Frerebeau et al. Oct 2008 B2
7443316 Lim Oct 2008 B2
7444589 Zellner Oct 2008 B2
7447360 Li et al. Nov 2008 B2
7447624 Fuhrmann et al. Nov 2008 B2
7447635 Konopka et al. Nov 2008 B1
7447637 Grant et al. Nov 2008 B1
7451081 Gajic et al. Nov 2008 B1
7454351 Jeschke et al. Nov 2008 B2
7460652 Chang Dec 2008 B2
7461043 Hess Dec 2008 B2
7467087 Gillick et al. Dec 2008 B1
7467164 Marsh Dec 2008 B2
7472061 Alewine et al. Dec 2008 B1
7472065 Aaron et al. Dec 2008 B2
7475010 Chao Jan 2009 B2
7475015 Epstein et al. Jan 2009 B2
7475063 Datta et al. Jan 2009 B2
7477238 Fux et al. Jan 2009 B2
7477240 Yanagisawa Jan 2009 B2
7478037 Strong Jan 2009 B2
7478091 Mojsilovic et al. Jan 2009 B2
7478129 Chemtob Jan 2009 B1
7479948 Kim et al. Jan 2009 B2
7479949 Jobs et al. Jan 2009 B2
7483832 Tischer Jan 2009 B2
7483894 Cao Jan 2009 B2
7487089 Mozer Feb 2009 B2
7487093 Mutsuno et al. Feb 2009 B2
7490034 Finnigan et al. Feb 2009 B2
7490039 Shaffer et al. Feb 2009 B1
7493251 Gao et al. Feb 2009 B2
7493560 Kipnes et al. Feb 2009 B1
7496498 Chu et al. Feb 2009 B2
7496512 Zhao et al. Feb 2009 B2
7499923 Kawatani Mar 2009 B2
7502738 Kennewick et al. Mar 2009 B2
7505795 Lim et al. Mar 2009 B1
7508324 Suraqui Mar 2009 B2
7508373 Lin et al. Mar 2009 B2
7516123 Betz et al. Apr 2009 B2
7519327 White Apr 2009 B2
7519398 Hirose Apr 2009 B2
7522927 Fitch et al. Apr 2009 B2
7523036 Akabane et al. Apr 2009 B2
7523108 Cao Apr 2009 B2
7526466 Au Apr 2009 B2
7526738 Ording et al. Apr 2009 B2
7528713 Singh et al. May 2009 B2
7529671 Rockenbeck et al. May 2009 B2
7529676 Koyama May 2009 B2
7535997 McQuaide, Jr. et al. May 2009 B1
7536029 Choi et al. May 2009 B2
7536565 Girish et al. May 2009 B2
7538685 Cooper et al. May 2009 B1
7539619 Seligman et al. May 2009 B1
7539656 Fratkina et al. May 2009 B2
7541940 Upton Jun 2009 B2
7542967 Hurst-Hiller et al. Jun 2009 B2
7542971 Thione et al. Jun 2009 B2
7543232 Easton, Jr. et al. Jun 2009 B2
7546382 Healey et al. Jun 2009 B2
7546529 Reynar et al. Jun 2009 B2
7548895 Pulsipher Jun 2009 B2
7552045 Barliga et al. Jun 2009 B2
7552055 Lecoeuche Jun 2009 B2
7555431 Bennett Jun 2009 B2
7555496 Lantrip et al. Jun 2009 B1
7558381 Ali et al. Jul 2009 B1
7558730 Davis et al. Jul 2009 B2
7559026 Girish et al. Jul 2009 B2
7561069 Horstemeyer Jul 2009 B2
7562007 Hwang Jul 2009 B2
7562032 Abbosh et al. Jul 2009 B2
7565104 Brown et al. Jul 2009 B1
7565380 Venkatachary, Sr. Jul 2009 B1
7568151 Bargeron et al. Jul 2009 B2
7571092 Nieh Aug 2009 B1
7571106 Cao et al. Aug 2009 B2
7577522 Rosenberg Aug 2009 B2
7580551 Srihari et al. Aug 2009 B1
7580576 Wang et al. Aug 2009 B2
7580839 Tamura et al. Aug 2009 B2
7584092 Brockett et al. Sep 2009 B2
7584093 Potter et al. Sep 2009 B2
7584278 Rajarajan et al. Sep 2009 B2
7584429 Fabritius Sep 2009 B2
7593868 Margiloff et al. Sep 2009 B2
7596269 King et al. Sep 2009 B2
7596499 Anguera et al. Sep 2009 B2
7596606 Codignotto Sep 2009 B2
7596765 Almas Sep 2009 B2
7599918 Shen et al. Oct 2009 B2
7603349 Kraft et al. Oct 2009 B1
7603381 Burke et al. Oct 2009 B2
7606444 Erol et al. Oct 2009 B1
7609179 Diaz-Gutierrez et al. Oct 2009 B2
7610258 Yuknewicz et al. Oct 2009 B2
7613264 Wells et al. Nov 2009 B2
7614008 Ording Nov 2009 B2
7617094 Aoki et al. Nov 2009 B2
7620407 Donald et al. Nov 2009 B1
7620549 Di Cristo et al. Nov 2009 B2
7620894 Kahn Nov 2009 B1
7623119 Autio et al. Nov 2009 B2
7624007 Bennett Nov 2009 B2
7627481 Kuo et al. Dec 2009 B1
7630900 Strom Dec 2009 B1
7630901 Omi Dec 2009 B2
7633076 Huppi et al. Dec 2009 B2
7634409 Kennewick et al. Dec 2009 B2
7634413 Kuo et al. Dec 2009 B1
7634718 Nakajima Dec 2009 B2
7634732 Blagsvedt et al. Dec 2009 B1
7636657 Ju et al. Dec 2009 B2
7640158 Detlef et al. Dec 2009 B2
7640160 Di Cristo et al. Dec 2009 B2
7643990 Bellegarda Jan 2010 B1
7647225 Bennett et al. Jan 2010 B2
7649454 Singh et al. Jan 2010 B2
7649877 Vieri et al. Jan 2010 B2
7653883 Hotelling et al. Jan 2010 B2
7656393 King et al. Feb 2010 B2
7657424 Bennett Feb 2010 B2
7657828 Lucas et al. Feb 2010 B2
7657844 Gibson et al. Feb 2010 B2
7657849 Chaudhri et al. Feb 2010 B2
7660715 Thambiratnam Feb 2010 B1
7663607 Hotelling et al. Feb 2010 B2
7664558 Lindahl et al. Feb 2010 B2
7664638 Cooper et al. Feb 2010 B2
7668710 Doyle Feb 2010 B2
7669134 Christie et al. Feb 2010 B1
7672841 Bennett Mar 2010 B2
7672952 Isaacson et al. Mar 2010 B2
7673238 Girish et al. Mar 2010 B2
7673251 Wibisono Mar 2010 B1
7673340 Cohen et al. Mar 2010 B1
7676026 Baxter, Jr. Mar 2010 B1
7676365 Hwang et al. Mar 2010 B2
7676463 Thompson et al. Mar 2010 B2
7679534 Kay et al. Mar 2010 B2
7680649 Park Mar 2010 B2
7681126 Roose Mar 2010 B2
7683886 Willey Mar 2010 B2
7683893 Kim Mar 2010 B2
7684985 Dominach et al. Mar 2010 B2
7684990 Caskey et al. Mar 2010 B2
7684991 Stohr et al. Mar 2010 B2
7689245 Cox et al. Mar 2010 B2
7689408 Chen et al. Mar 2010 B2
7689409 Heinecke Mar 2010 B2
7689412 Wu et al. Mar 2010 B2
7689421 Li et al. Mar 2010 B2
7693715 Hwang et al. Apr 2010 B2
7693717 Kahn et al. Apr 2010 B2
7693719 Chu et al. Apr 2010 B2
7693720 Kennewick et al. Apr 2010 B2
7698131 Bennett Apr 2010 B2
7702500 Blaedow Apr 2010 B2
7702508 Bennett Apr 2010 B2
7703091 Martin et al. Apr 2010 B1
7706510 Ng Apr 2010 B2
7707026 Liu Apr 2010 B2
7707027 Balchandran et al. Apr 2010 B2
7707032 Wang et al. Apr 2010 B2
7707221 Dunning et al. Apr 2010 B1
7707226 Tonse Apr 2010 B1
7707267 Lisitsa et al. Apr 2010 B2
7710262 Ruha May 2010 B2
7711129 Lindahl et al. May 2010 B2
7711550 Feinberg et al. May 2010 B1
7711565 Gazdzinski May 2010 B1
7711672 Au May 2010 B2
7712053 Bradford et al. May 2010 B2
7716056 Weng et al. May 2010 B2
7716216 Harik et al. May 2010 B1
7720674 Kaiser et al. May 2010 B2
7720683 Vermeulen et al. May 2010 B1
7721226 Barabe et al. May 2010 B2
7721301 Wong et al. May 2010 B2
7724242 Hillis et al. May 2010 B2
7724696 Parekh May 2010 B1
7725307 Bennett May 2010 B2
7725318 Gavalda et al. May 2010 B2
7725320 Bennett May 2010 B2
7725321 Bennett May 2010 B2
7725838 Williams May 2010 B2
7729904 Bennett Jun 2010 B2
7729916 Coffman et al. Jun 2010 B2
7734461 Kwak et al. Jun 2010 B2
7735012 Naik Jun 2010 B2
7739588 Reynar et al. Jun 2010 B2
7742953 King et al. Jun 2010 B2
7743188 Haitani et al. Jun 2010 B2
7747616 Yamada et al. Jun 2010 B2
7752152 Paek et al. Jul 2010 B2
7756708 Cohen et al. Jul 2010 B2
7756868 Lee Jul 2010 B2
7756871 Yacoub et al. Jul 2010 B2
7757173 Beaman Jul 2010 B2
7757182 Elliott et al. Jul 2010 B2
7761296 Bakis et al. Jul 2010 B1
7763842 Hsu et al. Jul 2010 B2
7774202 Spengler et al. Aug 2010 B2
7774204 Mozer et al. Aug 2010 B2
7774388 Runchey Aug 2010 B1
7777717 Fux et al. Aug 2010 B2
7778432 Larsen Aug 2010 B2
7778595 White et al. Aug 2010 B2
7778632 Kurlander et al. Aug 2010 B2
7778830 Davis et al. Aug 2010 B2
7779353 Grigoriu et al. Aug 2010 B2
7779356 Griesmer Aug 2010 B2
7779357 Naik Aug 2010 B2
7783283 Kuusinen et al. Aug 2010 B2
7783486 Rosser et al. Aug 2010 B2
7788590 Taboada et al. Aug 2010 B2
7788663 Illowsky et al. Aug 2010 B2
7796980 McKinney et al. Sep 2010 B1
7797265 Brinker et al. Sep 2010 B2
7797269 Rieman et al. Sep 2010 B2
7797331 Theimer et al. Sep 2010 B2
7797629 Fux et al. Sep 2010 B2
7801721 Rosart et al. Sep 2010 B2
7801728 Ben-David et al. Sep 2010 B2
7801729 Mozer Sep 2010 B2
7805299 Coifman Sep 2010 B2
7809550 Barrows Oct 2010 B1
7809565 Coifman Oct 2010 B2
7809569 Attwater et al. Oct 2010 B2
7809570 Kennewick et al. Oct 2010 B2
7809610 Cao Oct 2010 B2
7809744 Nevidomski et al. Oct 2010 B2
7818165 Carlgren et al. Oct 2010 B2
7818176 Freeman et al. Oct 2010 B2
7818215 King et al. Oct 2010 B2
7818291 Ferguson et al. Oct 2010 B2
7818672 Mccormack et al. Oct 2010 B2
7822608 Cross, Jr. et al. Oct 2010 B2
7823123 Sabbouh Oct 2010 B2
7826945 Zhang et al. Nov 2010 B2
7827047 Anderson et al. Nov 2010 B2
7831246 Smith et al. Nov 2010 B1
7831423 Schubert Nov 2010 B2
7831426 Bennett Nov 2010 B2
7831432 Bodin et al. Nov 2010 B2
7835504 Donald et al. Nov 2010 B1
7836437 Kacmarcik et al. Nov 2010 B2
7840348 Kim et al. Nov 2010 B2
7840400 Lavi et al. Nov 2010 B2
7840447 Kleinrock et al. Nov 2010 B2
7840581 Ross et al. Nov 2010 B2
7840912 Elias et al. Nov 2010 B2
7844394 Kim Nov 2010 B2
7848924 Nurminen et al. Dec 2010 B2
7848926 Goto et al. Dec 2010 B2
7853444 Wang et al. Dec 2010 B2
7853445 Bachenko et al. Dec 2010 B2
7853574 Kraenzel et al. Dec 2010 B2
7853577 Sundaresan et al. Dec 2010 B2
7853664 Wang et al. Dec 2010 B1
7853900 Nguyen et al. Dec 2010 B2
7865817 Ryan et al. Jan 2011 B2
7869998 Di Fabbrizio et al. Jan 2011 B1
7869999 Amato et al. Jan 2011 B2
7870118 Jiang et al. Jan 2011 B2
7870133 Krishnamoorthy et al. Jan 2011 B2
7873149 Schultz et al. Jan 2011 B2
7873519 Bennett Jan 2011 B2
7873654 Bernard Jan 2011 B2
7877705 Chambers et al. Jan 2011 B2
7880730 Robinson et al. Feb 2011 B2
7881283 Cormier et al. Feb 2011 B2
7881936 Longe et al. Feb 2011 B2
7885390 Chaudhuri et al. Feb 2011 B2
7885844 Cohen et al. Feb 2011 B1
7886233 Rainisto et al. Feb 2011 B2
7889101 Yokota Feb 2011 B2
7889184 Blumenberg et al. Feb 2011 B2
7889185 Blumenberg et al. Feb 2011 B2
7890330 Ozkaragoz et al. Feb 2011 B2
7890652 Bull et al. Feb 2011 B2
7895039 Braho et al. Feb 2011 B2
7895531 Radtke et al. Feb 2011 B2
7899666 Varone Mar 2011 B2
7904297 Mirkovic et al. Mar 2011 B2
7908287 Katragadda Mar 2011 B1
7912289 Kansal et al. Mar 2011 B2
7912699 Saraclar et al. Mar 2011 B1
7912702 Bennett Mar 2011 B2
7912720 Hakkani-Tur et al. Mar 2011 B1
7912828 Bonnet et al. Mar 2011 B2
7913185 Benson et al. Mar 2011 B1
7916979 Simmons Mar 2011 B2
7917367 Di Cristo et al. Mar 2011 B2
7917497 Harrison et al. Mar 2011 B2
7920678 Cooper et al. Apr 2011 B2
7920682 Byrne et al. Apr 2011 B2
7920857 Lau et al. Apr 2011 B2
7925525 Chin Apr 2011 B2
7925610 Elbaz et al. Apr 2011 B2
7929805 Wang et al. Apr 2011 B2
7930168 Weng et al. Apr 2011 B2
7930183 Odell et al. Apr 2011 B2
7930197 Ozzie et al. Apr 2011 B2
7936339 Marggraff et al. May 2011 B2
7936861 Martin et al. May 2011 B2
7936863 John et al. May 2011 B2
7937075 Zellner May 2011 B2
7941009 Li et al. May 2011 B2
7945294 Zhang et al. May 2011 B2
7945470 Cohen et al. May 2011 B1
7949529 Weider et al. May 2011 B2
7949534 Davis et al. May 2011 B2
7949752 Lange et al. May 2011 B2
7953679 Chidlovskii et al. May 2011 B2
7957975 Burns et al. Jun 2011 B2
7958136 Curtis et al. Jun 2011 B1
7962179 Huang Jun 2011 B2
7974835 Balchandran et al. Jul 2011 B2
7974844 Sumita Jul 2011 B2
7974972 Cao Jul 2011 B2
7975216 Woolf et al. Jul 2011 B2
7983478 Liu et al. Jul 2011 B2
7983915 Knight et al. Jul 2011 B2
7983917 Kennewick et al. Jul 2011 B2
7983919 Conkie Jul 2011 B2
7983997 Allen et al. Jul 2011 B2
7984062 Dunning et al. Jul 2011 B2
7986431 Emori et al. Jul 2011 B2
7987151 Schott et al. Jul 2011 B2
7987244 Lewis et al. Jul 2011 B1
7991614 Washio et al. Aug 2011 B2
7992085 Wang-Aryattanwanich et al. Aug 2011 B2
7996228 Miller et al. Aug 2011 B2
7996589 Schultz et al. Aug 2011 B2
7996769 Fux et al. Aug 2011 B2
7996792 Anzures et al. Aug 2011 B2
7999669 Singh et al. Aug 2011 B2
8000453 Cooper et al. Aug 2011 B2
8005664 Hanumanthappa Aug 2011 B2
8005679 Jordan et al. Aug 2011 B2
8006180 Tunning et al. Aug 2011 B2
8014308 Gates et al. Sep 2011 B2
8015006 Kennewick et al. Sep 2011 B2
8015011 Nagano et al. Sep 2011 B2
8015144 Zheng et al. Sep 2011 B2
8018431 Zehr et al. Sep 2011 B1
8019271 Izdepski Sep 2011 B1
8019604 Ma Sep 2011 B2
8020104 Robarts et al. Sep 2011 B2
8024195 Mozer et al. Sep 2011 B2
8024415 Horvitz et al. Sep 2011 B2
8027836 Baker et al. Sep 2011 B2
8031943 Chen et al. Oct 2011 B2
8032383 Bhardwaj et al. Oct 2011 B1
8036901 Mozer Oct 2011 B2
8037034 Plachta et al. Oct 2011 B2
8041557 Liu Oct 2011 B2
8041570 Mirkovic et al. Oct 2011 B2
8041611 Kleinrock et al. Oct 2011 B2
8042053 Darwish et al. Oct 2011 B2
8046363 Cha et al. Oct 2011 B2
8046374 Bromwich et al. Oct 2011 B1
8050500 Batty et al. Nov 2011 B1
8054180 Scofield et al. Nov 2011 B1
8055502 Clark et al. Nov 2011 B2
8055708 Chitsaz et al. Nov 2011 B2
8056070 Goller et al. Nov 2011 B2
8060824 Brownrigg, Jr. et al. Nov 2011 B2
8064753 Freeman Nov 2011 B2
8065143 Yanagihara Nov 2011 B2
8065155 Gazdzinski Nov 2011 B1
8065156 Gazdzinski Nov 2011 B2
8068604 Leeds et al. Nov 2011 B2
8069046 Kennewick et al. Nov 2011 B2
8069422 Sheshagiri et al. Nov 2011 B2
8073681 Baldwin et al. Dec 2011 B2
8073695 Hendricks et al. Dec 2011 B1
8077153 Benko et al. Dec 2011 B2
8078473 Gazdzinski Dec 2011 B1
8082153 Coffman et al. Dec 2011 B2
8082498 Salamon et al. Dec 2011 B2
8090571 Elshishiny et al. Jan 2012 B2
8095364 Longe et al. Jan 2012 B2
8099289 Mozer et al. Jan 2012 B2
8099395 Pabla et al. Jan 2012 B2
8099418 Inoue et al. Jan 2012 B2
8103510 Sato Jan 2012 B2
8107401 John et al. Jan 2012 B2
8112275 Kennewick et al. Feb 2012 B2
8112280 Lu Feb 2012 B2
8117037 Gazdzinski Feb 2012 B2
8117542 Radtke et al. Feb 2012 B2
8121413 Hwang et al. Feb 2012 B2
8121837 Agapi et al. Feb 2012 B2
8122094 Kotab Feb 2012 B1
8122353 Bouta Feb 2012 B2
8130929 Wilkes et al. Mar 2012 B2
8131557 Davis et al. Mar 2012 B2
8135115 Hogg, Jr. et al. Mar 2012 B1
8138912 Singh et al. Mar 2012 B2
8140335 Kennewick et al. Mar 2012 B2
8140567 Padovitz et al. Mar 2012 B2
8145489 Freeman et al. Mar 2012 B2
8150694 Kennewick et al. Apr 2012 B2
8150700 Shin et al. Apr 2012 B2
8155956 Cho et al. Apr 2012 B2
8156005 Vieri Apr 2012 B2
8160877 Nucci et al. Apr 2012 B1
8160883 Lecoeuche Apr 2012 B2
8165321 Paquier et al. Apr 2012 B2
8165886 Gagnon et al. Apr 2012 B1
8166019 Lee et al. Apr 2012 B1
8166032 Sommer et al. Apr 2012 B2
8170790 Lee et al. May 2012 B2
8175872 Kristjansson et al. May 2012 B2
8179370 Yamasani et al. May 2012 B1
8188856 Singh et al. May 2012 B2
8190359 Bourne May 2012 B2
8190596 Nambiar et al. May 2012 B2
8195467 Mozer et al. Jun 2012 B2
8195468 Kennewick et al. Jun 2012 B2
8200489 Baggenstoss Jun 2012 B1
8200495 Braho et al. Jun 2012 B2
8201109 Van Os et al. Jun 2012 B2
8204238 Mozer Jun 2012 B2
8205788 Gazdzinski et al. Jun 2012 B1
8209183 Patel et al. Jun 2012 B1
8213911 Williams et al. Jul 2012 B2
8219115 Nelissen Jul 2012 B1
8219406 Yu et al. Jul 2012 B2
8219407 Roy et al. Jul 2012 B1
8219608 alsafadi et al. Jul 2012 B2
8224649 Chaudhari et al. Jul 2012 B2
8228299 Maloney et al. Jul 2012 B1
8233919 Haag et al. Jul 2012 B2
8234111 Lloyd et al. Jul 2012 B2
8239206 LeBeau et al. Aug 2012 B1
8239207 Seligman et al. Aug 2012 B2
8244712 Serlet et al. Aug 2012 B2
