Not Applicable
1. Field of the Invention
The present invention generally relates to microstrip patch antennas. More specifically, the present invention relates to microstrip patch antennas having an L-shaped feed.
2. Description of the Related Art
Proximity coupled feed mechanism for microstrip patch antennas (and specifically an L-shaped feed) are known in the prior art. An example of one is Luk et al., U.S. Pat. No. 7,994,985 for an Isolation Enhancement Technique For Dual-Polarized Probe-Fed Patch Antenna, which discloses two L-shaped feed probes in a patch antenna.
The present invention is an antenna system with a specific feed mechanism. In the preferred embodiment, the antenna is a microstrip patch antenna with a proximity L-shaped feed and a two layers laminate structure. In the preferred embodiment, the size of the antenna corresponds to operation in the frequency range of 1.7 GHz to 2.2 GHz. The same operating principles may be utilized to design an embodiment that operates at other frequency bands.
The specific feed mechanism leads to favorable performance parameters in two separate ways in the preferred embodiment. First, the performance of the antenna is wideband due to the specific feed mechanism. In the preferred embodiment, the feed comprises a matching network incorporated in the L-shaped structure attached to a bottom layer of a laminate structure, and the clearance around a center pin on the top layer of the laminate structure. In other embodiments, a similar feed mechanism can be implemented for various combinations of frequencies (or a different frequency band). Second, the L-shaped feed mechanism excites the currents on the top layer via proximity coupling (no direct connection) and leads to very stable and directional current distribution on the top layer. The very stable and directional current distribution on the top layer helps in improving the radiated electromagnetic field distribution around the antenna with very little radiation towards the back of the antenna. Most of the radiated energy is focused broadside (in front) to the antenna. This improves a front-to-back ratio of the radiation from the antenna structure for a given size of a ground plane base as depicted in the preferred embodiment.
One aspect of the present invention is a microstrip patch antenna. The microstrip patch antenna preferably includes a ground plane base, a L-feed structure and a laminate structure. The L-feed structure preferably includes a pin extending from the ground plane base and a stub substantially perpendicular to the pin. The laminate structure is attached to the stub of the L-feed structure. The laminate structure preferably includes a substrate layer, a metal layer and a clearance gap. The substrate layer has a bottom surface and a top surface. The metal layer is disposed on a portion of the top surface of the substrate layer. The stub is attached to the bottom surface of the substrate layer. The clearance gap is located around the pin of the L-shaped feed structure in proximity of the metal layer of the laminate structure at the top of the surface. A matching network is formed by the clearance member around the pin and the stub on the bottom surface in which the clearance member around the pin effectively decreases shunt inductance and reduces a series capacitance at a feed point and the stub member reduces the shunt inductance close to the feed point to enable a 50 ohm wideband operation.
Another aspect of the present invention is a patch antenna wherein a matching network is formed by the clearance member around the pin and the stub on the bottom surface in which the clearance member around the pin effectively decreases shunt inductance and reduces a series capacitance at a feed point to enable a predetermined wideband operation. The patch antenna includes a ground plane base, an L-feed structure and a laminate structure. The L-feed structure preferably includes a pin extending from the ground plane base and a stub substantially perpendicular to the pin. The laminate structure is attached to the stub of the L-feed structure. The laminate structure includes a substrate layer, a metal layer and a clearance gap. The substrate layer has a bottom surface and a top surface. The metal layer is disposed on a portion of the top surface of the substrate layer. The stub is attached to the bottom surface of the substrate layer. The clearance gap is located around the pin of the L-shaped feed structure in proximity of the metal layer of the laminate structure at the top of the surface.
Yet another aspect of the present invention is a patch antenna including a ground plane base, an L-shaped feed structure and a laminate structure. The laminate structure has a first end and a second end opposing the first end, and a stub of the L-shaped feed structure extends from a pin of the L-shaped feed structure towards the first end of the laminate structure, and a metal layer of the laminate structure extends from the second end of the laminate structure towards the pin.
The metal utilized with microstrip patch antenna any of the embodiments is preferably copper. Alternatively, the metal is one of brass, aluminum, silicon steel, gold or silver.
Having briefly described the present invention, the above and further objects, features and advantages thereof will be recognized by those skilled in the pertinent art from the following detailed description of the invention when taken in conjunction with the accompanying drawings.
As shown
The ground plane base 20 preferably comprises a main body 21, a first sidewall 22 and a second sidewall 24. The first sidewall 22 preferably extends upward from the main body 21 of the ground plane base 20, and the first sidewall 22 preferably perpendicular to the main body 21. The second sidewall 24 is preferably positioned at an opposing end of the main body 21 from the first sidewall 22. The second sidewall 24 also preferably extends upward from the main body 21 of the ground plane base 20, and the second sidewall 24 is preferably perpendicular to the main body 21. Although there is no technical limit to the thickness of the ground plane base 20 and the sidewalls 22 and 24, a preferred thickness is 0.25 millimeters (“mm”) to 2.0 mm. The preferred width, W1, of the ground plane base 20 for the preferred embodiment is 76 mm, and the preferred length, L1, of the ground plane base 20 for the preferred embodiment is 136 mm. The ground plane base 20 is preferably bent at 90 degrees at its edges to create the first and second sidewalls 22 and 24. The first and second sidewalls 22 and 24 are preferably 20 mm in length from the main body 21. The first and second sidewalls 22 and 24 can be adjusted in length to suit the frequency of operation.
