It is generally desired to be able to identify and distinguish individual wires and cables in a bundle from one another. One known solution for distinguishing wires and cables is to print indicia on an adhesive tag, and then wrap the adhesive tag around a respective cable or wire. However, adhesive tags are commonly not reusable and may become unintentionally detached or unreadable based on wear and tear during use of the cable or wire. Another known solution is to apply a small snap-on marker to the cable or wire. However, snap-on markers are small and not customizable, and do not provide the space for a user to write whatever he or she wants on the marker.
The present disclosure is directed to a clip that permits for attachment of a customized label to a cable. In some embodiments, the clip may be removably attachable to the cable.
In one aspect of the disclosure, a label clip assembly comprises: an annular clip having an inner surface and an outer surface radially positioned around a primary axis, and having a height extending in the direction of the primary axis; a label member attached to the outer surface of the clip; and a plurality of projections extending radially from the inner surface of the clip towards the primary axis. The projections may be configured to permit sliding of the clip onto a cable in a first direction, and to obstruct sliding of the clip in an opposite direction when the clip is engaged with the cable by the projections. The label member may extend lengthwise in the direction of the primary axis.
In some examples, each projection may include a front edge extending from the inner surface of the clip at an angle greater than 90 degrees, and a back edge extending from the inner surface of the clip at an angle less than 90 degrees. The front edge may be configured to permit sliding of the clip onto the cable in the first direction. The back edge may be configured to avoid sliding of the clip in the opposite direction. The clip may be made of polycarbonate, polycarbonate acrylonitrile butadiene styrene, or the like.
In some examples, the annular clip may further include a slit extending from the inner surface to the outer surface along the height of the clip. The slit may have a width of 1 millimeter or less. The clip may be capable of being pried open at the slit to accommodate a cable being inserted into the annular cavity of the clip.
In further examples, the label clip assembly may include a second annular clip having an inner surface and an outer surface radially positioned around a second axis parallel to the primary axis, and having a height extending in the direction of the second axis, a second label member attached to the outer surface of the second clip, and a second plurality of projections extending radially from the inner surface of the second clip towards the second axis, wherein the second plurality of projections are configured to permit sliding of the second clip onto a second cable in the first direction and to obstruct sliding of the second clip in the opposite direction when the second clip is engaged with the second cable by the second plurality of projections. The label clip assembly may further include a tab connecting the first label member to the second label member.
Another aspect of the disclosure provides for an optical cable assembly comprising: an optical cable; a cable boot connected to an end of the optical cable; and a label clip assembly as described in any of the embodiments herein.
In some examples, the cable boot may be tapered such that it has a wide end and a narrow end. The optical cable may be connected to the narrow end of the cable boot. The diameter of the annular cavity of the clip may greater than the diameter of the narrow end and less than the wide end. The cable boot may include a plurality of grooves, such that the plurality of projections may be adapted to engage with the grooves in the cable boot in order to avoid sliding of the clip off of the cable. The cable boot may be made of a material that is softer than the material of the plurality of projections, thereby improving the engagement between the projections and the boot.
Yet another aspect of the disclosure provides for a method of labeling an optical cable. The method may involve inserting the optical cable into a cavity of an annular clip, and sliding the annular clip in a first direction to engage a cable boot. The annular clip may have an inner surface and an outer surface radially positioned around a primary axis. The annular clip may further have a height extending in the direction of the primary axis. The annular clip may further include a plurality of projections extending radially from the inner surface of the clip towards the primary axis. The annular clip may further have a label member attached to its outer surface. The cable boot may be connected to an end of the optical cable. The plurality of projections may be configured to avoid the clip sliding off the cable in a second direction opposite the first direction when the clip is engaged with the cable boot.
In some examples, the method may further involve writing on the label member, such that the optical cable is identifiable based on the writing on the label member. The annular clip may further include a slit extending from the inner surface to the outer surface along the height of the clip, such that inserting the optical cable into the cavity of the annular clip further involves passing the optical cable through the slit. In some cases, the width of the slit may be less than the diameter of the optical cable, such that inserting the optical cable into the cavity of the annular clip further involves initially prying open the slit to accommodate the optical cable being inserted.
In further examples, the method further may further involve labeling a second optical cable with a second annular clip, whereby each of the annular clip and the second annular clip are connected to one another (e.g., by a tab), and the annular clips may be engaged to the respective cable boots of the optical cables in a single sliding motion.