8250071 Killalea et al. Aug 2012 B1
8254829 Kindred et al. Aug 2012 B1
8255216 White Aug 2012 B2
8255217 Stent et al. Aug 2012 B2
8260247 Lazaridis et al. Sep 2012 B2
8260617 Dhanakshirur et al. Sep 2012 B2
8270933 Riemer et al. Sep 2012 B2
8271287 Kermani Sep 2012 B1
8275621 Alewine et al. Sep 2012 B2
8279171 Hirai et al. Oct 2012 B2
8280438 Barbera Oct 2012 B2
8285546 Reich Oct 2012 B2
8285551 Gazdzinski Oct 2012 B2
8285553 Gazdzinski Oct 2012 B2
8290777 Nguyen et al. Oct 2012 B1
8290778 Gazdzinski Oct 2012 B2
8290781 Gazdzinski Oct 2012 B2
8296124 Holsztynska et al. Oct 2012 B1
8296145 Clark et al. Oct 2012 B2
8296146 Gazdzinski Oct 2012 B2
8296153 Gazdzinski Oct 2012 B2
8296380 Kelly et al. Oct 2012 B1
8296383 Lindahl Oct 2012 B2
8300801 Sweeney et al. Oct 2012 B2
8301456 Gazdzinski Oct 2012 B2
8311189 Champlin et al. Nov 2012 B2
8311834 Gazdzinski Nov 2012 B1
8311835 Lecoeuche Nov 2012 B2
8311838 Lindahl et al. Nov 2012 B2
8312017 Martin et al. Nov 2012 B2
8321786 Lunati et al. Nov 2012 B2
8326627 Kennewick et al. Dec 2012 B2
8332205 Krishnan et al. Dec 2012 B2
8332218 Cross et al. Dec 2012 B2
8332224 Di Cristo et al. Dec 2012 B2
8332748 Karam Dec 2012 B1
8335689 Wittenstein et al. Dec 2012 B2
8340975 Rosenberger Dec 2012 B1
8345665 Vieri et al. Jan 2013 B2
8346563 Hjelm et al. Jan 2013 B1
8352183 Thota et al. Jan 2013 B2
8352268 Naik et al. Jan 2013 B2
8352272 Rogers et al. Jan 2013 B2
8355919 Silverman et al. Jan 2013 B2
8359234 Vieri Jan 2013 B2
8370145 Endo et al. Feb 2013 B2
8370158 Gazdzinski Feb 2013 B2
8371503 Gazdzinski Feb 2013 B2
8374871 Ehsani et al. Feb 2013 B2
8375320 Kotler et al. Feb 2013 B2
8380504 Peden et al. Feb 2013 B1
8380507 Herman et al. Feb 2013 B2
8381107 Rottler et al. Feb 2013 B2
8381135 Hotelling et al. Feb 2013 B2
8386485 Kerschberg et al. Feb 2013 B2
8386926 Matsuoka Feb 2013 B1
8391844 Lamiraux et al. Mar 2013 B2
8396714 Rogers et al. Mar 2013 B2
8401163 Kirchhoff et al. Mar 2013 B1
8406745 Upadhyay et al. Mar 2013 B1
8423288 Stahl et al. Apr 2013 B2
8428758 Naik et al. Apr 2013 B2
8433572 Caskey et al. Apr 2013 B2
8433778 Shreesha et al. Apr 2013 B1
8442821 Vanhoucke May 2013 B1
8447612 Gazdzinski May 2013 B2
8452597 Bringert et al. May 2013 B2
8457959 Kaiser Jun 2013 B2
8458115 Cai et al. Jun 2013 B2
8458278 Christie et al. Jun 2013 B2
8464150 Davidson et al. Jun 2013 B2
8473289 Jitkoff et al. Jun 2013 B2
8479122 Hotelling et al. Jul 2013 B2
8484027 Murphy Jul 2013 B1
8489599 Bellotti Jul 2013 B2
8498857 Kopparapu et al. Jul 2013 B2
8514197 Shahraray et al. Aug 2013 B2
8515750 Lei et al. Aug 2013 B1
8521513 Millett et al. Aug 2013 B2
8521531 Kim Aug 2013 B1
8527276 Senior et al. Sep 2013 B1
8537033 Gueziec Sep 2013 B2
8543398 Strope et al. Sep 2013 B1
8560229 Park et al. Oct 2013 B1
8571851 Tickner et al. Oct 2013 B1
8583416 Huang et al. Nov 2013 B2
8583511 Hendrickson Nov 2013 B2
8589869 Wolfram Nov 2013 B2
8589911 Sharkey et al. Nov 2013 B1
8595004 Koshinaka Nov 2013 B2
8600743 Lindahl et al. Dec 2013 B2
8600930 Sata et al. Dec 2013 B2
8606568 Tickner et al. Dec 2013 B1
8620659 Di Cristo et al. Dec 2013 B2
8620662 Bellegarda Dec 2013 B2
8626681 Jurca et al. Jan 2014 B1
8638363 King et al. Jan 2014 B2
8639516 Lindahl et al. Jan 2014 B2
8645137 Bellegarda et al. Feb 2014 B2
8645138 Weinstein et al. Feb 2014 B1
8654936 Tofighbakhsh et al. Feb 2014 B1
8655646 Lee et al. Feb 2014 B2
8655901 Li et al. Feb 2014 B1
8660843 Falcon et al. Feb 2014 B2
8660849 Gruber et al. Feb 2014 B2
8660970 Fiedorowicz Feb 2014 B1
8661112 Creamer et al. Feb 2014 B2
8661340 Goldsmith et al. Feb 2014 B2
8670979 Gruber et al. Mar 2014 B2
8675084 Bolton et al. Mar 2014 B2
8676904 Lindahl et al. Mar 2014 B2
8677377 Cheyer et al. Mar 2014 B2
8681950 Vlack et al. Mar 2014 B2
8682667 Haughay et al. Mar 2014 B2
8687777 Lavian et al. Apr 2014 B1
8688446 Yanagihara et al. Apr 2014 B2
8688453 Joshi et al. Apr 2014 B1
8695074 Saraf et al. Apr 2014 B2
8696364 Cohen Apr 2014 B2
8706472 Ramerth et al. Apr 2014 B2
8706474 Blume et al. Apr 2014 B2
8706503 Cheyer et al. Apr 2014 B2
8713119 Lindahl et al. Apr 2014 B2
8713418 King et al. Apr 2014 B2
8719006 Bellegarda et al. May 2014 B2
8719014 Wagner et al. May 2014 B2
8731610 Appaji May 2014 B2
8731912 Tickner et al. May 2014 B1
8731942 Cheyer et al. May 2014 B2
8739208 Rodriguez et al. May 2014 B2
8744852 Seymour et al. Jun 2014 B1
8760537 Johnson et al. Jun 2014 B2
8762145 Ouchi et al. Jun 2014 B2
8762156 Chen et al. Jun 2014 B2
8762469 Lindahl et al. Jun 2014 B2
8768693 Lempel et al. Jul 2014 B2
8768702 Boettcher et al. Jul 2014 B2
8775154 Clinchant et al. Jul 2014 B2
8775931 Fux et al. Jul 2014 B2
8781456 Prociw Jul 2014 B2
8781841 Wang Jul 2014 B1
8798255 Lubowich et al. Aug 2014 B2
8798995 Edara et al. Aug 2014 B1
8799000 Guzzoni et al. Aug 2014 B2
8805690 LeBeau et al. Aug 2014 B1
8812302 Xiao et al. Aug 2014 B2
8838457 Cerra et al. Sep 2014 B2
8855915 Furuhata et al. Oct 2014 B2
8861925 Ohme Oct 2014 B1
8862252 Rottler et al. Oct 2014 B2
8868409 Mengibar et al. Oct 2014 B1
8880405 Cerra et al. Nov 2014 B2
8886534 Nakano et al. Nov 2014 B2
8886540 Cerra et al. Nov 2014 B2
8886541 Friedlander Nov 2014 B2
8892446 Cheyer et al. Nov 2014 B2
8893023 Perry et al. Nov 2014 B2
8898568 Bull et al. Nov 2014 B2
8903716 Chen et al. Dec 2014 B2
8909693 Frissora et al. Dec 2014 B2
8930176 Li et al. Jan 2015 B2
8930191 Gruber et al. Jan 2015 B2
8938394 Faaborg et al. Jan 2015 B1
8938688 Bradford et al. Jan 2015 B2
8942986 Cheyer et al. Jan 2015 B2
8943423 Merrill et al. Jan 2015 B2
8972240 Brockett et al. Mar 2015 B2
8972432 Shaw et al. Mar 2015 B2
8972878 Mohler et al. Mar 2015 B2
8983383 Haskin Mar 2015 B1
8989713 Doulton Mar 2015 B2
8990235 King et al. Mar 2015 B2
8994660 Neels et al. Mar 2015 B2
8996350 Dub et al. Mar 2015 B1
8996376 Fleizach et al. Mar 2015 B2
8996381 Mozer et al. Mar 2015 B2
8996639 Faaborg et al. Mar 2015 B1
9009046 Stewart Apr 2015 B1
9020804 Barbaiani et al. Apr 2015 B2
9026425 Nikoulina et al. May 2015 B2
9031834 Coorman et al. May 2015 B2
9037967 Al-Jefri et al. May 2015 B1
9043208 Koch et al. May 2015 B2
9049255 MacFarlane et al. Jun 2015 B2
9049295 Cooper et al. Jun 2015 B1
9053706 Jitkoff et al. Jun 2015 B2
9058811 Wang et al. Jun 2015 B2
9063979 Chiu et al. Jun 2015 B2
9070366 Mathias et al. Jun 2015 B1
9071701 Donaldson et al. Jun 2015 B2
9076448 Bennett et al. Jul 2015 B2
9076450 Sadek et al. Jul 2015 B1
9081411 Kalns et al. Jul 2015 B2
9081482 Zhai et al. Jul 2015 B1
9082402 Yadgar et al. Jul 2015 B2
9098467 Blanksteen et al. Aug 2015 B1
9101279 Ritchey et al. Aug 2015 B2
9112984 Sejnoha et al. Aug 2015 B2
9117447 Gruber et al. Aug 2015 B2
9123338 Sanders et al. Sep 2015 B1
9171541 Kennewick et al. Oct 2015 B2
9171546 Pike Oct 2015 B1
9190062 Haughay Nov 2015 B2
9208153 Zaveri et al. Dec 2015 B1
9218809 Bellegarda Dec 2015 B2
9218819 Stekkelpak et al. Dec 2015 B1
9223537 Brown et al. Dec 2015 B2
9255812 Maeoka et al. Feb 2016 B2
9258604 Bilobrov et al. Feb 2016 B1
9262612 Cheyer Feb 2016 B2
9286910 Li et al. Mar 2016 B1
9292487 Weber Mar 2016 B1
9292489 Sak et al. Mar 2016 B1
9299344 Braho et al. Mar 2016 B2
9300718 Khanna Mar 2016 B2
9305543 Fleizach et al. Apr 2016 B2
9305548 Kennewick et al. Apr 2016 B2
9311912 Swietlinski et al. Apr 2016 B1
9313317 LeBeau et al. Apr 2016 B1
9318108 Gruber et al. Apr 2016 B2
9325809 Barros et al. Apr 2016 B1
9330659 Ju et al. May 2016 B2
9330720 Lee May 2016 B2
9338493 Van Os et al. May 2016 B2
9349368 LeBeau et al. May 2016 B1
9361084 Costa Jun 2016 B1
9367541 Servan et al. Jun 2016 B1
9377871 Waddell et al. Jun 2016 B2
9378740 Rosen et al. Jun 2016 B1
9380155 Reding et al. Jun 2016 B1
9390726 Smus et al. Jul 2016 B1
9401147 Jitkoff et al. Jul 2016 B2
9406224 Sanders et al. Aug 2016 B1
9412392 Lindahl Aug 2016 B2
9423266 Clark et al. Aug 2016 B2
9436918 Pantel et al. Sep 2016 B2
9437186 Liu et al. Sep 2016 B1
9437189 Epstein et al. Sep 2016 B2
9454957 Mathias et al. Sep 2016 B1
9484021 Mairesse et al. Nov 2016 B1
9495129 Fleizach et al. Nov 2016 B2
9501741 Cheyer et al. Nov 2016 B2
9502025 Kennewick et al. Nov 2016 B2
9508028 Bannister et al. Nov 2016 B2
9510044 Pereira et al. Nov 2016 B1
9535906 Lee et al. Jan 2017 B2
9536527 Carlson Jan 2017 B1
9547647 Badaskar Jan 2017 B2
9548050 Gruber et al. Jan 2017 B2
9569549 Jenkins et al. Feb 2017 B1
9575964 Yadgar et al. Feb 2017 B2
9578173 Sanghavi et al. Feb 2017 B2
9607612 Deleeuw Mar 2017 B2
9620113 Kennewick et al. Apr 2017 B2
9620126 Chiba Apr 2017 B2
9626955 Fleizach et al. Apr 2017 B2
9633004 Giuli et al. Apr 2017 B2
9633660 Haughay Apr 2017 B2
9652453 Mathur et al. May 2017 B2
9658746 Cohn et al. May 2017 B2
9668121 Naik et al. May 2017 B2
9672725 Dotan-Cohen et al. Jun 2017 B2
9691378 Meyers et al. Jun 2017 B1
9697827 Lilly et al. Jul 2017 B1
9720907 Bangalore et al. Aug 2017 B2
9734839 Adams Aug 2017 B1
9741343 Miles et al. Aug 2017 B1
9747083 Roman et al. Aug 2017 B1
9767710 Lee Sep 2017 B2
9934777 Joseph Apr 2018 B1
9934785 Hulaud Apr 2018 B1
9990176 Gray Jun 2018 B1
10013416 Bhardwaj Jul 2018 B1
10013654 Levy Jul 2018 B1
10037758 Jing Jul 2018 B2
10043516 Saddler Aug 2018 B2
10176167 Evermann Jan 2019 B2
10216832 Bangalore Feb 2019 B2
10354677 Mohamed Jul 2019 B2
20060149544 Hakkani-Tur Jul 2006 A1
20080001785 Elizarov et al. Jan 2008 A1
20080010050 Fux et al. Jan 2008 A1
20080010355 Vieri et al. Jan 2008 A1
20080010605 Frank et al. Jan 2008 A1
20080012950 Lee et al. Jan 2008 A1
20080013751 Hiselius Jan 2008 A1
20080015863 Agapi et al. Jan 2008 A1
20080015864 Ross et al. Jan 2008 A1
20080016575 Vincent et al. Jan 2008 A1
20080021708 Bennett et al. Jan 2008 A1
20080021886 Wang-Aryattanwanich et al. Jan 2008 A1
20080022208 Morse Jan 2008 A1
20080027711 Rajendran et al. Jan 2008 A1
20080027726 Hansen et al. Jan 2008 A1
20080031475 Goldstein Feb 2008 A1
20080033719 Hall et al. Feb 2008 A1
20080033723 Jang et al. Feb 2008 A1
20080034032 Healey et al. Feb 2008 A1
20080034044 Bhakta et al. Feb 2008 A1
20080034081 Marshall et al. Feb 2008 A1
20080036743 Westerman et al. Feb 2008 A1
20080040339 Zhou et al. Feb 2008 A1
20080042970 Liang et al. Feb 2008 A1
20080043936 Liebermann Feb 2008 A1
20080043943 Sipher et al. Feb 2008 A1
20080046239 Boo Feb 2008 A1
20080046250 Agapi et al. Feb 2008 A1
20080046422 Lee et al. Feb 2008 A1
20080046820 Lee et al. Feb 2008 A1
20080046948 Verosub Feb 2008 A1
20080048908 Sato Feb 2008 A1
20080050027 Bashyam et al. Feb 2008 A1
20080052063 Bennett et al. Feb 2008 A1
20080052073 Goto et al. Feb 2008 A1
20080052077 Bennett et al. Feb 2008 A1
20080052080 Narayanan et al. Feb 2008 A1
20080052262 Kosinov et al. Feb 2008 A1
20080055194 Baudino et al. Mar 2008 A1
20080056459 Vallier et al. Mar 2008 A1
20080056579 Guha Mar 2008 A1
20080057922 Kokes et al. Mar 2008 A1
20080059190 Chu et al. Mar 2008 A1
20080059200 Puli Mar 2008 A1
20080059876 Hantler et al. Mar 2008 A1
20080062141 Chaudhri Mar 2008 A1
20080065382 Gerl et al. Mar 2008 A1
20080065387 Cross et al. Mar 2008 A1
20080071529 Silverman et al. Mar 2008 A1
20080071544 Beaufays et al. Mar 2008 A1
20080071742 Yang et al. Mar 2008 A1
20080072143 Assadollahi Mar 2008 A1
20080075296 Lindahl et al. Mar 2008 A1
20080076972 Dorogusker et al. Mar 2008 A1
20080077310 Murlidar et al. Mar 2008 A1
20080077384 Agapi et al. Mar 2008 A1
20080077386 Gao et al. Mar 2008 A1
20080077391 Chino et al. Mar 2008 A1
20080077393 Gao et al. Mar 2008 A1
20080077406 Ganong, III Mar 2008 A1
20080077859 Schabes et al. Mar 2008 A1
20080079566 Singh et al. Apr 2008 A1
20080080411 Cole Apr 2008 A1
20080082332 Mallett et al. Apr 2008 A1
20080082338 O'Neil et al. Apr 2008 A1
20080082390 Hawkins et al. Apr 2008 A1
20080082576 Bodin et al. Apr 2008 A1
20080082651 Singh et al. Apr 2008 A1
20080084974 Dhanakshirur Apr 2008 A1
20080085689 Zellner Apr 2008 A1
20080091406 Baldwin et al. Apr 2008 A1
20080091426 Rempel et al. Apr 2008 A1
20080091428 Bellegarda Apr 2008 A1
20080091443 Strope et al. Apr 2008 A1
20080096531 Mcquaide et al. Apr 2008 A1
20080096533 Manfredi et al. Apr 2008 A1
20080096726 Riley et al. Apr 2008 A1
20080097937 Hadjarian Apr 2008 A1
20080098302 Roose Apr 2008 A1
20080098480 Henry et al. Apr 2008 A1
20080100579 Robinson et al. May 2008 A1
20080101584 Gray et al. May 2008 A1
20080103774 White May 2008 A1
20080109222 Liu May 2008 A1
20080109402 Wang et al. May 2008 A1
20080114480 Harb May 2008 A1
20080114598 Prieto et al. May 2008 A1
20080114604 Wei et al. May 2008 A1
20080114841 Lambert May 2008 A1
20080115084 Scott et al. May 2008 A1
20080118143 Gordon et al. May 2008 A1
20080119953 Reed May 2008 A1
20080120102 Rao May 2008 A1
20080120112 Jordan et al. May 2008 A1
20080120196 Reed et al. May 2008 A1
20080120311 Reed May 2008 A1
20080120312 Reed May 2008 A1
20080120330 Reed May 2008 A1
20080120342 Reed et al. May 2008 A1
20080122796 Jobs et al. May 2008 A1
20080124695 Myers et al. May 2008 A1
20080126075 Thorn et al. May 2008 A1
20080126077 Thorn May 2008 A1
20080126091 Clark et al. May 2008 A1
20080126093 Sivadas May 2008 A1
20080126100 Grost et al. May 2008 A1
20080126491 Portele et al. May 2008 A1
20080129520 Lee Jun 2008 A1
20080130867 Bowen Jun 2008 A1
20080131006 Oliver Jun 2008 A1
20080132221 Willey et al. Jun 2008 A1
20080132295 Horowitz Jun 2008 A1
20080133215 Sarukkai Jun 2008 A1
20080133228 Rao Jun 2008 A1
20080133230 Herforth et al. Jun 2008 A1
20080133241 Baker et al. Jun 2008 A1
20080133245 Proulx et al. Jun 2008 A1
20080133479 Zelevinsky et al. Jun 2008 A1
20080133956 Fadell Jun 2008 A1
20080140413 Millman et al. Jun 2008 A1
20080140415 Shostak Jun 2008 A1
20080140416 Shostak Jun 2008 A1
20080140652 Millman et al. Jun 2008 A1
20080140657 Azvine et al. Jun 2008 A1
20080140702 Reed et al. Jun 2008 A1
20080141125 Ghassabian et al. Jun 2008 A1
20080141180 Reed et al. Jun 2008 A1
20080141182 Barsness et al. Jun 2008 A1
20080146245 Appaji Jun 2008 A1
20080146290 Sreeram et al. Jun 2008 A1
20080147408 Da Palma et al. Jun 2008 A1
20080147411 Dames et al. Jun 2008 A1
20080147874 Yoneda et al. Jun 2008 A1
20080150900 Han Jun 2008 A1
20080154577 Kim et al. Jun 2008 A1
20080154599 Muschett et al. Jun 2008 A1
20080154600 Tian et al. Jun 2008 A1
20080154603 Oddo Jun 2008 A1
20080154612 Evermann et al. Jun 2008 A1
20080154828 Antebi et al. Jun 2008 A1
20080157867 Krah Jul 2008 A1
20080161113 Hansen et al. Jul 2008 A1
20080162120 Mactavish et al. Jul 2008 A1
20080162137 Saitoh et al. Jul 2008 A1
