Label for modified atmosphere packaging

Information

  • Patent Grant
  • 11434061
  • Patent Number
    11,434,061
  • Date Filed
    Wednesday, April 8, 2015
    9 years ago
  • Date Issued
    Tuesday, September 6, 2022
    a year ago
Abstract
Maintenance of conditions optimal to perishable materials within a package during shipment will prolong the lifetime of the goods for shipment. The present invention provides a system for mitigating spoilage of perishable materials. The system comprises a container defining a compartment for storage of perishable materials, the container further defining an opening for providing communication between the compartment and an outside environment. A film cooperates with the container to seal the opening of the container and control flow of gas and water vapor transfer between the compartment and the outside environment.
Description
FIELD OF INVENTION

The present invention provides for a film for use on a modified atmosphere packaging container. More specifically, the film controls transfer of gas and water vapour between the interior of the container and the environment outside the container.


BACKGROUND OF INVENTION

Fruit, vegetables and cut-flowers are highly perishable agricultural commodities. Decay and growth of microorganisms including bacteria and fungi can lead to rapid quality deterioration and spoilage after harvest of agricultural commodities, as well as for other raw and processed food materials.


Maintenance of conditions optimal to the perishable goods within a package during shipment would prolong the lifetime of the goods for shipment. Environmental properties important to maintaining the quality of the perishable goods include oxygen (O2) and carbon dioxide (CO2) levels. As well, buildup of moisture in the vicinity of the perishable goods can lead to growth of microorganisms such as bacteria, fungus, and yeast. Sub-optimal conditions can lead to decay and spoilage of perishable goods.


SUMMARY OF INVENTION

The invention provides for a system for mitigating spoilage of perishable materials. The system comprises a container defining a compartment for storage of perishable materials, the container further defining an opening for providing communication between the compartment and an outside environment. The system further comprises a film that cooperates with the container to seal the opening of the container and control flow of gas and water vapor transfer between the compartment and outside environment.


In an aspect of the invention, the film has a water vapor transfer rate between 170 and 470 g m2/day at 38° C. and 100% relative humidity.


In an aspect of the invention, the film has a water vapor transfer rate exceeding 200 g m2/day at 38° C. and 100% relative humidity.


In a preferred embodiment, the film has a water vapor transfer rate between 171 and 202 g m2/day at 38° C. and 100% relative humidity.


In an aspect, the film is permeable to water vapor to maintain a relative humidity between 85% and 100%.


In an aspect, the film has an O2 transfer rate of 20-1245 cm3/m2/day atm at 25° C. and 0% relative humidity.


In an aspect, the film is formed to have a O2 transfer rate of 20-36 cm3/m2/day atm at 25° C. and 0% relative humidity.


In an aspect, the film is formed to have a CO2 permeability of 60-100 cm3/m2/day atm at 25° C. and 0% relative humidity.


In an aspect, the film has a thickness of 500-10,000 μm.


In an aspect, the film has a thickness of over 2,000 μm.


In an aspect, the film is a label and further comprises ink.


In an aspect, properties of the ink cooperate with the film to allow desired moisture and gas transfer properties to be maintained.


In an aspect, the ink is hydrophilic and non-metallic.


In an aspect, the container is formed from a rigid material formed to maintain shape when carrying perishable materials.


In an aspect, the container is comprised of a base defining the compartment for holding perishable materials, the base further defining an opening providing communication between the compartment and outside environment. The container further comprises a lid which cooperates with base forming a seal over the opening defined by the base, the lid defining a second opening. The film cooperates with the surface of the lid to seal the second opening and control gas flow and water vapor transfer between the compartment defined by the base and the lid, and the outside environment.


In an aspect, the lid comprises a recessed surface, wherein the second opening is positioned within the recessed surface, whereby the second opening is sealed upon application of the film.


In an aspect, the second opening is a perforated surface.


In an aspect, the recessed surface and the film define a second compartment formed to fit a spoilage inhibiting agent for mitigating spoilage of perishable items.


In an aspect, the film is comprised of the material Capran 2500.


In an aspect, the container is comprised of corrugated linerboard consisting of 40 gsm kraft/35 gsmPP/170 gsm kraft.


In an aspect, the lid is comprised of plastic. The plastic the lid is comprised of may be polyethylene terephthalate.


In a preferred embodiment of the system, the CO2 and O2 transmission rates of the sealed container are a maximum of 1000 cm3/container/day and 1200 cm3/container/day, respectively.


In another aspect, film is a flexible film.