The laminate structure 30 supports a top and bottom metallization of the radiating structure. The laminate structure 30 preferably comprises a substrate layer 32 and a top layer 34. The top layer 34 is the patch antenna metallization. The top layer 34 is preferably a metalized layer, and the substrate layer 32 is preferably a dielectric substrate such as PTFE composites or alumina. The laminate structure 30 also preferably comprises a clearance pin member 36. The top layer 34 is disposed on a portion of a top surface of the substrate layer 32, and preferably does not cover the entire top surface of the substrate layer 32. The laminate structure 30 preferably has a thickness ranging from 0.5 mm to 1.0 mm. In a most preferred embodiment, the width W2 of the laminate structure 30 is approximately 45 mm in and a length L2 of the laminate structure 30 is 61.5 mm. The dimensions (length and width) of the top layer 34 vary to accommodate different frequency operations for other embodiments. The laminate structure 30 is preferably suspended approximately 12 mm over the ground plane base 20 at the bottom surface of the laminate structure 30, as shown in
The L-feed structure 40 preferably comprises a pin member 42 and a stub member 44. The stub member 44 is preferably perpendicular to the pin member 42. The stub member 44 is attached to a bottom surface of the substrate layer 32 of the laminate structure 30. The stub member 44 preferably has a length of approximately 10.5 mm and a width of approximately 2 mm. The pin member 42 preferably extends upward from an aperture 26 in the ground plane base 20, and the pin member 42 is preferably perpendicular to the ground plane base 20.
A feed mechanism is depicted in detail in
As described, the center pin P of the coax does not have to make contact with the top layer 34 of the laminate structure 30 to excite the top layer. The energy transfer takes place via coupling, and the clearance member 36 and the stub 44 add the necessary series and shunt reactances to achieve a wide band impedance match to 50 ohms. For the depicted exemplary embodiment, the various parameters are tuned for operation within the 1.7-2.2 GHz frequency band.
As depicted in
This is accomplished in the exemplary embodiment by a matching network formed by the clearance around the center pin and the L shaped feed stub on the bottom layer. The clearance around the center pin effectively decreases shunt inductance and reduces the series capacitance at the feed. The feed stub in this embodiment helps in reducing the shunt inductance close to the feed point. The combined action of both of these (with their various amounts of reactances) helps to shift the impedance locus from the high impedance area of the Smith chart to the center of the chart and hence enable 50 ohm wideband operation. The dimensions of the clearance and feed stub can be varied to control the location of the impedance locus on the Smith chart.
As shown in
The L-shaped feed structure 40 in the alternative embodiments illustrated in
The stub member 44 couples energy into the radiating structure and also acts as an impedance matching network. Due to this specific feed mechanism via proximity coupling, the surface current distribution on the metalized top layer 34 (the patch) is very directional and stable. Such a current distribution is necessary for a very symmetrical and directional radiation field from the antenna structure. Normally, to reduce back radiation, the size of the ground plane base 20 must be relatively large. However, where overall size is a constraint, different techniques as presented in this exemplary embodiment can be employed to reduce the back radiation. The pure (single directional) current distribution helps in improving the front to back ratio of the radiated far field energy.
The first and second sidewalls 22 and 24 of the ground plane base 20 also help to reduce the back radiation and help the front to back ratio. The length of the first and second sidewalls 22 and 24 can be varied to improve the back radiation depending on the frequency of operation.
In yet another alternative embodiment illustrated in
In all of the alternative embodiments illustrated in
A distance H3 is preferably approximately 132 mm. A distance H4 is preferably approximately 61 mm. A distance H5 is preferably approximately 37 mm. A distance H6 is preferably approximately 38 mm. A distance H7 is preferably approximately 3 mm. A distance H8 is preferably approximately 14 mm. A distance W5 is preferably approximately 45 mm. A distance W6 is preferably approximately 11 mm. A distance T1 is preferably approximately 0.5 mm.
From the foregoing it is believed that those skilled in the pertinent art will recognize the meritorious advancement of this invention and will readily understand that while the present invention has been described in association with a preferred embodiment thereof, and other embodiments illustrated in the accompanying drawings, numerous changes modification and substitutions of equivalents may be made therein without departing from the spirit and scope of this invention which is intended to be unlimited by the foregoing except as may appear in the following appended claim. Therefore, the embodiments of the invention in which an exclusive property or privilege is claimed are defined in the following appended claims.
The present application claims priority to U.S. Provisional Patent Application No. 61/480,182, filed on Apr. 28, 2011, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4907006 | Nishikawa et al. | Mar 1990 | A |
7528780 | Thiam et al. | May 2009 | B2 |
7999744 | Chin et al. | Aug 2011 | B2 |
8325093 | Holland et al. | Dec 2012 | B2 |
20080122717 | Su et al. | May 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
61480182 | Apr 2011 | US |