20080162471 Bernard Jul 2008 A1
20080163119 Kim et al. Jul 2008 A1
20080163131 Hirai et al. Jul 2008 A1
20080165144 Forstall et al. Jul 2008 A1
20080165980 Pavlovic et al. Jul 2008 A1
20080165994 Caren et al. Jul 2008 A1
20080167013 Novick et al. Jul 2008 A1
20080167858 Christie et al. Jul 2008 A1
20080167876 Bakis et al. Jul 2008 A1
20080168052 Ott et al. Jul 2008 A1
20080168144 Lee Jul 2008 A1
20080168366 Kocienda et al. Jul 2008 A1
20080172698 Berger et al. Jul 2008 A1
20080183473 Nagano et al. Jul 2008 A1
20080186960 Kocheisen et al. Aug 2008 A1
20080189099 Friedman et al. Aug 2008 A1
20080189106 Low et al. Aug 2008 A1
20080189110 Freeman et al. Aug 2008 A1
20080189114 Fail et al. Aug 2008 A1
20080189360 Kiley et al. Aug 2008 A1
20080189606 Rybak Aug 2008 A1
20080195312 Aaron et al. Aug 2008 A1
20080195388 Bower et al. Aug 2008 A1
20080195391 Marple et al. Aug 2008 A1
20080195601 Ntoulas et al. Aug 2008 A1
20080195630 Exartier et al. Aug 2008 A1
20080195940 Gail et al. Aug 2008 A1
20080200142 Abdel-Kader et al. Aug 2008 A1
20080201000 Heikkila et al. Aug 2008 A1
20080201306 Cooper et al. Aug 2008 A1
20080201375 Khedouri et al. Aug 2008 A1
20080201434 Holmes et al. Aug 2008 A1
20080204379 Perez-Noguera Aug 2008 A1
20080207176 Brackbill et al. Aug 2008 A1
20080208585 Ativanichayaphong et al. Aug 2008 A1
20080208587 Ben-David et al. Aug 2008 A1
20080208864 Cucerzan et al. Aug 2008 A1
20080212796 Denda Sep 2008 A1
20080219641 Sandrew et al. Sep 2008 A1
20080221866 Katragadda et al. Sep 2008 A1
20080221879 Cerra et al. Sep 2008 A1
20080221880 Cerra et al. Sep 2008 A1
20080221887 Rose et al. Sep 2008 A1
20080221889 Cerra et al. Sep 2008 A1
20080221903 Kanevsky et al. Sep 2008 A1
20080222118 Scian et al. Sep 2008 A1
20080226130 Kansal et al. Sep 2008 A1
20080228463 Mori et al. Sep 2008 A1
20080228485 Owen Sep 2008 A1
20080228490 Fischer et al. Sep 2008 A1
20080228495 Cross et al. Sep 2008 A1
20080228496 Yu et al. Sep 2008 A1
20080228928 Donelli et al. Sep 2008 A1
20080229185 Lynch Sep 2008 A1
20080229218 Maeng Sep 2008 A1
20080235017 Satomura et al. Sep 2008 A1
20080235023 Kennewick et al. Sep 2008 A1
20080235024 Goldberg et al. Sep 2008 A1
20080235027 Cross Sep 2008 A1
20080240569 Tonouchi Oct 2008 A1
20080242280 Shapiro et al. Oct 2008 A1
20080242322 Scott et al. Oct 2008 A1
20080242363 Onda et al. Oct 2008 A1
20080243501 Hafsteinsson et al. Oct 2008 A1
20080243834 Rieman et al. Oct 2008 A1
20080244390 Fux et al. Oct 2008 A1
20080244446 Lefevre et al. Oct 2008 A1
20080247519 Abeila et al. Oct 2008 A1
20080247529 Barton et al. Oct 2008 A1
20080248797 Freeman et al. Oct 2008 A1
20080249770 Kim et al. Oct 2008 A1
20080249778 Barton et al. Oct 2008 A1
20080253577 Eppolito Oct 2008 A1
20080254419 Cohen Oct 2008 A1
20080254425 Cohen et al. Oct 2008 A1
20080255837 Kahn et al. Oct 2008 A1
20080255842 Simhi et al. Oct 2008 A1
20080255845 Bennett Oct 2008 A1
20080256613 Grover Oct 2008 A1
20080259022 Mansfield et al. Oct 2008 A1
20080261572 Tsui et al. Oct 2008 A1
20080262828 Och et al. Oct 2008 A1
20080262838 Nurminen et al. Oct 2008 A1
20080262846 Burns et al. Oct 2008 A1
20080263139 Martin Oct 2008 A1
20080267416 Goldstein et al. Oct 2008 A1
20080270118 Kuo et al. Oct 2008 A1
20080270138 Knight et al. Oct 2008 A1
20080270139 Shi et al. Oct 2008 A1
20080270140 Hertz et al. Oct 2008 A1
20080270151 Mahoney et al. Oct 2008 A1
20080270344 Yurick et al. Oct 2008 A1
20080273672 Didcock et al. Nov 2008 A1
20080277473 Kotlarsky et al. Nov 2008 A1
20080281510 Shahine Nov 2008 A1
20080281582 Hsu et al. Nov 2008 A1
20080288259 Chambers et al. Nov 2008 A1
20080288460 Poniatowski et al. Nov 2008 A1
20080292112 Valenzuela et al. Nov 2008 A1
20080294418 Cleary et al. Nov 2008 A1
20080294517 Hill Nov 2008 A1
20080294651 Masuyama et al. Nov 2008 A1
20080294981 Balzano et al. Nov 2008 A1
20080298563 Rondeau et al. Dec 2008 A1
20080298766 Wen et al. Dec 2008 A1
20080299523 Chai et al. Dec 2008 A1
20080300857 Barbaiani et al. Dec 2008 A1
20080300871 Gilbert Dec 2008 A1
20080300877 Gilbert et al. Dec 2008 A1
20080300878 Bennett Dec 2008 A1
20080301567 Martin et al. Dec 2008 A1
20080303645 Seymour et al. Dec 2008 A1
20080306727 Thurmair et al. Dec 2008 A1
20080312909 Hermansen et al. Dec 2008 A1
20080312928 Goebel et al. Dec 2008 A1
20080313335 Jung et al. Dec 2008 A1
20080316183 Westerman et al. Dec 2008 A1
20080319735 Kambhatla et al. Dec 2008 A1
20080319738 Liu et al. Dec 2008 A1
20080319753 Hancock Dec 2008 A1
20080319763 Di Fabbrizio et al. Dec 2008 A1
20080319783 Yao et al. Dec 2008 A1
20090003115 Lindahl et al. Jan 2009 A1
20090005012 Van Heugten Jan 2009 A1
20090005891 Batson et al. Jan 2009 A1
20090006096 Li et al. Jan 2009 A1
20090006097 Etezadi et al. Jan 2009 A1
20090006099 Sharpe et al. Jan 2009 A1
20090006100 Badger et al. Jan 2009 A1
20090006343 Platt et al. Jan 2009 A1
20090006345 Platt et al. Jan 2009 A1
20090006488 Lindahl et al. Jan 2009 A1
20090006671 Batson et al. Jan 2009 A1
20090007001 Morin et al. Jan 2009 A1
20090011709 Akasaka et al. Jan 2009 A1
20090012748 Beish et al. Jan 2009 A1
20090012775 El Hady et al. Jan 2009 A1
20090018828 Nakadai et al. Jan 2009 A1
20090018829 Kuperstein Jan 2009 A1
20090018834 Cooper et al. Jan 2009 A1
20090018835 Cooper et al. Jan 2009 A1
20090018839 Cooper et al. Jan 2009 A1
20090018840 Lutz et al. Jan 2009 A1
20090022329 Mahowald Jan 2009 A1
20090024595 Chen Jan 2009 A1
20090028435 Wu et al. Jan 2009 A1
20090030685 Cerra et al. Jan 2009 A1
20090030800 Grois Jan 2009 A1
20090030978 Johnson et al. Jan 2009 A1
20090043580 Mozer et al. Feb 2009 A1
20090043583 Agapi et al. Feb 2009 A1
20090043763 Peng Feb 2009 A1
20090044094 Rapp et al. Feb 2009 A1
20090048821 Yam et al. Feb 2009 A1
20090048841 Pollet et al. Feb 2009 A1
20090048845 Burckart et al. Feb 2009 A1
20090049067 Murray Feb 2009 A1
20090055168 Wu et al. Feb 2009 A1
20090055175 Terrell et al. Feb 2009 A1
20090055179 Cho et al. Feb 2009 A1
20090055186 Lance et al. Feb 2009 A1
20090055380 Peng et al. Feb 2009 A1
20090055381 Wu et al. Feb 2009 A1
20090055648 Kim et al. Feb 2009 A1
20090058823 Kocienda Mar 2009 A1
20090058860 Fong et al. Mar 2009 A1
20090060351 Li et al. Mar 2009 A1
20090060472 Bull et al. Mar 2009 A1
20090063974 Bull et al. Mar 2009 A1
20090064031 Bull et al. Mar 2009 A1
20090070097 Wu et al. Mar 2009 A1
20090070102 Maegawa Mar 2009 A1
20090070109 Didcock et al. Mar 2009 A1
20090070114 Staszak Mar 2009 A1
20090074214 Bradford et al. Mar 2009 A1
20090076792 Lawson-Tancred Mar 2009 A1
20090076796 Daraselia Mar 2009 A1
20090076798 Oh et al. Mar 2009 A1
20090076819 Wouters et al. Mar 2009 A1
20090076821 Brenner et al. Mar 2009 A1
20090076825 Bradford et al. Mar 2009 A1
20090077165 Rhodes et al. Mar 2009 A1
20090077464 Goldsmith et al. Mar 2009 A1
20090079622 Seshadri et al. Mar 2009 A1
20090083034 Hernandez et al. Mar 2009 A1
20090083035 Huang et al. Mar 2009 A1
20090083036 Zhao et al. Mar 2009 A1
20090083037 Gleason et al. Mar 2009 A1
20090083047 Lindahl et al. Mar 2009 A1
20090089058 Bellegarda Apr 2009 A1
20090091537 Huang et al. Apr 2009 A1
20090092239 Macwan et al. Apr 2009 A1
20090092260 Powers Apr 2009 A1
20090092261 Bard Apr 2009 A1
20090092262 Costa et al. Apr 2009 A1
20090094029 Koch et al. Apr 2009 A1
20090094033 Mozer et al. Apr 2009 A1
20090097634 Nambiar et al. Apr 2009 A1
20090097637 Boscher et al. Apr 2009 A1
20090098903 Donaldson et al. Apr 2009 A1
20090100049 Cao Apr 2009 A1
20090100454 Weber Apr 2009 A1
20090104898 Harris Apr 2009 A1
20090106026 Ferrieux Apr 2009 A1
20090106376 Tom et al. Apr 2009 A1
20090106397 O'Keefe Apr 2009 A1
20090112572 Thorn Apr 2009 A1
20090112576 Jackson et al. Apr 2009 A1
20090112592 Candelore et al. Apr 2009 A1
20090112677 Rhett Apr 2009 A1
20090112892 Cardie et al. Apr 2009 A1
20090119587 Allen et al. May 2009 A1
20090123021 Jung et al. May 2009 A1
20090123071 Iwasaki May 2009 A1
20090125477 Lu et al. May 2009 A1
20090125602 Bhatia et al. May 2009 A1
20090125947 Ibaraki May 2009 A1
20090128505 Partridge et al. May 2009 A1
20090132253 Bellegarda May 2009 A1
20090132255 Lu May 2009 A1
20090137286 Luke et al. May 2009 A1
20090138263 Shozakai et al. May 2009 A1
20090138430 Nambiar et al. May 2009 A1
20090138736 Chin May 2009 A1
20090138828 Schultz et al. May 2009 A1
20090144036 Jorgensen et al. Jun 2009 A1
20090144049 Haddad et al. Jun 2009 A1
20090144428 Bowater et al. Jun 2009 A1
20090144609 Liang et al. Jun 2009 A1
20090146848 Ghassabian Jun 2009 A1
20090150147 Jacoby et al. Jun 2009 A1
20090150156 Kennewick et al. Jun 2009 A1
20090152349 Bonev et al. Jun 2009 A1
20090153288 Hope et al. Jun 2009 A1
20090154669 Wood et al. Jun 2009 A1
20090157382 Bar Jun 2009 A1
20090157384 Toutanova et al. Jun 2009 A1
20090157401 Bennett Jun 2009 A1
20090158200 Palahnuk et al. Jun 2009 A1
20090158323 Bober et al. Jun 2009 A1
20090158423 Orlassino et al. Jun 2009 A1
20090160803 Hashimoto Jun 2009 A1
20090163243 Barbera Jun 2009 A1
20090164301 O'Sullivan et al. Jun 2009 A1
20090164441 Cheyer Jun 2009 A1
20090164655 Pettersson et al. Jun 2009 A1
20090164937 Alviar et al. Jun 2009 A1
20090167508 Fadell et al. Jul 2009 A1
20090167509 Fadell et al. Jul 2009 A1
20090171578 Kim et al. Jul 2009 A1
20090171662 Huang et al. Jul 2009 A1
20090171664 Kennewick et al. Jul 2009 A1
20090172108 Singh Jul 2009 A1
20090172542 Girish et al. Jul 2009 A1
20090174667 Kocienda et al. Jul 2009 A1
20090174677 Gehani et al. Jul 2009 A1
20090177300 Lee Jul 2009 A1
20090177461 Ehsani et al. Jul 2009 A1
20090177966 Chaudhri Jul 2009 A1
20090182445 Girish et al. Jul 2009 A1
20090182549 Anisimovich et al. Jul 2009 A1
20090182702 Miller Jul 2009 A1
20090183070 Robbins Jul 2009 A1
20090187402 Scholl Jul 2009 A1
20090187577 Reznik et al. Jul 2009 A1
20090187950 Nicas et al. Jul 2009 A1
20090190774 Wang et al. Jul 2009 A1
20090191895 Singh et al. Jul 2009 A1
20090192782 Drewes Jul 2009 A1
20090192787 Roon Jul 2009 A1
20090192798 Basson et al. Jul 2009 A1
20090198497 Kwon Aug 2009 A1
20090204402 Marhawa et al. Aug 2009 A1
20090204409 Mozer et al. Aug 2009 A1
20090204478 Kaib et al. Aug 2009 A1
20090204596 Brun et al. Aug 2009 A1
20090204601 Grasset Aug 2009 A1
20090204620 Thione et al. Aug 2009 A1
20090210230 Schwarz et al. Aug 2009 A1
20090210232 Sanchez et al. Aug 2009 A1
20090213134 Stephanick et al. Aug 2009 A1
20090215466 Ahl et al. Aug 2009 A1
20090215503 Zhang et al. Aug 2009 A1
20090216396 Yamagata Aug 2009 A1
20090216528 Gemello et al. Aug 2009 A1
20090216540 Tessel et al. Aug 2009 A1
20090216704 Zheng et al. Aug 2009 A1
20090219166 MacFarlane et al. Sep 2009 A1
20090221274 Venkatakrishnan et al. Sep 2009 A1
20090222257 Sumita et al. Sep 2009 A1
20090222270 Likens et al. Sep 2009 A2
20090222488 Boerries et al. Sep 2009 A1
20090228126 Spielberg et al. Sep 2009 A1
20090228273 Wang et al. Sep 2009 A1
20090228277 Bonforte et al. Sep 2009 A1
20090228281 Singleton et al. Sep 2009 A1
20090228439 Manolescu et al. Sep 2009 A1
20090228792 Van Os et al. Sep 2009 A1
20090228842 Westerman et al. Sep 2009 A1
20090233264 Rogers et al. Sep 2009 A1
20090234638 Ranjan et al. Sep 2009 A1
20090234651 Basir et al. Sep 2009 A1
20090234655 Kwon Sep 2009 A1
20090235280 Tannier et al. Sep 2009 A1
20090239202 Stone Sep 2009 A1
20090239552 Churchill et al. Sep 2009 A1
20090240485 Dalal et al. Sep 2009 A1
20090241054 Hendricks Sep 2009 A1
20090241760 Georges Oct 2009 A1
20090247237 Mittleman et al. Oct 2009 A1
20090248182 Logan et al. Oct 2009 A1
20090248395 Alewine et al. Oct 2009 A1
20090248402 Ito et al. Oct 2009 A1
20090248420 Basir et al. Oct 2009 A1
20090248422 Li et al. Oct 2009 A1
20090248456 Fahmy et al. Oct 2009 A1
20090249198 Davis et al. Oct 2009 A1
20090249247 Tseng et al. Oct 2009 A1
20090252350 Seguin Oct 2009 A1
20090253457 Seguin Oct 2009 A1
20090253463 Shin et al. Oct 2009 A1
20090254339 Seguin Oct 2009 A1
20090254345 Fleizach et al. Oct 2009 A1
20090254819 Song et al. Oct 2009 A1
20090254823 Barrett Oct 2009 A1
20090259475 Yamagami et al. Oct 2009 A1
20090259969 Pallakoff Oct 2009 A1
20090265171 Davis Oct 2009 A1
20090265368 Crider et al. Oct 2009 A1
20090271109 Lee et al. Oct 2009 A1
20090271175 Bodin et al. Oct 2009 A1
20090271176 Bodin et al. Oct 2009 A1
20090271178 Bodin et al. Oct 2009 A1
20090271188 Agapi et al. Oct 2009 A1
20090271189 Agapi et al. Oct 2009 A1
20090274315 Carnes et al. Nov 2009 A1
20090274376 Selvaraj et al. Nov 2009 A1
20090278804 Rubanovich et al. Nov 2009 A1
20090281789 Waibel et al. Nov 2009 A1
20090284482 Chin Nov 2009 A1
20090286514 Lichorowic et al. Nov 2009 A1
20090287583 Holmes Nov 2009 A1
20090290718 Kahn et al. Nov 2009 A1
20090292987 Sorenson Nov 2009 A1
20090296552 Hicks et al. Dec 2009 A1
20090298474 George Dec 2009 A1
20090298529 Mahajan Dec 2009 A1
20090299745 Kennewick et al. Dec 2009 A1
20090299849 Cao et al. Dec 2009 A1
20090300391 Jessup et al. Dec 2009 A1
20090300488 Salamon et al. Dec 2009 A1
20090304198 Herre et al. Dec 2009 A1
20090305203 Okumura et al. Dec 2009 A1
20090306967 Nicolov et al. Dec 2009 A1
20090306969 Goud et al. Dec 2009 A1
20090306979 Jaiswal et al. Dec 2009 A1
20090306980 Shin Dec 2009 A1
20090306981 Cromack et al. Dec 2009 A1
20090306985 Roberts et al. Dec 2009 A1
20090306988 Chen et al. Dec 2009 A1
20090306989 Kaji Dec 2009 A1
20090307162 Bui et al. Dec 2009 A1
20090307201 Dunning et al. Dec 2009 A1
20090307584 Davidson et al. Dec 2009 A1
20090307594 Kosonen et al. Dec 2009 A1
20090309352 Walker et al. Dec 2009 A1
20090313014 Shin et al. Dec 2009 A1
20090313020 Koivunen Dec 2009 A1
20090313023 Jones Dec 2009 A1
20090313026 Coffman et al. Dec 2009 A1
20090313544 Wood et al. Dec 2009 A1
20090313564 Rottler et al. Dec 2009 A1
20090316943 Frigola Munoz et al. Dec 2009 A1
20090318119 Basir et al. Dec 2009 A1
20090318198 Carroll Dec 2009 A1
20090319257 Blume et al. Dec 2009 A1
20090319266 Brown et al. Dec 2009 A1
20090319342 Shilman et al. Dec 2009 A1
20090326923 Yan et al. Dec 2009 A1
20090326936 Nagashima Dec 2009 A1
20090326938 Marila et al. Dec 2009 A1
20090326949 Douthitt et al. Dec 2009 A1
20090327977 Bachfischer et al. Dec 2009 A1
20100004918 Lee et al. Jan 2010 A1
20100004930 Strope et al. Jan 2010 A1
20100004931 Ma et al. Jan 2010 A1
20100005081 Bennett Jan 2010 A1
20100010803 Ishikawa et al. Jan 2010 A1
20100010814 Patel Jan 2010 A1
20100010948 Ito et al. Jan 2010 A1
20100013760 Hirai et al. Jan 2010 A1
20100013796 Abileah et al. Jan 2010 A1
