Ishikawa et al., “High Gain per Unit Length Silica-Based Erbium Doped Fiber for 1580nm Band Amplification”, OSA Tops vol. 25, Optical Amplifiers and Their Applications, pp. 64-67. 1998.* |
Desurvire, Emmanuel. Erbium-Doped Fiber Amplifiers Principles and Applications. John Wiley & Sons, Inc. 1994. pp. 270-271 and 396-397.* |
Hatton et al., “Accurately Predicting the Cutoff Wavelength of Cabled Single-Mode Fiber”, Journal of Lightwave Technology, Vo 8, No. 10, Oct. 1990.* |
Rottwitt et al., “Fundamental Design of Distributed Erbium-Doped Fiber Amplifier for Long-Distance Transmission”, Journal of Lightwave Technology, vol. 10, No. 11, Nov. 1992.* |
Hansen et al., “L-Band Erbium Doped Fiber Amplifiers-Theory and Design”, Jan. 31, 2000.* |
Massicott, J. F. et al. :“High gain, broadband, 1.6 mu m Er/sup 3+/ doped silica fibre amplifier” Electronics Letters, Sep. 27, 1990, UKL, vol. 26, No. 20, pp. 1645-1646, XP000109503, ISSN: 0013-5194. |
Massicott, J. F. et al.: “Low noise operation of Er/sup 3+ doped silica fibre amplifier around 1.6 mu m” Electronics Letters, Sep. 24, 1992, UK, vol. 28, No. 20, pp. 1924-1925, XP000315929. |
Juhan Lee et al.: “Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effect in the umpumped EDF seciton” IEEE Photonics Technology Letters, Jan. 1999, IEEE, USA, vol. 11, No. 1, pp. 42-44, XP000801384 ISSN: 1041-1135. |
Karasek, M.: “Gain enhancement in gain-shifted erbium-doped fiber amplifiers for WDM applications” IEEE Photonics Technology Letters, Sep. 1999, IEEE, USA, vol. 11, No. 9, pp. 1111-1113, XP000882915, ISSN: 1041-1135. |