In the example of
The label member 110 may include a rigid or semi-rigid frame have a thickness of between about 0.5 and 3 millimeters. The user may write custom indicia on a sticker (not shown), and affix the sticker to the frame. Alternatively, the label member 110 may itself be made of a material commonly used in adhesive tags, such that the user may write directly on the label member 110. In the example of
The clip 120, as shown in greater detail in
The width of the slit may depend on the size of the cable for which it is designed to engage. In some instances, the slit 122 may be designed to be wider than a cable to which the clip is affixed, such that the cable can be inserted through the slit 122 into the hollow space of the clip 120, but narrower than a boot at the end of the cable, such that the cable does not slip through the slit 122 when the clip 122 is being affixed to the boot. In other instances in which the clip 120 is made of a flexible material, the slit 122 may be designed to be slightly narrower than the cable but capable of being pried open to allow that the cable can be inserted through the slit 122 into the hollow space of the clip 120. In some such instances, the slit 122 may have negligible width but may be pried open to accommodate insertion of a cable having a diameter of a few millimeters or even a centimeter. Particularly, in the illustrated example of
The inner surface 121a of the clip 120 may include a plurality of projections 124 or barbs, each projection 124 extending radially inward from the inner surface 121a toward the primary axis A. A zoomed view of an example projection 124 is shown in
In the example of
In some instances, the cable boot is made of a material that is softer than that of the projections. This allows the projections to effectively “dig” into the cable boot and thereby get caught and latch onto the boot.
Additionally, in some instances, a cable boot may be designed with small grooves on either side to allow the boot to flex back and forth. The illustration of
The label clips described in the present disclosure can be designed to fit over cable boots of varying shapes and sizes. For example,
The above examples generally describe a label clip assembly designed to be affixed to a single cable. However, those skilled in the art will recognize that the assembly described herein can also be designed for use with a pair of cables having a duplex connector.
The above examples effectively allow for a cable-identifying label to be affixed to a cable's boot without interfering the boot's function, and also without interfering with the cable's ability to bend. As demonstrated in the Figures, the label may be held in place by the label clip at or close to the end of the cable, thereby avoiding the label from becoming entangled with other cables in a bundle.
The above examples generally describe illustrations of a label clip affixed to a boot having a tapered end. However, it should also be appreciated that the clips described herein are capable of attaching to cable boots of various shapes and sizes, and do not per se require the boot to have a tapered end. The label clip can be effectively affixed to any portion of the cable boot's surface that the clip's projections are capable of engaging, such as by digging into or latching onto the surface of the boot.
The above examples generally describe illustrations of a label clip affixed to a boot of a fiber optic cable. However, it will be readily appreciated that the same or similar clips may be affixed to the boots of other types of cables or wires.
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.
The present application is a national phase entry under 35 U.S.C. § 371 of International Application No. PCT/US2018/029841 filed Apr. 27, 2018, which claims priority from U.S. Provisional Application No. 62/491,411, filed Apr. 28, 2017, all of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/029841 | 4/27/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/200984 | 11/1/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3450828 | Joly | Jun 1969 | A |
3491472 | Walldorf | Jan 1970 | A |
4947568 | De Barbieri | Aug 1990 | A |
5187887 | Mori | Feb 1993 | A |
5511331 | Morosini | Apr 1996 | A |
6409392 | Lampert | Jun 2002 | B1 |
6651362 | Caveney | Nov 2003 | B2 |
7552849 | Gouldson | Jun 2009 | B2 |
7612288 | Gundogan | Nov 2009 | B1 |
7766198 | Mainetti | Aug 2010 | B2 |
20020076164 | Childers et al. | Jun 2002 | A1 |
20030017742 | Bond | Jan 2003 | A1 |
20080112682 | Ishii et al. | May 2008 | A1 |
20090139743 | Smith | Jun 2009 | A1 |
20120301087 | Cunningham | Nov 2012 | A1 |
20180113259 | Zhu | Apr 2018 | A1 |
20180286289 | Liversidge | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
2016162377 | Oct 2016 | WO |
Entry |
---|
International Search Report and Written Opinion for Application No. PCT/US2018/029841 dated Jul. 13, 2018. |
Number | Date | Country | |
---|---|---|---|
20200058237 A1 | Feb 2020 | US |
Number | Date | Country | |
---|---|---|---|
62491411 | Apr 2017 | US |