20100017212 Attwater et al. Jan 2010 A1
20100017382 Katragadda et al. Jan 2010 A1
20100019834 Zerbe et al. Jan 2010 A1
20100023318 Lemoine Jan 2010 A1
20100023320 Di Cristo et al. Jan 2010 A1
20100023331 Duta et al. Jan 2010 A1
20100026526 Yokota Feb 2010 A1
20100030549 Lee et al. Feb 2010 A1
20100030928 Conroy et al. Feb 2010 A1
20100031143 Rao et al. Feb 2010 A1
20100036653 Kim et al. Feb 2010 A1
20100036655 Cecil et al. Feb 2010 A1
20100036660 Bennett Feb 2010 A1
20100036928 Granito et al. Feb 2010 A1
20100037183 Miyashita et al. Feb 2010 A1
20100042400 Block et al. Feb 2010 A1
20100042576 Roettger et al. Feb 2010 A1
20100046842 Conwell et al. Feb 2010 A1
20100049498 Cao et al. Feb 2010 A1
20100049514 Kennewick et al. Feb 2010 A1
20100050064 Liu et al. Feb 2010 A1
20100054512 Solum Mar 2010 A1
20100057435 Kent et al. Mar 2010 A1
20100057443 Di Cristo et al. Mar 2010 A1
20100057457 Ogata et al. Mar 2010 A1
20100057461 Neubacher et al. Mar 2010 A1
20100057643 Yang Mar 2010 A1
20100058200 Jablokov et al. Mar 2010 A1
20100060646 Unsal et al. Mar 2010 A1
20100063804 Sato et al. Mar 2010 A1
20100063825 Williams et al. Mar 2010 A1
20100063961 Guiheneuf et al. Mar 2010 A1
20100064113 Lindahl et al. Mar 2010 A1
20100064218 Bull et al. Mar 2010 A1
20100064226 Stefaniak et al. Mar 2010 A1
20100066546 Aaron Mar 2010 A1
20100066684 Shahraray et al. Mar 2010 A1
20100067723 Bergmann et al. Mar 2010 A1
20100067867 Lin et al. Mar 2010 A1
20100070281 Conkie et al. Mar 2010 A1
20100070521 Clinchant et al. Mar 2010 A1
20100070899 Hunt et al. Mar 2010 A1
20100071003 Bychkov et al. Mar 2010 A1
20100076760 Kraenzel et al. Mar 2010 A1
20100076993 Klawitter et al. Mar 2010 A1
20100077350 Lim et al. Mar 2010 A1
20100079501 Ikeda et al. Apr 2010 A1
20100080398 Waldmann Apr 2010 A1
20100080470 Deluca et al. Apr 2010 A1
20100081456 Singh et al. Apr 2010 A1
20100081487 Chen et al. Apr 2010 A1
20100082286 Leung Apr 2010 A1
20100082327 Rogers et al. Apr 2010 A1
20100082328 Rogers et al. Apr 2010 A1
20100082329 Silverman et al. Apr 2010 A1
20100082333 Al-Shammari Apr 2010 A1
20100082346 Rogers et al. Apr 2010 A1
20100082347 Rogers et al. Apr 2010 A1
20100082348 Silverman et al. Apr 2010 A1
20100082349 Bellegarda et al. Apr 2010 A1
20100082567 Rosenblatt et al. Apr 2010 A1
20100082970 Lindahl et al. Apr 2010 A1
20100086152 Rank et al. Apr 2010 A1
20100086153 Hagen et al. Apr 2010 A1
20100086156 Rank et al. Apr 2010 A1
20100088020 Sano et al. Apr 2010 A1
20100088093 Lee et al. Apr 2010 A1
20100088100 Lindahl Apr 2010 A1
20100094632 Davis et al. Apr 2010 A1
20100098231 Wohlert et al. Apr 2010 A1
20100100212 Lindahl et al. Apr 2010 A1
20100100384 Ju et al. Apr 2010 A1
20100100385 Davis et al. Apr 2010 A1
20100100816 Mccloskey et al. Apr 2010 A1
20100103776 Chan Apr 2010 A1
20100106486 Hua et al. Apr 2010 A1
20100106498 Morrison et al. Apr 2010 A1
20100106500 McKee et al. Apr 2010 A1
20100106503 Farrell et al. Apr 2010 A1
20100114856 Kuboyama May 2010 A1
20100114887 Conway et al. May 2010 A1
20100121637 Roy et al. May 2010 A1
20100125456 Weng et al. May 2010 A1
20100125458 Franco et al. May 2010 A1
20100125460 Mellott et al. May 2010 A1
20100125811 Moore et al. May 2010 A1
20100131269 Park et al. May 2010 A1
20100131273 Aley-Raz et al. May 2010 A1
20100131498 Linthicum et al. May 2010 A1
20100131899 Hubert May 2010 A1
20100138215 Williams Jun 2010 A1
20100138224 Bedingfield, Sr. Jun 2010 A1
20100138416 Bellotti Jun 2010 A1
20100138680 Brisebois et al. Jun 2010 A1
20100138759 Roy Jun 2010 A1
20100138798 Wilson et al. Jun 2010 A1
20100142740 Roerup Jun 2010 A1
20100145694 Ju et al. Jun 2010 A1
20100145700 Kennewick et al. Jun 2010 A1
20100145707 Ljolje et al. Jun 2010 A1
20100146442 Nagasaka et al. Jun 2010 A1
20100150321 Harris et al. Jun 2010 A1
20100153114 Shih et al. Jun 2010 A1
20100153115 Klee et al. Jun 2010 A1
20100153448 Harpur et al. Jun 2010 A1
20100161311 Massuh Jun 2010 A1
20100161313 Karttunen Jun 2010 A1
20100161337 Pulz et al. Jun 2010 A1
20100161554 Datuashvili et al. Jun 2010 A1
20100164897 Morin et al. Jul 2010 A1
20100169075 Raffa et al. Jul 2010 A1
20100169093 Washio Jul 2010 A1
20100169097 Nachman et al. Jul 2010 A1
20100169098 Patch Jul 2010 A1
20100171713 Kwok et al. Jul 2010 A1
20100174544 Heifets Jul 2010 A1
20100175066 Paik Jul 2010 A1
20100179932 Yoon et al. Jul 2010 A1
20100179991 Lorch et al. Jul 2010 A1
20100180218 Boston et al. Jul 2010 A1
20100185448 Meisel Jul 2010 A1
20100185949 Jaeger Jul 2010 A1
20100191520 Gruhn et al. Jul 2010 A1
20100197359 Harris Aug 2010 A1
20100199180 Brichter et al. Aug 2010 A1
20100199215 Seymour et al. Aug 2010 A1
20100204986 Kennewick et al. Aug 2010 A1
20100211199 Naik et al. Aug 2010 A1
20100211379 Gorman et al. Aug 2010 A1
20100211644 Lavoie et al. Aug 2010 A1
20100216509 Riemer et al. Aug 2010 A1
20100217604 Baldwin et al. Aug 2010 A1
20100222033 Scott et al. Sep 2010 A1
20100222098 Garg Sep 2010 A1
20100223055 Mclean Sep 2010 A1
20100223056 Kadirkamanathan et al. Sep 2010 A1
20100223131 Scott et al. Sep 2010 A1
20100225599 Danielsson et al. Sep 2010 A1
20100225809 Connors et al. Sep 2010 A1
20100227642 Kim et al. Sep 2010 A1
20100228540 Bennett Sep 2010 A1
20100228549 Herman et al. Sep 2010 A1
20100228691 Yang et al. Sep 2010 A1
20100229082 Karmarkar et al. Sep 2010 A1
20100229100 Miller et al. Sep 2010 A1
20100231474 Yamagajo et al. Sep 2010 A1
20100235167 Bourdon Sep 2010 A1
20100235341 Bennett Sep 2010 A1
20100235729 Kocienda et al. Sep 2010 A1
20100235732 Bergman Sep 2010 A1
20100235770 Ording et al. Sep 2010 A1
20100235780 Westerman et al. Sep 2010 A1
20100241418 Maeda et al. Sep 2010 A1
20100250542 Fujimaki Sep 2010 A1
20100250599 Schmidt et al. Sep 2010 A1
20100255858 Juhasz Oct 2010 A1
20100257160 Cao Oct 2010 A1
20100257478 Longe et al. Oct 2010 A1
20100262599 Nitz Oct 2010 A1
20100268537 Al-Telmissani Oct 2010 A1
20100268539 Xu et al. Oct 2010 A1
20100269040 Lee Oct 2010 A1
20100274753 Liberty et al. Oct 2010 A1
20100277579 Cho et al. Nov 2010 A1
20100278320 Arsenault et al. Nov 2010 A1
20100278453 King Nov 2010 A1
20100280983 Cho et al. Nov 2010 A1
20100281034 Petrou et al. Nov 2010 A1
20100286984 Wandinger et al. Nov 2010 A1
20100286985 Kennewick et al. Nov 2010 A1
20100287514 Cragun et al. Nov 2010 A1
20100290632 Lin Nov 2010 A1
20100293460 Budelli Nov 2010 A1
20100295645 Falldin et al. Nov 2010 A1
20100299133 Kopparapu et al. Nov 2010 A1
20100299138 Kim Nov 2010 A1
20100299142 Freeman et al. Nov 2010 A1
20100302056 Dutton et al. Dec 2010 A1
20100304342 Zilber Dec 2010 A1
20100304705 Hursey et al. Dec 2010 A1
20100305807 Basir et al. Dec 2010 A1
20100305947 Schwarz et al. Dec 2010 A1
20100312547 Van Os et al. Dec 2010 A1
20100312566 Odinak et al. Dec 2010 A1
20100318366 Sullivan et al. Dec 2010 A1
20100318576 Kim Dec 2010 A1
20100322438 Siotis Dec 2010 A1
20100324709 Starmen Dec 2010 A1
20100324895 Kurzweil et al. Dec 2010 A1
20100324896 Attwater et al. Dec 2010 A1
20100324905 Kurzweil et al. Dec 2010 A1
20100325131 Dumais et al. Dec 2010 A1
20100325158 Oral et al. Dec 2010 A1
20100325573 Estrada et al. Dec 2010 A1
20100325588 Reddy et al. Dec 2010 A1
20100330908 Maddern et al. Dec 2010 A1
20100332220 Hursey et al. Dec 2010 A1
20100332224 Mäkelä et al. Dec 2010 A1
20100332235 David Dec 2010 A1
20100332236 Tan Dec 2010 A1
20100332280 Bradley et al. Dec 2010 A1
20100332348 Cao Dec 2010 A1
20100332428 Mchenry et al. Dec 2010 A1
20100332976 Fux et al. Dec 2010 A1
20100333030 Johns Dec 2010 A1
20100333163 Daly Dec 2010 A1
20110002487 Panther et al. Jan 2011 A1
20110004475 Bellegarda Jan 2011 A1
20110006876 Moberg et al. Jan 2011 A1
20110009107 Guba et al. Jan 2011 A1
20110010178 Lee et al. Jan 2011 A1
20110010644 Merrill et al. Jan 2011 A1
20110015928 Odell et al. Jan 2011 A1
20110016150 Engstrom et al. Jan 2011 A1
20110016421 Krupka et al. Jan 2011 A1
20110018695 Bells et al. Jan 2011 A1
20110021211 Ohki Jan 2011 A1
20110021213 Carr Jan 2011 A1
20110022292 Shen et al. Jan 2011 A1
20110022388 Wu et al. Jan 2011 A1
20110022393 Waller et al. Jan 2011 A1
20110022394 Wide et al. Jan 2011 A1
20110022472 Zon et al. Jan 2011 A1
20110022952 Wu et al. Jan 2011 A1
20110029616 Wang et al. Feb 2011 A1
20110030067 Wilson Feb 2011 A1
20110033064 Johnson et al. Feb 2011 A1
20110034183 Haag et al. Feb 2011 A1
20110035144 Okamoto et al. Feb 2011 A1
20110035434 Lockwood Feb 2011 A1
20110038489 Visser et al. Feb 2011 A1
20110040707 Theisen et al. Feb 2011 A1
20110045841 Kuhlke et al. Feb 2011 A1
20110047072 Ciurea Feb 2011 A1
20110047149 Vaananen Feb 2011 A1
20110047161 Myaeng et al. Feb 2011 A1
20110047266 Yu et al. Feb 2011 A1
20110047605 Sontag et al. Feb 2011 A1
20110050591 Kim et al. Mar 2011 A1
20110050592 Kim et al. Mar 2011 A1
20110054647 Chipchase Mar 2011 A1
20110054894 Phillips et al. Mar 2011 A1
20110054901 Qin et al. Mar 2011 A1
20110055256 Phillips et al. Mar 2011 A1
20110060584 Ferrucci et al. Mar 2011 A1
20110060587 Phillips et al. Mar 2011 A1
20110060589 Weinberg et al. Mar 2011 A1
20110060807 Martin et al. Mar 2011 A1
20110064387 Mendeloff et al. Mar 2011 A1
20110065456 Brennan et al. Mar 2011 A1
20110066366 Ellanti et al. Mar 2011 A1
20110066468 Huang et al. Mar 2011 A1
20110066634 Phillips et al. Mar 2011 A1
20110072492 Mohler et al. Mar 2011 A1
20110076994 Kim et al. Mar 2011 A1
20110077943 Miki et al. Mar 2011 A1
20110080260 Wang et al. Apr 2011 A1
20110081889 Gao et al. Apr 2011 A1
20110082688 Kim et al. Apr 2011 A1
20110083079 Farrell et al. Apr 2011 A1
20110087491 Wittenstein et al. Apr 2011 A1
20110087685 Lin et al. Apr 2011 A1
20110090078 Kim et al. Apr 2011 A1
20110092187 Miller Apr 2011 A1
20110093261 Angott Apr 2011 A1
20110093265 Stent et al. Apr 2011 A1
20110093271 Bernard et al. Apr 2011 A1
20110099000 Rai et al. Apr 2011 A1
20110103682 Chidlovskii et al. May 2011 A1
20110105097 Tadayon et al. May 2011 A1
20110106736 Aharonson et al. May 2011 A1
20110106892 Nelson et al. May 2011 A1
20110110502 Daye et al. May 2011 A1
20110111724 Baptiste May 2011 A1
20110112827 Kennewick et al. May 2011 A1
20110112837 Kurki-Suonio et al. May 2011 A1
20110112838 Adibi May 2011 A1
20110112921 Kennewick et al. May 2011 A1
20110116610 Shaw et al. May 2011 A1
20110119049 Ylonen May 2011 A1
20110119051 Li et al. May 2011 A1
20110119623 Kim May 2011 A1
20110119715 Chang et al. May 2011 A1
20110123004 Chang et al. May 2011 A1
20110125498 Pickering et al. May 2011 A1
20110125540 Jang et al. May 2011 A1
20110125701 Nair et al. May 2011 A1
20110130958 Stahl et al. Jun 2011 A1
20110131036 DiCristo et al. Jun 2011 A1
20110131038 Oyaizu et al. Jun 2011 A1
20110131045 Cristo et al. Jun 2011 A1
20110137636 Srihari et al. Jun 2011 A1
20110141141 Kankainen Jun 2011 A1
20110143726 de Silva Jun 2011 A1
20110143811 Rodriguez Jun 2011 A1
20110144857 Wingrove et al. Jun 2011 A1
20110144901 Wang Jun 2011 A1
20110144973 Bocchieri et al. Jun 2011 A1
20110144999 Jang et al. Jun 2011 A1
20110145718 Ketola et al. Jun 2011 A1
20110151830 Blanda et al. Jun 2011 A1
20110153209 Geelen Jun 2011 A1
20110153322 Kwak et al. Jun 2011 A1
20110153324 Ballinger et al. Jun 2011 A1
20110153329 Moorer Jun 2011 A1
20110153330 Yazdani et al. Jun 2011 A1
20110153373 Dantzig et al. Jun 2011 A1
20110154193 Creutz et al. Jun 2011 A1
20110157029 Tseng Jun 2011 A1
20110161072 Terao et al. Jun 2011 A1
20110161076 Davis et al. Jun 2011 A1
20110161079 Gruhn et al. Jun 2011 A1
20110161309 Lung et al. Jun 2011 A1
20110161852 Vainio et al. Jun 2011 A1
20110166851 LeBeau et al. Jul 2011 A1
20110167350 Hoellwarth Jul 2011 A1
20110175810 Markovic et al. Jul 2011 A1
20110179002 Dumitru et al. Jul 2011 A1
20110179372 Moore et al. Jul 2011 A1
20110183650 Mckee et al. Jul 2011 A1
20110184721 Subramanian et al. Jul 2011 A1
20110184730 LeBeau et al. Jul 2011 A1
20110184736 Slotznick Jul 2011 A1
20110184737 Nakano et al. Jul 2011 A1
20110184768 Norton et al. Jul 2011 A1
20110185288 Gupta et al. Jul 2011 A1
20110191108 Friedlander Aug 2011 A1
20110191271 Baker et al. Aug 2011 A1
20110191344 Jin et al. Aug 2011 A1
20110195758 Damale et al. Aug 2011 A1
20110196670 Dang et al. Aug 2011 A1
20110197128 Assadollahi et al. Aug 2011 A1
20110199312 Okuta Aug 2011 A1
20110201385 Higginbotham et al. Aug 2011 A1
20110201387 Paek et al. Aug 2011 A1
20110202526 Lee et al. Aug 2011 A1
20110205149 Tom et al. Aug 2011 A1
20110208511 Sikstrom et al. Aug 2011 A1
20110208524 Haughay Aug 2011 A1
20110209088 Hinckley et al. Aug 2011 A1
20110212717 Rhoads et al. Sep 2011 A1
20110216093 Griffin Sep 2011 A1
20110218806 Alewine et al. Sep 2011 A1
20110218855 Cao et al. Sep 2011 A1
20110219018 Bailey et al. Sep 2011 A1
20110223893 Lau et al. Sep 2011 A1
20110224972 Millett et al. Sep 2011 A1
20110228913 Cochinwala et al. Sep 2011 A1
20110231182 Weider et al. Sep 2011 A1
20110231184 Kerr Sep 2011 A1
20110231188 Kennewick et al. Sep 2011 A1
20110231432 Sata et al. Sep 2011 A1
20110231474 Locker et al. Sep 2011 A1
20110238191 Kristjansson et al. Sep 2011 A1
20110238407 Kent Sep 2011 A1
20110238408 Larcheveque et al. Sep 2011 A1
20110238676 Liu et al. Sep 2011 A1
20110239111 Grover Sep 2011 A1
20110242007 Gray et al. Oct 2011 A1
20110244888 Ohki Oct 2011 A1
20110246471 Rakib et al. Oct 2011 A1
20110249144 Chang Oct 2011 A1
20110250570 Mack et al. Oct 2011 A1
20110257966 Rychlik Oct 2011 A1
20110258188 Abdalmageed et al. Oct 2011 A1
20110260829 Lee Oct 2011 A1
20110260861 Singh et al. Oct 2011 A1
20110264643 Cao Oct 2011 A1
20110264999 Bells et al. Oct 2011 A1
20110274303 Filson et al. Nov 2011 A1
20110276595 Kirkland et al. Nov 2011 A1
20110276598 Kozempel Nov 2011 A1
20110276944 Bergman et al. Nov 2011 A1
20110279368 Klein et al. Nov 2011 A1
20110282663 Talwar et al. Nov 2011 A1
20110282888 Koperski et al. Nov 2011 A1
20110282906 Wong Nov 2011 A1
20110283189 McCarty Nov 2011 A1
20110288852 Dymetman et al. Nov 2011 A1
20110288855 Roy Nov 2011 A1
20110288861 Kurzweil et al. Nov 2011 A1
20110288863 Rasmussen Nov 2011 A1
20110288866 Rasmussen Nov 2011 A1
20110298585 Barry Dec 2011 A1
20110301943 Patch Dec 2011 A1
20110302162 Xiao et al. Dec 2011 A1
20110306426 Novak et al. Dec 2011 A1
20110307241 Waibel et al. Dec 2011 A1
20110307491 Fisk et al. Dec 2011 A1
20110307810 Hilerio et al. Dec 2011 A1
20110313775 Laligand et al. Dec 2011 A1
20110314003 Ju et al. Dec 2011 A1
20110314032 Bennett et al. Dec 2011 A1
20110314404 Kotler et al. Dec 2011 A1
20110320187 Motik et al. Dec 2011 A1
20120002820 Leichter Jan 2012 A1
20120005602 Anttila et al. Jan 2012 A1
20120008754 Mukherjee et al. Jan 2012 A1
20120010886 Razavilar Jan 2012 A1
20120011138 Dunning et al. Jan 2012 A1
20120013609 Reponen et al. Jan 2012 A1
20120015629 Olsen et al. Jan 2012 A1
20120016658 Wu et al. Jan 2012 A1
20120016678 Gruber et al. Jan 2012 A1
20120019400 Patel et al. Jan 2012 A1
20120020490 Leichter Jan 2012 A1
20120022787 LeBeau et al. Jan 2012 A1
20120022857 Baldwin et al. Jan 2012 A1
20120022860 Lloyd et al. Jan 2012 A1
20120022868 LeBeau et al. Jan 2012 A1
20120022869 Lloyd et al. Jan 2012 A1
20120022870 Kristjansson et al. Jan 2012 A1
20120022872 Gruber et al. Jan 2012 A1
20120022874 Lloyd et al. Jan 2012 A1
20120022876 LeBeau et al. Jan 2012 A1
20120022967 Bachman et al. Jan 2012 A1
20120023088 Cheng et al. Jan 2012 A1
20120023095 Wadycki et al. Jan 2012 A1
20120023462 Rosing et al. Jan 2012 A1
20120029661 Jones et al. Feb 2012 A1
20120029910 Medlock et al. Feb 2012 A1
20120034904 LeBeau et al. Feb 2012 A1
20120035907 Lebeau et al. Feb 2012 A1
20120035908 Lebeau et al. Feb 2012 A1
20120035924 Jitkoff et al. Feb 2012 A1
20120035925 Friend et al. Feb 2012 A1
20120035926 Ambler Feb 2012 A1
20120035931 LeBeau et al. Feb 2012 A1
20120035932 Jitkoff et al. Feb 2012 A1
20120035935 Park et al. Feb 2012 A1
20120036556 LeBeau et al. Feb 2012 A1
20120039539 Boiman et al. Feb 2012 A1
20120041752 Wang et al. Feb 2012 A1
20120042014 Desai et al. Feb 2012 A1
20120042343 Laligand et al. Feb 2012 A1
20120053815 Montanari et al. Mar 2012 A1
20120053829 Agarwal et al. Mar 2012 A1
20120053945 Gupta et al. Mar 2012 A1
20120056815 Mehra Mar 2012 A1
20120059655 Cartales Mar 2012 A1
20120059813 Sejnoha et al. Mar 2012 A1
20120062473 Xiao et al. Mar 2012 A1
20120066212 Jennings Mar 2012 A1
20120066581 Spalink Mar 2012 A1
20120075054 Ge et al. Mar 2012 A1
20120077479 Sabotta et al. Mar 2012 A1
20120078611 Soltani et al. Mar 2012 A1
20120078624 Yook et al. Mar 2012 A1
20120078627 Wagner Mar 2012 A1
20120078635 Rothkopf et al. Mar 2012 A1
20120078747 Chakrabarti et al. Mar 2012 A1
20120082317 Pance et al. Apr 2012 A1
20120083286 Kim et al. Apr 2012 A1
20120084086 Gilbert et al. Apr 2012 A1
20120084634 Wong et al. Apr 2012 A1
20120088219 Briscoe et al. Apr 2012 A1
20120089331 Schmidt et al. Apr 2012 A1
20120101823 Weng et al. Apr 2012 A1
20120108166 Hymel May 2012 A1
20120108221 Thomas et al. May 2012 A1
20120116770 Chen et al. May 2012 A1
20120117499 Mori et al. May 2012 A1
20120124126 Alcazar et al. May 2012 A1
20120128322 Shaffer et al. May 2012 A1
20120130709 Bocchieri et al. May 2012 A1
20120136572 Norton May 2012 A1
20120136855 Ni et al. May 2012 A1
20120136985 Popescu et al. May 2012 A1
20120137367 Dupont et al. May 2012 A1
20120149342 Cohen et al. Jun 2012 A1
20120149394 Singh et al. Jun 2012 A1
20120150544 McLoughlin et al. Jun 2012 A1
20120150580 Norton Jun 2012 A1
20120158293 Burnham Jun 2012 A1
20120158399 Tremblay et al. Jun 2012 A1
20120158422 Burnham et al. Jun 2012 A1
20120159380 Kocienda et al. Jun 2012 A1
20120163710 Skaff et al. Jun 2012 A1
20120166196 Ju et al. Jun 2012 A1
20120173222 Wang et al. Jul 2012 A1
20120173244 Kwak et al. Jul 2012 A1
20120173464 Tur et al. Jul 2012 A1
20120174121 Treat et al. Jul 2012 A1
20120179457 Newman et al. Jul 2012 A1
20120179467 Williams Jul 2012 A1
20120185237 Gajic et al. Jul 2012 A1
20120185480 Ni et al. Jul 2012 A1
20120185781 Guzman et al. Jul 2012 A1
20120191461 Lin et al. Jul 2012 A1
20120192096 Bowman et al. Jul 2012 A1
20120197743 Grigg et al. Aug 2012 A1
20120197995 Caruso Aug 2012 A1
20120197998 Kessel et al. Aug 2012 A1
20120201362 Crossan et al. Aug 2012 A1
20120209853 Desai et al. Aug 2012 A1
20120209874 Wong et al. Aug 2012 A1
20120210266 Jiang et al. Aug 2012 A1
20120214141 Raya et al. Aug 2012 A1
20120214517 Singh et al. Aug 2012 A1
20120215762 Hall et al. Aug 2012 A1
20120221339 Wang et al. Aug 2012 A1
20120221552 Reponen et al. Aug 2012 A1
20120223889 Medlock et al. Sep 2012 A1
20120223936 Aughey et al. Sep 2012 A1
20120232885 Barbosa et al. Sep 2012 A1
20120232886 Capuozzo et al. Sep 2012 A1
20120232906 Lindahl et al. Sep 2012 A1
20120233266 Hassan et al. Sep 2012 A1
20120239661 Giblin Sep 2012 A1
20120239761 Linner et al. Sep 2012 A1
20120242482 Elumalai et al. Sep 2012 A1
20120245719 Story, Jr. et al. Sep 2012 A1
20120245939 Braho et al. Sep 2012 A1
20120245941 Cheyer Sep 2012 A1
20120245944 Gruber et al. Sep 2012 A1
20120246064 Balkow Sep 2012 A1
20120250858 Iqbal et al. Oct 2012 A1
20120252367 Gaglio et al. Oct 2012 A1
20120252540 Kirigaya Oct 2012 A1
20120253785 Hamid et al. Oct 2012 A1
20120254143 Varma et al. Oct 2012 A1
20120254152 Park et al. Oct 2012 A1
20120254290 Naaman Oct 2012 A1
20120259615 Morin et al. Oct 2012 A1
20120265528 Gruber et al. Oct 2012 A1
20120265535 Bryant-Rich et al. Oct 2012 A1
20120265806 Blanchflower et al. Oct 2012 A1
20120271625 Bernard Oct 2012 A1
20120271634 Lenke Oct 2012 A1
20120271635 Ljolje Oct 2012 A1
20120271640 Basir Oct 2012 A1
20120271676 Aravamudan et al. Oct 2012 A1
20120275377 Lehane et al. Nov 2012 A1
20120284015 Drewes Nov 2012 A1
20120284027 Mallett et al. Nov 2012 A1
20120290291 Shelley et al. Nov 2012 A1
20120290300 Lee et al. Nov 2012 A1
20120295708 Hernandez-Abrego et al. Nov 2012 A1
20120296649 Bansal et al. Nov 2012 A1
20120296654 Hendrickson et al. Nov 2012 A1
20120296891 Rangan Nov 2012 A1
20120297348 Santoro Nov 2012 A1
20120303369 Brush et al. Nov 2012 A1
20120303371 Labsky et al. Nov 2012 A1
20120304124 Chen et al. Nov 2012 A1
20120309363 Gruber et al. Dec 2012 A1
20120310642 Cao et al. Dec 2012 A1
20120310649 Cannistraro et al. Dec 2012 A1
20120310652 O'Sullivan Dec 2012 A1
20120310922 Johnson et al. Dec 2012 A1
20120311478 Van Os et al. Dec 2012 A1
20120311583 Gruber et al. Dec 2012 A1
20120311584 Gruber et al. Dec 2012 A1
20120311585 Gruber et al. Dec 2012 A1
20120316862 Sultan et al. Dec 2012 A1
20120316875 Nyquist et al. Dec 2012 A1
20120316878 Singleton et al. Dec 2012 A1
20120317194 Tian Dec 2012 A1
20120317498 Logan et al. Dec 2012 A1
20120321112 Schubert et al. Dec 2012 A1
20120324391 Tocci et al. Dec 2012 A1
20120327009 Fleizach Dec 2012 A1
20120329529 van der Raadt Dec 2012 A1
20120330660 Jaiswal Dec 2012 A1
20120330661 Lindahl Dec 2012 A1
20120330990 Chen et al. Dec 2012 A1
20130002716 Walker et al. Jan 2013 A1
20130005405 Prociw Jan 2013 A1
20130006633 Grokop et al. Jan 2013 A1
20130006637 Kanevsky et al. Jan 2013 A1
20130006638 Lindahl Jan 2013 A1
20130007648 Gamon et al. Jan 2013 A1
20130010575 He et al. Jan 2013 A1
20130013313 Shechtman et al. Jan 2013 A1
20130013319 Grant et al. Jan 2013 A1
20130018659 Chi Jan 2013 A1
20130024576 Dishneau et al. Jan 2013 A1
20130027875 Zhu et al. Jan 2013 A1
20130030787 Cancedda et al. Jan 2013 A1
20130030789 Dalce Jan 2013 A1
20130030804 Zavaliagko et al. Jan 2013 A1
20130030815 Madhvanath et al. Jan 2013 A1
20130030913 Zhu et al. Jan 2013 A1
20130030955 David Jan 2013 A1
20130031162 Willis et al. Jan 2013 A1
20130031476 Coin et al. Jan 2013 A1
20130033643 Kim et al. Feb 2013 A1
20130035086 Chardon et al. Feb 2013 A1
20130035942 Kim et al. Feb 2013 A1
20130035961 Yegnanarayanan Feb 2013 A1
20130041647 Ramerth et al. Feb 2013 A1
20130041654 Walker et al. Feb 2013 A1
20130041661 Lee et al. Feb 2013 A1
20130041665 Jang et al. Feb 2013 A1
20130041667 Longe et al. Feb 2013 A1
20130041968 Cohen et al. Feb 2013 A1
20130046544 Kay et al. Feb 2013 A1
20130050089 Neels et al. Feb 2013 A1
20130054550 Bolohan Feb 2013 A1
20130054609 Rajput et al. Feb 2013 A1
20130054613 Bishop Feb 2013 A1
20130054675 Jenkins et al. Feb 2013 A1
20130054706 Graham et al. Feb 2013 A1
20130055099 Yao et al. Feb 2013 A1
20130055147 Vasudev et al. Feb 2013 A1
20130063611 Papakipos et al. Mar 2013 A1
20130066832 Sheehan et al. Mar 2013 A1
20130067307 Tian et al. Mar 2013 A1
20130073286 Bastea-Forte et al. Mar 2013 A1
20130073346 Chun et al. Mar 2013 A1
20130080152 Brun et al. Mar 2013 A1
20130080162 Chang et al. Mar 2013 A1
20130080167 Mozer Mar 2013 A1
20130080177 Chen Mar 2013 A1
20130080251 Dempski Mar 2013 A1
20130082967 Hillis et al. Apr 2013 A1
20130085755 Bringert et al. Apr 2013 A1
20130085761 Bringert et al. Apr 2013 A1
20130090921 Liu et al. Apr 2013 A1
20130091090 Spivack et al. Apr 2013 A1
20130095805 Lebeau et al. Apr 2013 A1
20130096909 Brun et al. Apr 2013 A1
20130096917 Edgar et al. Apr 2013 A1
20130097566 Berglund Apr 2013 A1
20130097682 Zeljkovic et al. Apr 2013 A1
20130100268 Mihailidis et al. Apr 2013 A1
20130103391 Millmore et al. Apr 2013 A1
20130103405 Namba et al. Apr 2013 A1
20130106742 Lee et al. May 2013 A1
20130110505 Gruber et al. May 2013 A1
20130110515 Guzzoni et al. May 2013 A1
20130110518 Gruber et al. May 2013 A1
20130110519 Cheyer et al. May 2013 A1
20130110520 Cheyer et al. May 2013 A1
20130110943 Menon et al. May 2013 A1
20130111330 Staikos et al. May 2013 A1
20130111348 Gruber et al. May 2013 A1
20130111487 Cheyer et al. May 2013 A1
20130111581 Griffin et al. May 2013 A1
20130115927 Gruber et al. May 2013 A1
20130117022 Chen et al. May 2013 A1
20130124189 Baldwin et al. May 2013 A1
20130132084 Stonehocker et al. May 2013 A1
20130132089 Fanty et al. May 2013 A1
20130132871 Zeng et al. May 2013 A1
20130141551 Kim Jun 2013 A1
20130142317 Reynolds Jun 2013 A1
20130142345 Waldmann Jun 2013 A1
20130144594 Bangalore et al. Jun 2013 A1
20130144616 Bangalore et al. Jun 2013 A1
20130151339 Kim et al. Jun 2013 A1
20130152092 Yadgar et al. Jun 2013 A1
20130154811 Ferren et al. Jun 2013 A1
20130157629 Lee et al. Jun 2013 A1
20130158977 Senior Jun 2013 A1
20130165232 Nelson et al. Jun 2013 A1
20130166303 Chang et al. Jun 2013 A1
20130166442 Nakajima et al. Jun 2013 A1
20130170738 Capuozzo et al. Jul 2013 A1
20130172022 Seymour et al. Jul 2013 A1
20130176244 Yamamoto et al. Jul 2013 A1
20130176592 Sasaki Jul 2013 A1
20130179440 Gordon Jul 2013 A1
20130183944 Mozer et al. Jul 2013 A1
20130185059 Riccardi et al. Jul 2013 A1
20130185074 Gruber et al. Jul 2013 A1
20130185081 Cheyer et al. Jul 2013 A1
20130185336 Singh et al. Jul 2013 A1
20130187850 Schulz et al. Jul 2013 A1
20130191117 Atti et al. Jul 2013 A1
20130197911 Wei et al. Aug 2013 A1
20130204813 Master et al. Aug 2013 A1
20130204897 McDougall Aug 2013 A1
20130207898 Sullivan et al. Aug 2013 A1
20130218553 Fujii et al. Aug 2013 A1
20130218560 Hsiao et al. Aug 2013 A1
20130222249 Pasquero et al. Aug 2013 A1
20130225128 Gomar Aug 2013 A1
20130231917 Naik Sep 2013 A1
20130234947 Kristensson et al. Sep 2013 A1
20130235987 Arroniz-Escobar et al. Sep 2013 A1
20130238647 Thompson Sep 2013 A1
20130244615 Miller et al. Sep 2013 A1
20130246048 Nagase et al. Sep 2013 A1
20130246050 Yu et al. Sep 2013 A1
20130246329 Pasquero et al. Sep 2013 A1
20130253911 Petri et al. Sep 2013 A1
20130253912 Medlock et al. Sep 2013 A1
20130275117 Winer Oct 2013 A1
20130275138 Gruber et al. Oct 2013 A1
20130275164 Gruber et al. Oct 2013 A1
20130275199 Proctor, Jr. et al. Oct 2013 A1
20130275625 Taivalsaari et al. Oct 2013 A1
20130275875 Gruber et al. Oct 2013 A1
20130275899 Schubert et al. Oct 2013 A1
20130283168 Brown et al. Oct 2013 A1
20130289991 Eshwar et al. Oct 2013 A1
20130289993 Rao et al. Oct 2013 A1
20130289994 Newman et al. Oct 2013 A1
20130291015 Pan Oct 2013 A1
20130297317 Lee et al. Nov 2013 A1
20130297319 Kim Nov 2013 A1
20130297348 Cardoza et al. Nov 2013 A1
20130300645 Fedorov Nov 2013 A1
20130303106 Martin Nov 2013 A1
20130304479 Teller et al. Nov 2013 A1
20130304758 Gruber et al. Nov 2013 A1
20130304815 Puente et al. Nov 2013 A1
20130305119 Kern et al. Nov 2013 A1
20130307855 Lamb et al. Nov 2013 A1
20130307997 O'Keefe et al. Nov 2013 A1
20130308922 Sano et al. Nov 2013 A1
20130311997 Gruber Nov 2013 A1
20130316746 Miller et al. Nov 2013 A1
20130322634 Bennett et al. Dec 2013 A1
20130325436 Wang et al. Dec 2013 A1
20130325443 Begeja et al. Dec 2013 A1
20130325447 Levien et al. Dec 2013 A1
20130325448 Levien et al. Dec 2013 A1
20130325481 Van Os et al. Dec 2013 A1
20130325484 Chakladar et al. Dec 2013 A1
20130325967 Parks et al. Dec 2013 A1
20130325979 Mansfield et al. Dec 2013 A1
20130329023 Suplee, III et al. Dec 2013 A1
20130331127 Sabatelli et al. Dec 2013 A1
20130332159 Federighi et al. Dec 2013 A1
20130332162 Keen Dec 2013 A1
20130332164 Nalk Dec 2013 A1
20130332168 Kim et al. Dec 2013 A1
20130332400 González Dec 2013 A1
20130339256 Shroff Dec 2013 A1
20130346068 Solem et al. Dec 2013 A1
20130346347 Patterson et al. Dec 2013 A1
20140006012 Zhou et al. Jan 2014 A1
20140006025 Krishnan et al. Jan 2014 A1
20140006027 Kim et al. Jan 2014 A1
20140006030 Fleizach et al. Jan 2014 A1
20140006153 Thangam et al. Jan 2014 A1
20140012574 Pasupalak et al. Jan 2014 A1
20140012580 Ganong et al. Jan 2014 A1
20140012586 Rubin et al. Jan 2014 A1
20140019116 Lundberg et al. Jan 2014 A1
20140019133 Bao et al. Jan 2014 A1
20140028735 Williams et al. Jan 2014 A1
20140032453 Eustice et al. Jan 2014 A1
20140033071 Gruber et al. Jan 2014 A1
20140035823 Khoe et al. Feb 2014 A1
20140039894 Shostak Feb 2014 A1
20140040274 Aravamudan et al. Feb 2014 A1
20140040748 Lemay et al. Feb 2014 A1
20140040801 Patel et al. Feb 2014 A1
20140040918 Li et al. Feb 2014 A1
20140046934 Zhou et al. Feb 2014 A1
20140047001 Phillips et al. Feb 2014 A1
20140052680 Nitz et al. Feb 2014 A1
20140052791 Chakra et al. Feb 2014 A1
20140053082 Park et al. Feb 2014 A1
20140053210 Cheong et al. Feb 2014 A1
20140057610 Olincy et al. Feb 2014 A1
20140059030 Hakkani-Tur et al. Feb 2014 A1
20140067361 Nikoulina et al. Mar 2014 A1
20140067371 Liensberger Mar 2014 A1
20140067402 Kim Mar 2014 A1
20140068751 Last et al. Mar 2014 A1
20140074466 Sharifi et al. Mar 2014 A1
20140074470 Jansche et al. Mar 2014 A1
20140074472 Lin et al. Mar 2014 A1
20140074815 Plimton Mar 2014 A1
20140078065 Akkok et al. Mar 2014 A1
20140080428 Rhoads et al. Mar 2014 A1
20140081633 Badaskar et al. Mar 2014 A1
20140081941 Bai Mar 2014 A1
20140082501 Bae et al. Mar 2014 A1
20140086458 Rogers et al. Mar 2014 A1
20140087711 Geyer et al. Mar 2014 A1
20140088961 Woodward et al. Mar 2014 A1
20140095171 Lynch et al. Apr 2014 A1
20140095172 Cabaco et al. Apr 2014 A1
20140095173 Lynch et al. Apr 2014 A1
20140096209 Saraf et al. Apr 2014 A1
20140098247 Rao et al. Apr 2014 A1
20140108017 Mason et al. Apr 2014 A1
20140114554 Lagassey Apr 2014 A1
20140118155 Bowers et al. May 2014 A1
20140122059 Patel et al. May 2014 A1
20140122086 Kapur et al. May 2014 A1
20140122136 Jayanthi May 2014 A1
20140122153 Truitt May 2014 A1
20140134983 Jung et al. May 2014 A1
20140135036 Bonanni et al. May 2014 A1
20140136187 Wolverton et al. May 2014 A1
20140136195 Abdossalami et al. May 2014 A1
20140136212 Kwon et al. May 2014 A1
20140136946 Matas May 2014 A1
20140142923 Jones et al. May 2014 A1
20140142935 Lindahl et al. May 2014 A1
20140143550 Ganong, III et al. May 2014 A1
20140143721 Suzuki et al. May 2014 A1
20140146200 Scott et al. May 2014 A1
20140152577 Yuen et al. Jun 2014 A1
20140155031 Lee et al. Jun 2014 A1
20140157422 Livshits et al. Jun 2014 A1
20140163951 Nikoulina et al. Jun 2014 A1
20140163953 Parikh Jun 2014 A1
20140163954 Joshi et al. Jun 2014 A1
20140163977 Hoffmeister et al. Jun 2014 A1
20140163981 Cook et al. Jun 2014 A1
20140163995 Burns et al. Jun 2014 A1
20140164476 Thomson Jun 2014 A1
20140164532 Lynch et al. Jun 2014 A1
20140164533 Lynch et al. Jun 2014 A1
20140169795 Clough Jun 2014 A1
20140173460 Kim Jun 2014 A1
20140180499 Cooper et al. Jun 2014 A1
20140180689 Kim et al. Jun 2014 A1
20140180697 Torok et al. Jun 2014 A1
20140181865 Koganei Jun 2014 A1
20140188477 Zhang Jul 2014 A1
20140195226 Yun Jul 2014 A1
20140195230 Han et al. Jul 2014 A1
20140195233 Bapat Jul 2014 A1
20140195244 Cha et al. Jul 2014 A1
20140195251 Zeinstra et al. Jul 2014 A1
20140195252 Gruber et al. Jul 2014 A1
20140198048 Unruh et al. Jul 2014 A1
20140203939 Harrington et al. Jul 2014 A1
20140207439 Venkatapathy et al. Jul 2014 A1
20140207446 Klein et al. Jul 2014 A1
20140207468 Bartnik Jul 2014 A1
20140207582 Flinn et al. Jul 2014 A1
20140214429 Pantel Jul 2014 A1
20140214537 Yoo et al. Jul 2014 A1
20140218372 Missig et al. Aug 2014 A1
20140222436 Binder et al. Aug 2014 A1
20140222678 Sheets et al. Aug 2014 A1
20140223377 Shaw et al. Aug 2014 A1
20140223481 Fundament Aug 2014 A1
20140230055 Boehl Aug 2014 A1
20140232656 Pasquero et al. Aug 2014 A1
20140236595 Gray Aug 2014 A1
20140236986 Guzman Aug 2014 A1
20140237042 Ahmed et al. Aug 2014 A1
20140244248 Arisoy et al. Aug 2014 A1
20140244249 Mohamed Aug 2014 A1
20140244254 Ju et al. Aug 2014 A1
20140244257 Colibro et al. Aug 2014 A1
20140244258 Song et al. Aug 2014 A1
20140244263 Pontual et al. Aug 2014 A1
20140244268 Abdelsamie et al. Aug 2014 A1
20140244271 Lindahl Aug 2014 A1
20140244712 Walters et al. Aug 2014 A1
20140245140 Brown et al. Aug 2014 A1
20140247383 Dave et al. Sep 2014 A1
20140247926 Gainsboro et al. Sep 2014 A1
20140249817 Hart et al. Sep 2014 A1
20140249821 Kennewick et al. Sep 2014 A1
20140250046 Winn et al. Sep 2014 A1
20140257815 Zhao et al. Sep 2014 A1
20140258857 Dykstra-Erickson et al. Sep 2014 A1
20140267022 Kim Sep 2014 A1
20140267599 Drouin et al. Sep 2014 A1
20140272821 Pitschel et al. Sep 2014 A1
20140274203 Ganong et al. Sep 2014 A1
20140274211 Sejnoha et al. Sep 2014 A1
20140278343 Tran Sep 2014 A1
20140278349 Grieves et al. Sep 2014 A1
20140278379 Coccaro et al. Sep 2014 A1
20140278390 Kingsbury et al. Sep 2014 A1
20140278391 Braho et al. Sep 2014 A1
20140278394 Bastyr et al. Sep 2014 A1
20140278406 Tsumura et al. Sep 2014 A1
20140278413 Pitschel et al. Sep 2014 A1
20140278429 Ganong, III Sep 2014 A1
20140278435 Ganong et al. Sep 2014 A1
20140278443 Gunn et al. Sep 2014 A1
20140278513 Prakash et al. Sep 2014 A1
20140280138 Li et al. Sep 2014 A1
20140280292 Skinder Sep 2014 A1
20140280353 Delaney et al. Sep 2014 A1
20140280450 Luna Sep 2014 A1
20140281983 Xian et al. Sep 2014 A1
20140282003 Gruber et al. Sep 2014 A1
20140282007 Fleizach Sep 2014 A1
20140282045 Ayanam et al. Sep 2014 A1
20140282201 Pasquero et al. Sep 2014 A1
20140282586 Shear et al. Sep 2014 A1
20140282743 Howard et al. Sep 2014 A1
20140288990 Moore et al. Sep 2014 A1
20140289508 Wang Sep 2014 A1
20140297267 Spencer et al. Oct 2014 A1
20140297281 Togawa et al. Oct 2014 A1
20140297284 Gruber et al. Oct 2014 A1
20140297288 Yu et al. Oct 2014 A1
20140304605 Ohmura et al. Oct 2014 A1
20140310001 Kalns et al. Oct 2014 A1
20140310002 Nitz et al. Oct 2014 A1
20140316585 Boesveld et al. Oct 2014 A1
20140317030 Shen et al. Oct 2014 A1
20140317502 Brown et al. Oct 2014 A1
20140324884 Lindahl et al. Oct 2014 A1
20140337048 Brown et al. Nov 2014 A1
20140337266 Wolverton et al. Nov 2014 A1
20140337371 Li Nov 2014 A1
20140337438 Govande et al. Nov 2014 A1
20140337751 Lim et al. Nov 2014 A1
20140337814 Kalns et al. Nov 2014 A1
20140342762 Hajdu et al. Nov 2014 A1
20140344627 Schaub et al. Nov 2014 A1
20140344687 Durham et al. Nov 2014 A1
20140350924 Zurek et al. Nov 2014 A1
20140350933 Bak et al. Nov 2014 A1
20140351741 Medlock et al. Nov 2014 A1
20140351760 Skory et al. Nov 2014 A1
20140358519 Mirkin et al. Dec 2014 A1
20140358523 Sheth et al. Dec 2014 A1
20140361973 Raux et al. Dec 2014 A1
20140365209 Evermann Dec 2014 A1
20140365214 Bayley Dec 2014 A1
20140365216 Gruber et al. Dec 2014 A1
20140365226 Sinha Dec 2014 A1
20140365227 Cash et al. Dec 2014 A1
20140365407 Brown et al. Dec 2014 A1
20140365880 Bellegarda Dec 2014 A1
20140365885 Carson et al. Dec 2014 A1
20140365895 Paulson et al. Dec 2014 A1
20140370817 Luna Dec 2014 A1
20140370841 Roberts et al. Dec 2014 A1
20140372112 Xue et al. Dec 2014 A1
20140372356 Bilal et al. Dec 2014 A1
20140372931 Zhai et al. Dec 2014 A1
20140379334 Fry Dec 2014 A1
20150003797 Schmidt Jan 2015 A1
20150006148 Goldszmit et al. Jan 2015 A1
20150006157 Andrade Silva et al. Jan 2015 A1
20150006176 Pogue et al. Jan 2015 A1
20150006178 Peng et al. Jan 2015 A1
20150006184 Marti et al. Jan 2015 A1
20150006199 Snider et al. Jan 2015 A1
20150012271 Peng et al. Jan 2015 A1
20150019219 Tzirkel-hancock et al. Jan 2015 A1
20150019221 Lee et al. Jan 2015 A1
20150031416 Wells et al. Jan 2015 A1
20150033219 Breiner et al. Jan 2015 A1
20150039292 Suleman et al. Feb 2015 A1
20150039299 Weinstein et al. Feb 2015 A1
20150039305 Huang Feb 2015 A1
20150040012 Faaborg et al. Feb 2015 A1
20150045003 Vora et al. Feb 2015 A1
20150045068 Soffer et al. Feb 2015 A1
20150046537 Rakib Feb 2015 A1
20150050633 Christmas et al. Feb 2015 A1
20150058013 Pakhomov et al. Feb 2015 A1
20150058018 Georges et al. Feb 2015 A1
20150058785 Ookawara Feb 2015 A1
20150065200 Namgung et al. Mar 2015 A1
20150066494 Salvador et al. Mar 2015 A1
20150066496 Deoras et al. Mar 2015 A1
20150066506 Romano et al. Mar 2015 A1
20150066516 Nishikawa et al. Mar 2015 A1
20150067485 Kim et al. Mar 2015 A1
20150067822 Randall Mar 2015 A1
20150073788 Allauzen et al. Mar 2015 A1
20150073804 Senior et al. Mar 2015 A1
20150074524 Nicholson et al. Mar 2015 A1
20150082229 Ouyang et al. Mar 2015 A1
20150088511 Bharadwaj et al. Mar 2015 A1
20150088514 Typrin Mar 2015 A1
20150088522 Hendrickson et al. Mar 2015 A1
20150088523 Schuster Mar 2015 A1
20150095031 Conkie et al. Apr 2015 A1
20150095278 Flinn et al. Apr 2015 A1
20150100316 Williams et al. Apr 2015 A1
20150100537 Grieves et al. Apr 2015 A1
20150100983 Pan Apr 2015 A1
20150106093 Weeks et al. Apr 2015 A1
20150113407 Hoffert et al. Apr 2015 A1
20150120723 Deshmukh et al. Apr 2015 A1
20150121216 Brown et al. Apr 2015 A1
20150127350 Agiomyrgiannakis May 2015 A1
20150133109 Freeman et al. May 2015 A1
20150134334 Sachidanandam et al. May 2015 A1
20150135085 Shoham et al. May 2015 A1
20150135123 Carr et al. May 2015 A1
20150142420 Sarikaya et al. May 2015 A1
20150142438 Dai et al. May 2015 A1
20150142447 Kennewick et al. May 2015 A1
20150142851 Gupta et al. May 2015 A1
20150148013 Baldwin et al. May 2015 A1
20150149177 Kalns et al. May 2015 A1
20150149182 Kalns et al. May 2015 A1
20150149354 Mccoy May 2015 A1
20150149469 Xu et al. May 2015 A1
20150154185 Waibel Jun 2015 A1
20150161370 North et al. Jun 2015 A1
20150161989 Hsu et al. Jun 2015 A1
20150162001 Kar et al. Jun 2015 A1
20150163558 Wheatley Jun 2015 A1
20150169284 Quast et al. Jun 2015 A1
20150169336 Harper et al. Jun 2015 A1
20150170664 Doherty et al. Jun 2015 A1
20150172463 Quast et al. Jun 2015 A1
20150178388 Winnemoeller et al. Jun 2015 A1
20150179176 Ryu et al. Jun 2015 A1
20150185964 Stout Jul 2015 A1
20150186012 Coleman et al. Jul 2015 A1
20150186110 Kannan Jul 2015 A1
20150186155 Brown et al. Jul 2015 A1
20150186156 Brown et al. Jul 2015 A1
20150186351 Hicks et al. Jul 2015 A1
20150187355 Parkinson et al. Jul 2015 A1
20150187369 Dadu et al. Jul 2015 A1
20150189362 Lee et al. Jul 2015 A1
20150193379 Mehta Jul 2015 A1
20150193391 Khvostichenko et al. Jul 2015 A1
20150193392 Greenblatt et al. Jul 2015 A1
20150194152 Katuri et al. Jul 2015 A1
20150195379 Zhang et al. Jul 2015 A1
20150195606 McDevitt Jul 2015 A1
20150199077 Zuger et al. Jul 2015 A1
20150199960 Huo et al. Jul 2015 A1
20150199965 Leak et al. Jul 2015 A1
20150199967 Reddy et al. Jul 2015 A1
20150201064 Bells et al. Jul 2015 A1
20150205858 Xie et al. Jul 2015 A1
20150208226 Kuusilinna et al. Jul 2015 A1
20150212791 Kumar et al. Jul 2015 A1
20150213796 Waltermann et al. Jul 2015 A1
20150220507 Mohajer et al. Aug 2015 A1
20150221304 Stewart Aug 2015 A1
20150221307 Shah et al. Aug 2015 A1
20150227633 Shapira Aug 2015 A1
20150228281 Raniere Aug 2015 A1
20150234636 Barnes, Jr. Aug 2015 A1
20150234800 Patrick et al. Aug 2015 A1
20150242091 Lu et al. Aug 2015 A1
20150243278 Kibre et al. Aug 2015 A1
20150243283 Halash et al. Aug 2015 A1
20150245154 Dadu et al. Aug 2015 A1
20150248651 Akutagawa et al. Sep 2015 A1
20150248886 Sarikaya et al. Sep 2015 A1
20150254057 Klein et al. Sep 2015 A1
20150254058 Klein et al. Sep 2015 A1
20150254333 Fife et al. Sep 2015 A1
20150255071 Chiba Sep 2015 A1
20150256873 Klein et al. Sep 2015 A1
20150261496 Faaborg et al. Sep 2015 A1
20150269139 McAteer et al. Sep 2015 A1
20150277574 Jain et al. Oct 2015 A1
20150278370 Stratvert et al. Oct 2015 A1
20150279358 Kingsbury et al. Oct 2015 A1
20150279360 Mengibar et al. Oct 2015 A1
20150281380 Wang et al. Oct 2015 A1
20150286627 Chang et al. Oct 2015 A1
20150287401 Lee et al. Oct 2015 A1
20150287409 Jang Oct 2015 A1
20150288629 Choi et al. Oct 2015 A1
20150294086 Kare et al. Oct 2015 A1
20150294516 Chiang Oct 2015 A1
20150295915 Xiu Oct 2015 A1
20150302855 Kim et al. Oct 2015 A1
20150302856 Kim et al. Oct 2015 A1
20150302857 Yamada Oct 2015 A1
20150309997 Lee et al. Oct 2015 A1
20150310858 Li et al. Oct 2015 A1
20150310862 Dauphin et al. Oct 2015 A1
20150310879 Buchanan et al. Oct 2015 A1
20150312182 Langholz Oct 2015 A1
20150317069 Clements et al. Nov 2015 A1
20150317310 Eiche et al. Nov 2015 A1
20150324041 Varley et al. Nov 2015 A1
20150324334 Lee et al. Nov 2015 A1
20150331664 Osawa et al. Nov 2015 A1
20150331711 Huang et al. Nov 2015 A1
20150332667 Mason Nov 2015 A1
20150339049 Kasemset et al. Nov 2015 A1
20150339391 Kang et al. Nov 2015 A1
20150340040 Mun et al. Nov 2015 A1
20150340042 Sejnoha et al. Nov 2015 A1
20150341717 Song et al. Nov 2015 A1
20150347086 Liedholm et al. Dec 2015 A1
20150347381 Bellegarda Dec 2015 A1
20150347382 Dolfing et al. Dec 2015 A1
20150347385 Flor et al. Dec 2015 A1
20150347393 Futrell et al. Dec 2015 A1
20150347733 Tsou et al. Dec 2015 A1
20150347985 Gross et al. Dec 2015 A1
20150348547 Paulik et al. Dec 2015 A1
20150348548 Piemot et al. Dec 2015 A1
20150348549 Giuli et al. Dec 2015 A1
20150348551 Gruber et al. Dec 2015 A1
20150348554 Orr et al. Dec 2015 A1
20150350031 Burks et al. Dec 2015 A1
20150352999 Bando et al. Dec 2015 A1
20150355879 Beckhardt et al. Dec 2015 A1
20150364140 Thorn Dec 2015 A1
20150370531 Faaborg Dec 2015 A1
20150370780 Wang et al. Dec 2015 A1
20150371639 Foerster et al. Dec 2015 A1
20150371665 Naik et al. Dec 2015 A1
20150373183 Woolsey et al. Dec 2015 A1
20150382047 Napolitano et al. Dec 2015 A1
20150382079 Lister et al. Dec 2015 A1
20160004690 Bangalore et al. Jan 2016 A1
20160014476 Caliendo, Jr. et al. Jan 2016 A1
20160019886 Hong Jan 2016 A1
20160026258 Ou et al. Jan 2016 A1
20160027431 Kurzweil et al. Jan 2016 A1
20160028666 Li Jan 2016 A1
20160029316 Mohan et al. Jan 2016 A1
20160034811 Paulik Feb 2016 A1
20160042735 Vibbert et al. Feb 2016 A1
20160042748 Jain et al. Feb 2016 A1
20160048666 Dey et al. Feb 2016 A1
20160055422 Li Feb 2016 A1
20160062605 Agarwal et al. Mar 2016 A1
20160063998 Krishnamoorthy et al. Mar 2016 A1
20160070581 Soon-Shiong Mar 2016 A1
20160071516 Lee et al. Mar 2016 A1
20160071517 Beaver Mar 2016 A1
20160071521 Haughay Mar 2016 A1
20160077794 Kim et al. Mar 2016 A1
20160078860 Paulik et al. Mar 2016 A1
20160080165 Ehsani et al. Mar 2016 A1
20160086116 Rao et al. Mar 2016 A1
20160091967 Prokofieva et al. Mar 2016 A1
20160092447 Venkataraman et al. Mar 2016 A1
20160092766 Sainath et al. Mar 2016 A1
20160093291 Kim Mar 2016 A1
20160093298 Naik et al. Mar 2016 A1
20160093301 Bellegarda et al. Mar 2016 A1
20160093304 Kim et al. Mar 2016 A1
20160094979 Naik et al. Mar 2016 A1
20160111091 Bakish Apr 2016 A1
20160117386 Ajmera et al. Apr 2016 A1
20160119338 Cheyer Apr 2016 A1
20160125048 Hamada May 2016 A1
20160125071 Gabbai May 2016 A1
20160132484 Nauze et al. May 2016 A1
20160139662 Dabhade May 2016 A1
20160147725 Patten et al. May 2016 A1
20160148610 Kennewick, Jr. et al. May 2016 A1
20160155442 Kannan et al. Jun 2016 A1
20160155443 Khan et al. Jun 2016 A1
20160162456 Munro et al. Jun 2016 A1
20160163311 Crook et al. Jun 2016 A1
20160163312 Naik et al. Jun 2016 A1
20160170966 Kolo Jun 2016 A1
20160173578 Sharma et al. Jun 2016 A1
20160173960 Snibbe et al. Jun 2016 A1
20160179462 Bjorkengren Jun 2016 A1
20160180844 Vanblon et al. Jun 2016 A1
20160182410 Janakiraman et al. Jun 2016 A1
20160188181 Smith Jun 2016 A1
20160188738 Gruber et al. Jun 2016 A1
20160189717 Kannan et al. Jun 2016 A1
20160210981 Lee Jul 2016 A1
20160212488 Os et al. Jul 2016 A1
20160217784 Gelfenbeyn et al. Jul 2016 A1
20160224540 Stewart et al. Aug 2016 A1
20160224774 Pender Aug 2016 A1
20160225372 Cheung et al. Aug 2016 A1
20160240187 Fleizach et al. Aug 2016 A1
20160247061 Trask et al. Aug 2016 A1
20160253312 Rhodes Sep 2016 A1
20160259623 Sumner et al. Sep 2016 A1
20160259656 Sumner et al. Sep 2016 A1
20160259779 Labsk Sep 2016 A1
20160260431 Newendorp et al. Sep 2016 A1
20160260433 Sumner et al. Sep 2016 A1
20160260434 Gelfenbeyn et al. Sep 2016 A1
20160260436 Lemay et al. Sep 2016 A1
20160266871 Schmid et al. Sep 2016 A1
20160267904 Biadsy et al. Sep 2016 A1
20160275941 Bellegarda et al. Sep 2016 A1
20160275947 Li et al. Sep 2016 A1
20160282956 Ouyang et al. Sep 2016 A1
20160284199 Dotan-Cohen et al. Sep 2016 A1
20160286045 Shaltiel et al. Sep 2016 A1
20160299685 Zhai et al. Oct 2016 A1
20160299882 Hegerty et al. Oct 2016 A1
20160299883 Zhu et al. Oct 2016 A1
20160307566 Bellegarda Oct 2016 A1
20160314788 Jitkoff et al. Oct 2016 A1
20160314792 Alvarez et al. Oct 2016 A1
20160321261 Spasojevic et al. Nov 2016 A1
20160322045 Hatfeild et al. Nov 2016 A1
20160322050 Wang et al. Nov 2016 A1
20160328893 Cordova et al. Nov 2016 A1
20160336007 Hanazawa Nov 2016 A1
20160336010 Lindahl Nov 2016 A1
20160336024 Choi et al. Nov 2016 A1
20160337299 Lane et al. Nov 2016 A1
20160337301 Rollins et al. Nov 2016 A1
20160342685 Basu et al. Nov 2016 A1
20160351190 Binder et al. Dec 2016 A1
20160357304 Hatori et al. Dec 2016 A1
20160357728 Bellegarda et al. Dec 2016 A1
20160357861 Carlhian et al. Dec 2016 A1
20160357870 Hentschel et al. Dec 2016 A1
20160358598 Williams et al. Dec 2016 A1
20160358600 Nallasamy et al. Dec 2016 A1
20160358619 Ramprashad et al. Dec 2016 A1
20160359771 Sridhar Dec 2016 A1
20160360039 Sanghavi et al. Dec 2016 A1
20160364378 Futrell et al. Dec 2016 A1
20160371250 Rhodes Dec 2016 A1
20160378747 Orr et al. Dec 2016 A1
20160379626 Deisher et al. Dec 2016 A1
20160379641 Liu et al. Dec 2016 A1
20170004824 Yoo et al. Jan 2017 A1
20170019987 Dragone et al. Jan 2017 A1
20170031576 Saoji et al. Feb 2017 A1
20170040002 Basson et al. Feb 2017 A1
20170055895 Des Jardins et al. Mar 2017 A1
20170060853 Lee et al. Mar 2017 A1
20170068423 Napolitano et al. Mar 2017 A1
20170068513 Stasior et al. Mar 2017 A1
20170068550 Zeitlin Mar 2017 A1
20170068670 Orr et al. Mar 2017 A1
20170083179 Gruber et al. Mar 2017 A1
20170091168 Bellegarda et al. Mar 2017 A1
20170092270 Newendorp et al. Mar 2017 A1
20170092278 Evermann et al. Mar 2017 A1
20170102915 Kuscher et al. Apr 2017 A1
20170105190 Logan et al. Apr 2017 A1
20170116989 Yadgar et al. Apr 2017 A1
20170127124 Wilson et al. May 2017 A9
20170132199 Vescovi et al. May 2017 A1
20170140644 Hwang et al. May 2017 A1
20170154033 Lee Jun 2017 A1
20170161018 Lemay et al. Jun 2017 A1
20170169819 Mese et al. Jun 2017 A1
20170178619 Naik et al. Jun 2017 A1
20170178626 Gruber et al. Jun 2017 A1
20170180499 Gelfenbeyn et al. Jun 2017 A1
20170186429 Giuli et al. Jun 2017 A1
20170193083 Bhatt et al. Jul 2017 A1
20170199874 Patel et al. Jul 2017 A1
20170221486 Kurata et al. Aug 2017 A1
20170227935 Su et al. Aug 2017 A1
20170228382 Haviv et al. Aug 2017 A1
20170230709 Van Os et al. Aug 2017 A1
20170242653 Lang et al. Aug 2017 A1
20170243468 Dotan-Cohen et al. Aug 2017 A1
20170256256 Wang et al. Sep 2017 A1
20170263248 Gruber et al. Sep 2017 A1
20170263249 Akbacak et al. Sep 2017 A1
20170285915 Napolitano et al. Oct 2017 A1
20170286397 Gonzalez Oct 2017 A1
20170316775 Le et al. Nov 2017 A1
20170316782 Haughay et al. Nov 2017 A1
20170323637 Naik Nov 2017 A1
20170345411 Raitio et al. Nov 2017 A1
20170346949 Sanghavi et al. Nov 2017 A1
20170352346 Paulik et al. Dec 2017 A1
20170352350 Booker et al. Dec 2017 A1
20170357478 Piersol et al. Dec 2017 A1
20170357632 Pagallo et al. Dec 2017 A1
20170357633 Wang et al. Dec 2017 A1
20170357637 Nell et al. Dec 2017 A1
20170357640 Bellegarda et al. Dec 2017 A1
20170357716 Bellegarda et al. Dec 2017 A1
20170358300 Laurens et al. Dec 2017 A1
20170358301 Raitio et al. Dec 2017 A1
20170358304 Castillo et al. Dec 2017 A1
20170358305 Kudurshian et al. Dec 2017 A1
20180007538 Naik et al. Jan 2018 A1
20180012596 Piernot et al. Jan 2018 A1
20180033431 Newendorp et al. Feb 2018 A1
20180090143 Saddler et al. Mar 2018 A1
20180108346 Paulik et al. Apr 2018 A1
20180137857 Zhou et al. May 2018 A1
20180358019 Mont-Reynaud Dec 2018 A1
20190087455 He Mar 2019 A1
20190179607 Thangarathnam Jun 2019 A1
Foreign Referenced Citations (338)
Number Date Country
2015203483 Jul 2015 AU
2694314 Aug 2010 CA
2792412 Jul 2011 CA
2666438 Jun 2013 CA
101162153 Apr 2008 CN
101174366 May 2008 CN
101179754 May 2008 CN
101183525 May 2008 CN
101188644 May 2008 CN
101228503 Jul 2008 CN
101233741 Jul 2008 CN
101246020 Aug 2008 CN
101271689 Sep 2008 CN
101277501 Oct 2008 CN
101281745 Oct 2008 CN
101292282 Oct 2008 CN
101297541 Oct 2008 CN
101325756 Dec 2008 CN
101416471 Apr 2009 CN
101427244 May 2009 CN
101448340 Jun 2009 CN
101453498 Jun 2009 CN
101499156 Aug 2009 CN
101500041 Aug 2009 CN
101535983 Sep 2009 CN
101547396 Sep 2009 CN
101557432 Oct 2009 CN
101604521 Dec 2009 CN
101632316 Jan 2010 CN
101636736 Jan 2010 CN
101673544 Mar 2010 CN
101751387 Jun 2010 CN
101847405 Sep 2010 CN
101894547 Nov 2010 CN
101939740 Jan 2011 CN
101951553 Jan 2011 CN
102137193 Jul 2011 CN
102160043 Aug 2011 CN
102246136 Nov 2011 CN
202035047 Nov 2011 CN
102282609 Dec 2011 CN
202092650 Dec 2011 CN
102368256 Mar 2012 CN
102498457 Jun 2012 CN
102629246 Aug 2012 CN
102682771 Sep 2012 CN
102685295 Sep 2012 CN
102693725 Sep 2012 CN
102792320 Nov 2012 CN
102870065 Jan 2013 CN
102917004 Feb 2013 CN
103035240 Apr 2013 CN
103038728 Apr 2013 CN
103093334 May 2013 CN
104038621 Sep 2014 CN
104284257 Jan 2015 CN
104423625 Mar 2015 CN
104463552 Mar 2015 CN
104516522 Apr 2015 CN
102008024258 Nov 2009 DE
1892700 Feb 2008 EP
1912205 Apr 2008 EP
1939860 Jul 2008 EP
1944997 Jul 2008 EP
651543 Sep 2008 EP
1909263 Jan 2009 EP
1335620 Mar 2009 EP
2069895 Jun 2009 EP
2081185 Jul 2009 EP
2094032 Aug 2009 EP
2096840 Sep 2009 EP
2107553 Oct 2009 EP
2109295 Oct 2009 EP
1720375 Jul 2010 EP
2205010 Jul 2010 EP
2309491 Apr 2011 EP
2329348 AO Jun 2011 EP
2400373 Dec 2011 EP
2431842 Mar 2012 EP
2523188 Nov 2012 EP
2551784 Jan 2013 EP
2555536 Feb 2013 EP
2575128 Apr 2013 EP
2733598 May 2014 EP
2801890 Nov 2014 EP
2801972 Nov 2014 EP
2930715 Oct 2015 EP
2938022 Oct 2015 EP
2940556 Nov 2015 EP
3246916 Nov 2017 EP
2911201 Jul 2008 FR
2445436 Jul 2008 GB
2445667 Jul 2008 GB
2008-009120 Jan 2008 JP
2008-21002 Jan 2008 JP
2008-26381 Feb 2008 JP
2008-39928 Feb 2008 JP
2008-58813 Mar 2008 JP
2008-064687 Mar 2008 JP
2008-90545 Apr 2008 JP
2008-97003 Apr 2008 JP
2008-134949 Jun 2008 JP
2008-158510 Jul 2008 JP
2008-526101 Jul 2008 JP
2008-185693 Aug 2008 JP
2008-198022 Aug 2008 JP
2008-217468 Sep 2008 JP
2008-228129 Sep 2008 JP
2008-233678 Oct 2008 JP
2008-236448 Oct 2008 JP
2008-252161 Oct 2008 JP
2008-268684 Nov 2008 JP
2008-269480 Nov 2008 JP
2008-271481 Nov 2008 JP
2008-275731 Nov 2008 JP
2008-299221 Dec 2008 JP
2009-2850 Jan 2009 JP
2009-503623 Jan 2009 JP
2009-36999 Feb 2009 JP
2009-505142 Feb 2009 JP
2009-47920 Mar 2009 JP
2009-069062 Apr 2009 JP
2009-98490 May 2009 JP
2009-110300 May 2009 JP
2009-134409 Jun 2009 JP
2009-140444 Jun 2009 JP
2009-186989 Aug 2009 JP
2009-193448 Aug 2009 JP
2009-193457 Aug 2009 JP
2009-193532 Aug 2009 JP
2009-205367 Sep 2009 JP
2009-223840 Oct 2009 JP
2009-294913 Dec 2009 JP
2009-294946 Dec 2009 JP
2009-543166 Dec 2009 JP
2010-66519 Mar 2010 JP
2010-78979 Apr 2010 JP
2010-108378 May 2010 JP
2010-518475 May 2010 JP
2010-518526 May 2010 JP
2010-157207 Jul 2010 JP
2010-224236 Oct 2010 JP
4563106 Oct 2010 JP
2010-535377 Nov 2010 JP
2010-287063 Dec 2010 JP
2011-33874 Feb 2011 JP
2011-41026 Feb 2011 JP
2011-45005 Mar 2011 JP
2011-59659 Mar 2011 JP
2011-81541 Apr 2011 JP
2011-525045 Sep 2011 JP
2011-238022 Nov 2011 JP
2011-250027 Dec 2011 JP
2012-014394 Jan 2012 JP
2012-508530 Apr 2012 JP
2012-089020 May 2012 JP
2012-116442 Jun 2012 JP
2012-147063 Aug 2012 JP
2012-518847 Aug 2012 JP
2013-37688 Feb 2013 JP
2013-511214 Mar 2013 JP
2013-65284 Apr 2013 JP
2013-73240 Apr 2013 JP
2013-513315 Apr 2013 JP
2013-080476 May 2013 JP
2013-517566 May 2013 JP
2013-134430 Jul 2013 JP
2013-527947 Jul 2013 JP
2013-528012 Jul 2013 JP
2013-156349 Aug 2013 JP
2013-200423 Oct 2013 JP
2013-205999 Oct 2013 JP
2013-238936 Nov 2013 JP
2014-10688 Jan 2014 JP
2014-026629 Feb 2014 JP
2014-60600 Apr 2014 JP
2014-72586 Apr 2014 JP
2014-077969 May 2014 JP
2014-124332 Jul 2014 JP
2014-145842 Aug 2014 JP
2014-150323 Aug 2014 JP
2014-222514 Nov 2014 JP
2015-8001 Jan 2015 JP
2015-501022 Jan 2015 JP
2015-41845 Mar 2015 JP
2015-94848 May 2015 JP
2015-519675 Jul 2015 JP
2015-524974 Aug 2015 JP
2015-526776 Sep 2015 JP
2015-528140 Sep 2015 JP
2015-528918 Oct 2015 JP
2016-119615 Jun 2016 JP
10-0801227 Feb 2008 KR
10-0810500 Mar 2008 KR
10-2008-0033070 Apr 2008 KR
10-0819928 Apr 2008 KR
10-2008-0049647 Jun 2008 KR
10-2008-0059332 Jun 2008 KR
10-2008-0109322 Dec 2008 KR
10-2009-0001716 Jan 2009 KR
10-2009-0028464 Mar 2009 KR
10-2009-0030117 Mar 2009 KR
10-2009-0086805 Aug 2009 KR
10-0920267 Oct 2009 KR
10-2009-0122944 Dec 2009 KR
10-2009-0127961 Dec 2009 KR
10-2009-0129192 Dec 2009 KR
10-2010-0015958 Feb 2010 KR
10-2010-0048571 May 2010 KR
10-2010-0053149 May 2010 KR
10-2010-0119519 Nov 2010 KR
10-2011-0043644 Apr 2011 KR
10-1032792 May 2011 KR
10-2011-0068490 Jun 2011 KR
10-2011-0072847 Jun 2011 KR
10-2011-0086492 Jul 2011 KR
10-2011-0100620 Sep 2011 KR
10-2011-0113414 Oct 2011 KR
10-2011-0115134 Oct 2011 KR
10-2012-0020164 Mar 2012 KR
10-2012-0031722 Apr 2012 KR
10-1178310 Aug 2012 KR
10-2012-0120316 Nov 2012 KR
10-2012-0137435 Dec 2012 KR
10-2012-0137440 Dec 2012 KR
10-2012-0138826 Dec 2012 KR
10-2012-0139827 Dec 2012 KR
10-1193668 Dec 2012 KR
10-2013-0035983 Apr 2013 KR
10-1334342 Nov 2013 KR
10-2013-0131252 Dec 2013 KR
10-2013-0133629 Dec 2013 KR
10-2014-0147557 Dec 2014 KR
10-2015-0043512 Apr 2015 KR
10-2016-0010523 Jan 2016 KR
2349970 Mar 2009 RU
2353068 Apr 2009 RU
2364917 Aug 2009 RU
200801988 Jan 2008 TW
I301373 Sep 2008 TW
M348993 Jan 2009 TW
200943903 Oct 2009 TW
201018258 May 2010 TW
201027515 Jul 2010 TW
201028996 Aug 2010 TW
201110108 Mar 2011 TW
2011-42823 Dec 2011 TW
201227715 Jul 2012 TW
201245989 Nov 2012 TW
201312548 Mar 2013 TW
2008030970 Mar 2008 WO
2008071231 Jun 2008 WO
2008085742 Jul 2008 WO
2008098900 Aug 2008 WO
2008109835 Aug 2008 WO
2008120036 Oct 2008 WO
2008130095 Oct 2008 WO
2008140236 Nov 2008 WO
2008142472 Nov 2008 WO
2008153639 Dec 2008 WO
2009009240 Jan 2009 WO
2009016631 Feb 2009 WO
2009017280 Feb 2009 WO
2009075912 Jun 2009 WO
2009104126 Aug 2009 WO
2009156438 Dec 2009 WO
2009156978 Dec 2009 WO
2010054373 May 2010 WO
2010075623 Jul 2010 WO
2010100937 Sep 2010 WO
2010141802 Dec 2010 WO
2011057346 May 2011 WO
2011060106 May 2011 WO
2011088053 Jul 2011 WO
2011093025 Aug 2011 WO
2011116309 Sep 2011 WO
2011133543 Oct 2011 WO
2011150730 Dec 2011 WO
2011163350 Dec 2011 WO
2011088053 Jan 2012 WO
2012019637 Feb 2012 WO
2012129231 Sep 2012 WO
2012135157 Oct 2012 WO
2012154317 Nov 2012 WO
2012155079 Nov 2012 WO
2012167168 Dec 2012 WO
2013009578 Jan 2013 WO
2013022135 Feb 2013 WO
2013022223 Feb 2013 WO
2013048880 Apr 2013 WO
2013049358 Apr 2013 WO
2013163113 Oct 2013 WO
2013169842 Nov 2013 WO
2013173504 Nov 2013 WO
2013173511 Nov 2013 WO
2013176847 Nov 2013 WO
2013184953 Dec 2013 WO
2013184990 Dec 2013 WO
2014003138 Jan 2014 WO
2014021967 Feb 2014 WO
2014022148 Feb 2014 WO
2014028797 Feb 2014 WO
2014031505 Feb 2014 WO
2014066352 May 2014 WO
2014078965 May 2014 WO
2014096506 Jun 2014 WO
2014124332 Aug 2014 WO
2014137074 Sep 2014 WO
2014138604 Sep 2014 WO
2014143959 Sep 2014 WO
2014144579 Sep 2014 WO
2014159581 Oct 2014 WO
2014197336 Dec 2014 WO
2014200728 Dec 2014 WO
2014204659 Dec 2014 WO
2015018440 Feb 2015 WO
2015030796 Mar 2015 WO
2015041892 Mar 2015 WO
2015084659 Jun 2015 WO
2015092943 Jun 2015 WO
2015094169 Jun 2015 WO
2015094369 Jun 2015 WO
2015099939 Jul 2015 WO
2015116151 Aug 2015 WO
2015151133 Oct 2015 WO
2015157013 Oct 2015 WO
2015183401 Dec 2015 WO
2015184186 Dec 2015 WO
2015200207 Dec 2015 WO
2016028946 Feb 2016 WO
2016033257 Mar 2016 WO
2016057268 Apr 2016 WO
2016075081 May 2016 WO
2016144982 Sep 2016 WO
2016209444 Dec 2016 WO
2017044260 Mar 2017 WO
2017044629 Mar 2017 WO
2017053311 Mar 2017 WO
Non-Patent Literature Citations (122)
Entry
“Alexa, Turn Up the Heat!”, Smartthings Samsung [online], Available online at https://web.archive.org/web/20160329142041/https://blog.smartthings.com/news/smartthingsupdates/alexa-turn-up-the-heat/, Mar. 3, 2016, 3 pages.
“Ask Alexa—Things That Are Smart Wiki”, Available online at <URL:http://thingsthataresmart.wiki/index.php?title=Ask_Alexa&oldid=4283>, [retrieved from internet on Aug. 2, 2017], Jun. 8, 2016, pp. 1-31.
“DIRECTV™ Voice”, Now Part of the DIRECTTV Mobile App for Phones, Sep. 18, 2013, 5 pages.
“Headset Button Controller v7.3 APK Full APP Download for Android”, Blackberry, iPhone, Jan. 27, 2014, 11 pages.
“Hear voice from Google Translate”, Available on URL:https://www.youtube.com/watch?v=18AvMhFqD28, Jan. 28, 2011, 1 page.
“Interactive Voice”, available at <http://www.helloivee.com/company/>, retrieved on Feb. 10, 2014, 2 pages.
“Meet Ivee, Your Wi-Fi Voice Activated Assistant”, available at <http://www.helloivee.com/>, retrieved on Feb. 10, 2014, 8 pages.
“Mel Scale”, Wikipedia the Free Encyclopedia, Last modified on Oct. 13, 2009 and retrieved on Jul. 28, 2010, available at <http://en.wikipedia.org/wiki/Mel_scale>, 2 pages.
“Minimum Phase”, Wikipedia the free Encyclopedia, Last modified on Jan. 12, 2010 and retrieved on Jul. 28, 2010, available at <http://en.wikipedia.org/wiki/Minimum_phase>, 8 pages.
Mobile Speech Solutions, Mobile Accessibility, SVOX AG Product Information Sheet, available at <http://www.svox.com/site/bra840604/con782768/mob965831936.aSQ?osLang=1>, Sep. 27, 2012, 1 page.
“SmartThings +Amazon Echo”, Smartthings Samsung [online], Available online at <https://web.archive.org/web/20160509231428/https://blog.smartthings.com/featured/alexa-turn-on-my-smartthings/>, Aug. 21, 2015, 3 pages.
“Speaker Recognition”, Wikipedia, The Free Enclyclopedia, Nov. 2, 2010, 4 pages.
“The world of Virtual Assistants—more SemTech . . . ”, End of Business as Usual—Glenn's External blog, Online Available at <https://web.archive.org/web/20091101840940/http://glennas.wordpress.com/2009/10/17/the-world-of-virtual-assistants-more-semtech/>, Oct. 17, 2009, 5 pages.
Adium, “AboutAdium—Adium X-Trac”, available at <http://web.archive.org/web/20070819113247/http://trac.adiumx.com/wiki/AboutAdium>, retrieved on Nov. 25, 2011, 2 pages.
Alfred APP, “Alfred”, available at <http://www.alfredapp.com/>, retrieved on Feb. 8, 2012, 5 pages.
Anania, Peter, “Amazon Echo with Home Automation (Smartthings)”, Available online at https://www.youtube.com/watch?v=LMW6aXmsWNE, Dec. 20, 2015, 1 page.
API.AI, “Android App Review—Speaktoit Assistant”, Available at <https://www.youtube.com/watch?v=myE498nyfGw>, Mar. 30, 2011, 3 pages.
Apple, “VoiceOver”, available at <http://www.apple.com/accessibility/voiceover/>, May 19, 2014, 3 pages.
Apple Computer, “Knowledge Navigator”, published by Apple Computer no later than 2008, as depicted in Exemplary Screenshots from video entitled ‘Knowledge Navigator’, 2008, 7 pagea.
Asakura et al., “What LG thinks; How the TV should be in the Living Room”, HiVi, vol. 31, No. 7 (Jul. 2013), Stereo Sound Publishing, Inc., Jun. 17, 2013, pp. 68-71 (Official Copy Only). (See Communication under 37 CFR § 1.98(a) (3)).
Berry et al., “PTIME: Personalized Assistance for Calendaring”, ACM Transactions on Intelligent Systems and Technology, vol. 2, No. 4, Article 40, Jul. 2011, pp. 1-22.
Bertulucci, Jeff, “Google Adds Voice Search to Chrome Browser”, PC World, Jun. 14, 2011, 5 pages.
Bocchieri et al., “Use of Geographical Meta-Data in ASR Language and Acoustic Models”, IEEE International Conference on Acoustics Speech and Signal Processing, 2010, pp. 5118-5121.
Butcher, Mike, “EVI Arrives in Town to go Toe-to-Toe with Siri”, TechCrunch, Jan. 23, 2012, 2 pages.
Cambria et al., “Jumping NLP Curves: A Review of Natural Language Processing Research”, IEEE Computational Intelligence Magazine, 2014, vol. 9, May 2014, pp. 48-57.
Caraballo et al., “Language Identification Based on a Discriminative Text Categorization Technique”, Iberspeech 2012—Vii Jornadas En Tecnologia Del Habla and Iii Iberians) Tech Workshop, Nov. 21, 2012, pp. 1-10.
Castleos, “Whole House Voice Control Demonstration”, available online at : https://www.youtube.com/watch?v=9SRCoxrZ_W4, Jun. 2, 2012, 26 pages.
Chamberlain, Kim, “Quick Start Guide Natural Reader”, available online at <http://atrc.colostate.edu/files/quickstarts/Natural_Reader_Quick_Start_Guide.>, Apr. 2008, 5 pages.
Chen, Yi, “Multimedia Siri Finds and Plays Whatever You Ask for”, PSFK Report, Feb. 9, 2012, 9 pages.
Cheyer, Adam, “About Adam Cheyer”, available at <http://www.adam.cheyer.com/about.html>, retrieved on Sep. 17, 2012, 2 pages.
Choi et al., “Acoustic and Visual Signal based Context Awareness System for Mobile Application”, IEEE Transactions on Consumer Electronics, vol. 57, No. 2, May 2011, pp. 738-746.
Colt, Sam, “Here's One Way Apple's Smartwatch Could Be Better Than Anything Else”, Business Insider, Aug. 21, 2014, pp. 1-4.
Deedeevuu, “Amazon Echo Alarm Feature”, Available online at https://www.youtube.com/watch?v=fdjU8eRLk7c, Feb. 16, 2015, 1 page.
Elliott et al., “Annotation Suggestion and Search for Personal Multimedia Objects on the Web”, CIVR, Jul. 7-9, 2008, pp. 75-84.
Erol et al., “Multimedia Clip Generation From Documents for Browsing on Mobile Devices”, IEEE Transactions on Multimedia, vol. 10, No. 5, Aug. 2008, 13 pages.
Evi, “Meet Evi: The One Mobile Application that Provides Solutions for your Everyday Problems”, Feb. 2012, 3 pages.
Exhibit 1, “Natural Language Interface Using Constrained Intermediate Dictionary of Results”, List of Publications Manually Reviewed for the Search of U.S. Pat. No. 7,177,798, Mar. 22, 2013, 1 page.
Filipowicz, Luke, “How to use the Quick Type Keyboard in iOS 8”, available online at <https://www.imore.com/comment/568232>, Oct. 11, 2014, pp. 1-17.
Findlater et al., “Beyond QWERTY: Augmenting Touch-Screen Keyboards with Multi-Touch Gestures for Non-Alphanumeric Input”, CHI '12, Austin, Texas, USA, May 5-10, 2012, 4 pages.
Finkel et al., “Joint Parsing and Named Entity Recognition”, Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the ACL, Jun. 2009, pp. 326-334.
Gannes, Liz, “Alfred App Gives Personalized Restaurant Recommendations”, AllThingsD, Jul. 18, 2011, pp. 1-3.
Gomez et al., “Mouth Gesture and Voice Command Based Robot Command Interface”, IEEE International Conference on Robotics and Automation, May 12-17, 2009, pp. 333-338.
Gruber, Tom, “Big Think Small Screen: How Semantic Computing in the Cloud will Revolutionize the Consumer Experience on the Phone”, Keynote Presentation at Web 3.0 Conference, Jan. 2010, 41 pages.
Gruber, Tom, “Despite Our Best Efforts, Ontologies are not the Problem”, AAAI Spring Symposium, Available online at <http://tomgruber.org/writing/aaai-ss08.htm>, Mar. 2008, pp. 1-40.
Gruber, Tom, “Intelligence at the Interface: Semantic Technology and the Consumer Internet Experience”, Presentation at Semantic Technologies Conference, Available online at <http://tomgruber.org/writing/semtech08.htm>, May 20, 2008, pp. 1-40.
Gruber, Tom, “Siri, A Virtual Personal Assistant-Bringing Intelligence to the Interface”, Semantic Technologies Conference, Jun. 16, 2009, 21 pages.
Gruber, Thomas R., et al., U.S. Appl. No. 61/186,414, filed Jun. 12, 2009 titled “System and Method for Semantic Auto-Completion” 13 pages (Copy Not Attached).
Guay, Matthew, “Location-Driven Productivity with Task Ave”, available at <http://iphone.appstorm.net/reviews/productivity/location-driven-productivity-with-task-ave/>, Feb. 19, 2011, 7 pages.
Guim, Mark, “How to Set a Person-Based Reminder with Cortana”, available at <http://www.wpcentral.com/how-to-person-based-reminder-cortana>, Apr. 26, 2014, 15 pages.
Hardwar, Devindra, “Driving App Waze Builds its own Siri for Hands-Free Voice Control”, Available online at <http://venturebeat.com/2012/02/09/driving-app-waze-builds-its-own-siri-for-hands-free-voice-control/>, retrieved on Feb. 9, 2012, 4 pages.
Hashimoto, Yoshiyuki, “Simple Guide for iPhone Siri, Which Can Be Operated with Your Voice”, Shuwa System Co., Ltd., vol. 1, Jul. 5, 2012, pp. 8, 130, 131.
id3.org, “id3v2.4.0-Frames”, available at <http://id3.org/id3v2.4.0-frames?action=print>, retrieved on Jan. 22, 2015, 41 pages.
Iowegian International, “FIR Filter Properties, DSPGuru, Digital Signal Processing Central”, available at <http://www.dspguru.com/dsp/faq/fir/properties> retrieved on Jul. 28, 2010, 6 pages.
Jawaid et al., “Machine Translation with Significant Word Reordering and Rich Target-Side Morphology”, WDS'11 Proceedings of Contributed Papers, Part I, 2011, pp. 161-166.
Jiang et al., “A Syllable-based Name Transliteration System”, Proc. of the 2009 Named Entities Workshop, Aug. 7, 2009, pp. 96-99.
Jonsson et al, “Proximity-based Reminders Using Bluetooth”, 2014 IEEE International Conference on Pervasive Computing and Communications Demonstrations, 2014, pp. 151-153.
Jouvet et al., “Evaluating Grapheme-to-phoneme Converters in Automatic Speech Recognition Context”, IEEE, 2012, pp. 4821-4824.
Kane et al., “Slide Rule: Making Mobile Touch Screens Accessible to Blind People Using Multi-Touch Interaction Techniques”, ASSETS, Oct. 13-15, 2008, pp. 73-80.
Karn, Ujjwal, “An Intuitive Explanation of Convolutional Neural Networks”, The Data Science Blog, Aug. 11, 2016, 23 pages.
Kazmucha, Allyson, “How to Send Map Locations Using iMessage”, iMore.com, Available at <http://www.imore.com/how-use-imessage-share-your-location-your-iphone>, Aug. 2, 2012, 6 pages.
Kickstarter, “Ivee Sleek: W-Fi Voice-Activated Assistant”, available at <https://www.kickstarter.com/projects/ivee/ivee-sleek-wi-fi-voice-activated-assistant>, retrieved on Feb. 10, 2014, 13 pages.
Knownav, “Knowledge Navigator”, YouTube Video available at <http://www.youtube.com/watch?v=QRH8eimU_20>, Apr. 29, 2008, 1 page.
Lewis, Cameron, “Task Ave for iPhone Review”, Mac Life, Available at <http://www.maclife.com/article/reviews/task_ave_iphone_review>, Mar. 3, 2011, 5 pages.
Mactech, “KeyStrokes 3.5 for Mac OS X Boosts Word Prediction”, available at <http://www.mactech.com/news/?p=1007129>, retrieved on Jan. 7, 2008, 3 pages.
Majerus, Wesley, “Cell Phone Accessibility for your Blind Child”, Retrieved from the Internet <URL:https://web.archive.org/web/20100210001100/https://nfb.org/images/nfb/publications/fr/fr28/3/fr280314.htm>, 2010, pp. 1-5.
Martins et al., “Extracting and Exploring the Geo-Temporal Semantics of Textual Resources”, Semantic Computing, IEEE International Conference, 2008, pp. 1-9.
Mhatre et al., “Donna Interactive Chat-bot acting as a Personal Assistant”, International Journal of Computer Applications (0975-8887), vol. 140, No. 10, Apr. 2016, 6 pages.
Microsoft, “Turn On and Use Magnifier”, available at <http://www.microsoft.com/windowsxp/using/accessibility/magnifiertumon.mspx>, retrieved on Jun. 6, 2009.
Miller, Chance, “Google Keyboard Updated with New Personalized Suggestions Feature”, available at <http://9to5google.com/2014/03/19/google-keyboard-updated-with-new-personalized-suggestions-feature/>, Mar. 19, 2014, 4 pages.
Morrison, Jonathan, “iPhone 5 Siri Demo”, Online Available at <https://www.youtube.com/watch?v=_wHWwG5lhWc>, Sep. 21, 2012, 3 pages.
Morton, Philip, “Checking If an Element Is Hidden”, StackOverflow, Available at <http://stackoverflow.com/questions/178325/checking-if-an-element-is-hidden>, Oct. 7, 2008, 12 pages.
My Cool Aids, “What's New”, available at <http://www.mycoolaids.com/>, 2012, 1 page.
Myers, Brad A., “Shortcutter for Palm”, available at <http://www.cs.cmu.edu/˜pebbles/v5/shortcutter/palm/index.html>, retrieved on Jun. 18, 2014, 10 pages.
Nakazawa et al., “Detection and Labeling of Significant Scenes from TV program based on Twitter Analysis”, Proceedings of the 3rd Forum on Data Engineering and Information Management (DEIM 2011 proceedings), IEICE Data Engineering Technical Group. Available online at: http://db-event.jpn.org/deim2011/proceedings/pdf/f5-6.pdf, Feb. 28, 2011, 10 pages (Official Copy Only). (See Communication under 37 CFR § 1.98(a) (3)).
Naone, Erica, “TR10: Intelligent Software Assistant”, Technology Review, Mar.-Apr. 2009, 2 pages.
Navigli, Roberto, “Word Sense Disambiguation: A Survey”, ACM Computing Surveys, vol. 41, No. 2, Feb. 2009, 69 pages.
NDTV, “Sony SmartWatch 2 Launched in India for Rs. 14,990”, available at <http://gadgets.ndtv.com/others/news/sony-smartwatch-2-launched-in-india-for-rs-14990-420319>, Sep. 18, 2013, 4 pages.
Ng, Simon, “Google's Task List Now Comes to Iphone”, SimonBlog, Available at <http://www.simonblog.com/2009/02/04/googles-task-list-now-comes-to-iphone/>, Feb. 4, 2009, 3 pages.
Nozawa, Naoki et al., “iPhone 4S Perfect Manual”, vol. 1, First Edition, Nov. 11, 2011, 5 pages.
Okuno et al., “System for Japanese Input Method based on the Internet”, Technical Report of Information Processing Society of Japan, Natural Language Processing, Japan, Information Processing Society of Japan, vol. 2009, No. 36, Mar. 18, 2009, 8 pages (Official Copy Only) (See Communication under 37 CFR § 1.98(a) (3)).
Osxdaily, “Get a List of Siri Commands Directly from Siri”, Available at <http://osxdaily.com/2013/02/05/list-siri-commands/>, Feb. 5, 2013, 15 pages.
Pan et al., “Natural Language Aided Visual Query Building for Complex Data Access”, in proceeding of: Proceedings of the Twenty-Second Conference on Innovative Applications of Artificial Intelligence, XP055114607, Jul. 11, 2010, pp. 1821-1826.
Pathak et al., “Privacy-preserving Speech Processing: Cryptographic and String-matching Frameworks Show Promise”, in: IEEE signal processing magazine, retrieved from <http://www.merl.com/publications/docs/TR2013-063.pdf>, Feb. 13, 2013, 16 pages.
Patra et al., “A Kernel-Based Approach for Biomedical Named Entity Recognition”, Scientific World Journal, vol. 2013, 2013, pp. 1-7.
Phoenix Solutions, Inc., “Declaration of Christopher Schmandt Regarding the MIT Galaxy System”, West Interactive Corp., A Delaware Corporation, Document 40, Jul. 2, 2010, 162 pages.
Powell, Josh, “Now You See Me . . . Show/Hide Performance”, available at http://www.learningjquery.com/2010/05/now-you-see-me-showhide-performance, May 4, 2010, 3 pages.
Rios, Mafe, “New bar search for Facebook”, Youtube, available at “https://www.youtube.com/watch?v=vwgN1WbvCas”, 1 page.
Routines, “SmartThings Support”, Available online at <https://web.archive.org/web/20151207165701/https://support.smartthings.com/hc/en-us/articles/205380034-Routines>, 2015, 2 pages.
Sarawagi, Sunita, “CRF Package Page”, available at <http://crf.sourceforge.net/>, retrieved on Apr. 6, 2011, 2 pages.
Selfrifge et al., “Interact: Tightly-coupling Multimodal Dialog with an Interactive Virtual Assistant”, International Conference on Multimodal Interaction, ACM, Nov. 9, 2015, pp. 381-382.
Simonite, Tom, “One Easy Way to Make Siri Smarter”, Technology Review, Oct. 18, 2011, 2 pages.
Spivack, Nova, “Sneak Preview of Siri—Part Two—Technical Foundations—Interview with Tom Gruber, CTO of Siri”, Online Available at <https://web.archive.org/web/20100114234454/http://www.twine.com/item/12vhy39k4-22m/interview-with-tom-gruber-of-siri>, Jan. 14, 2010, 5 pages.
SRI, “SRI Speech: Products: Software Development Kits: EduSpeak”, available at <http://web.archive.org/web/20090828084033/http://www.speechatsri.com/products/eduspeak>shtml, retrieved on Jun. 20, 2013, 2 pages.
Stent et al., “Geo-Centric Language Models for Local Business Voice Search”, AT&T Labs—Research, 2009, pp. 389-396.
Sullivan, Danny, “How Google Instant's Autocomplete Suggestions Work”, available at <http://searchengineland.com/how-google-instant-autocomplete-suggestions-work-62592>, Apr. 6, 2011, 12 pages.
Sundaram et al., “Latent Perceptual Mapping with Data-Driven Variable-Length Acoustic Units for Template-Based Speech Recognition”, ICASSP 2012, Mar. 2012, pp. 4125-4128.
Sundermeyer et al., “From Feedforward to Recurrent LSTM Neural Networks for Language Modeling”, IEEE Transactions to Audio, Speech, and Language Processing, 2015, vol. 23, Mar. 2015, pp. 517-529.
Tanaka, Tatsuo, “Next Generation IT Channel Strategy Through “Experience Technology””, Intellectual Resource Creation, Japan, Nomura Research Institute Ltd. vol. 19, No. 1, Dec. 20, 2010, 17 pages. (Official Copy only) (See Communication under 37 CFR § 1.98(a) (3)).
TextnDrive, “Text'nDrive App Demo-Listen and Reply to your Messages by Voice while Driving!”, YouTube Video available at <http://www.youtube.com/watch?v=WaGfzoHsAMw>, Apr. 27, 2010, 1 page.
Tofel, Kevin C., “SpeakTolt: A Personal Assistant for Older iPhones, iPads”, Apple News, Tips and Reviews, Feb. 9, 2012, 7 pages.
Tucker, Joshua, “Too Lazy to Grab Your TV Remote? Use Siri Instead”, Engadget, Nov. 30, 2011, 8 pages.
Tur et al., “The CALO Meeting Assistant System”, IEEE Transactions on Audio, Speech and Language Processing, vol. 18, No. 6, Aug. 2010, pp. 1601-1611.
Tur et al., “The CALO Meeting Speech Recognition and Understanding System”, Proc. IEEE Spoken Language Technology Workshop, 2008, 4 pages.
Vlingo InCar, “Distracted Driving Solution with Vlingo InCar”, YouTube Video, Available online at <http://www.youtube.com/watch?v=Vqs8XfXxgz4>, Oct. 2010, 2 pages.
Vlingo, “Vlingo Launches Voice Enablement Application on Apple App Store”, Press Release, Dec. 3, 2008, 2 pages.
Vodafone Deutschland, “Samsung Galaxy S3 Tastatur Spracheingabe”, Available online at—“https://www.youtube.com/watch?v=6kOd6Gr8uFE”, Aug. 22, 2012, 1 page.
Voiceassist, “Send Text, Listen to and Send E-Mail by Voice”, YouTube Video, Available online at <http://www.youtube.com/watch?v=0tEU61nHHA4>, Jul. 30, 2009, 1 page.
VoiceontheGo, “Voice on the Go (BlackBerry)”, YouTube Video, available online at <http://www.youtube.com/watch?v=pJqpWgQS98w>, Jul. 27, 2009, 1 page.
Wikipedia, “Acoustic Model”, available at <http://en.wikipedia.org/wiki/AcousticModel>, retrieved on Sep. 14, 2011, 2 pages.
Wikipedia, “Language Model”, available at <http://en.wikipedia.org/wiki/Language_model>, retrieved on Sep. 14, 2011, 4 pages.
Wikipedia, “Speech Recognition”, available at <http://en.wikipedia.org/wiki/Speech_recognition>, retrieved on Sep. 14, 2011, 12 pages.
Wilson, Mark, “New iPod Shuffle Moves Buttons to Headphones, Adds Text to Speech”, available at <http://gizmodo.com/5167946/new-ipod-shuffle-moves-buttons-to-headphones-adds-text-to-speech>, Mar. 11, 2009, 12 pages.
X.Ai, “How it Works”, May 2016, 6 pages.
Xiang et al., “Correcting Phoneme Recognition Errors in Learning Word Pronunciation through Speech Interaction”, Speech Communication, vol. 55, No. 1, Jan. 1, 2013, pp. 190-203.
Xu, Yuhong, “Policy optimization of dialogue management in spoken dialogue system for out-of-domain utterances”, 2016 International Conference on Asian Language Processing (IALP), IEEE, Nov. 21, 2016, pp. 10-13.
Xu et al., “Speech-Based Interactive Games for Language Learning: Reading, Translation, and Question-Answering”, Computational Linguistics and Chinese Language Processing, vol. 14, No. 2, Jun. 2009, pp. 133-160.
Yan et al., “A Scalable Approach to Using DNN-Derived Features in GMM-HMM Based Acoustic Modeling for LVCSR”, InInterspeech, 2013, pp. 104-108.
Young et al., “The Hidden Information State model: A practical framework for POMDP-based spoken dialogue management”, Computer Speech & Language, vol. 24, Issue 2, 2010, pp. 150-174.
Zainab, “Google Input Tools Shows Onscreen Keyboard in Multiple Languages [Chrome]”, available at <http://www.addictivetips.com/internet-tips/google-input-tools-shows-multiple-language-onscreen-keyboards-chrome/>, Jan. 3, 2012, 3 pages.
Zangerle et al., “Recommending #-Tag in Twitter”, Proceedings of the Workshop on Semantic Adaptive Socail Web, 2011, pp. 1-12.
Zhang et al., “Research of Text Classification Model Based on Latent Semantic Analysis and Improved HS-SVM”, Intelligent Systems and Applications (ISA), 2010 2nd International Workshop, May 22-23, 2010, 5 pages.
Zhong et al., “JustSpeak: Enabling Universal Voice Control on Android”, W4A'14, Proceedings of the 11th Web for All Conference, No. 36, Apr. 7-9, 2014, 8 pages.
Related Publications (1)
Number Date Country
20190236130 A1 Aug 2019 US
Provisional Applications (1)
Number Date Country
62624464 Jan 2018 US