BRIEF DESCRIPTION OF DRAWINGS

A detailed description of the preferred embodiments are provided herein below by way of example only and with reference to the following drawings, in which:



FIG. 1 provides images displaying quality of peppers during a test of an embodiment of the invention.



FIG. 2 provides images displaying quality of peppers during a test of an embodiment of the invention.



FIG. 3 provides images displaying quality of peppers during a test of an embodiment of the invention.



FIG. 4 provides images displaying quality of peppers during a test of an embodiment of the invention.



FIG. 5 provides images displaying quality of peppers during a test of an embodiment of the invention.



FIG. 6 provides images displaying quality of peppers during a test of an embodiment of the invention.



FIG. 7 provides graphs of properties of films that may be used in embodiments of the invention.



FIG. 8 provides a view of an embodiment of the invention.



FIG. 9 provides a view of another embodiment of the invention.





In the drawings, preferred embodiments of the invention are illustrated by way of example. It is to be expressly understood that the description and drawings are only for the purpose of illustration and as an aid to understanding, and are not intended as a definition of the limits of the invention.


DETAILED DESCRIPTION

It is appreciated that the many embodiments of the present invention can be utilized in a wide variety of applications and industries. The present invention can be utilized with the transportation, treatment, and storage of a plethora of items. Items include but are not limited to produce, cheeses, flowers, poultry, and other meats and seafoods, nuts, dehydrated foods, mail, parcels, medical tools and equipment, etc.


The invention provides for a system for mitigating spoilage of perishable materials, the system comprising a container defining a compartment for storage of perishable materials, the container further defining an opening for providing communication between the compartment and an outside environment. The system further comprises a film that cooperates with the container to seal the opening of the container and control gas flow and water vapor transfer between the compartment and the outside environment.


The outside environment is the area outside of the system. The outside environment may be the atmosphere within shipping containers, warehouses, distribution centres, or any other location the system may be placed. For example, it is not uncommon for perishable materials such as produce to be packed into the system in an agricultural field, shipped over long distances, and stored for periods of time at storage locations. All of these locations may comprise the outside environment at one time or another.


The permeability of material is typically defined as the water vapor transfer rate, moisture vapor transmission rate, or water vapor transmission rate. For greater certainty, water vapor transfer rate, moisture vapor transmission rate, and water vapor transmission rate have the same meaning. These are defined as the measure of the movement of water vapor through a material. The conditions under which the measurement is made affects the measurement. These conditions include temperature and humidity, which should be measured, controlled, and recorded with the result, when defining the water vapor transfer rate of a material.


In an embodiment, the film has a permeability to water vapor exceeding about 200 g/m2/day at 38° C. and 100% relative humidity. Preferably, the permeability of the film provides for a relative humidity within the system of 85-90%.


In an embodiment, the water vapor transfer rate of the film is 170-470 g/m2/day at 38° C. and 100% relative humidity.


In an embodiment, the water vapor transfer rate of the film is 171-202 g/m2/day at 37.8° C. and 100% relative humidity.


In an embodiment, the film maintains an atmosphere within the system of 1-20% O2 and 0.5-20% CO2, and a relative humidity of 85-100% at −0.5 to 15° C.


In an embodiment of the invention, the film is a plastic material having a thickness of 500 to 10,000 μm. Preferably the film material has a thickness of 2,000 μm or greater.


Increasing thickness of the film is inversely proportional to the transfer rate of water vapour through the film. It is preferable that the film has a sufficient thickness to be handled and applied to the container using automated machinery, yet thin enough to maintain optimal water vapour transfer rates. It is also desirable to maintain optimal CO2 and O2 transfer rates in order to mitigate spoilage of perishable goods.


An embodiment of the film is formed from a material having a CO2 transfer rate of approximately 50-100 cm3/m2/day at 0% relative humidity and 38° C.


In an embodiment, the film is formed to have an O2 transfer rate of 20-36 cm3/m2/day at 0% relative humidity and 25° C. In another embodiment, the film is formed to have an O2 transfer rate of 20-1245 cm3/m2/day at 25° C. and 0% relative humidity.


In an embodiment, the film is formed to have an O2 transfer rate of 2500-7500 cm3/m2/day at 15° C. and 90% relative humidity.


The CO2 and O2 transmission rates of the sealed container should be a maximum of 1000 cm3/container/day and 1200 cm3/container/day, respectively, at a relative humidity of 85-100% at −0.5 to 15° C.


An embodiment of the film comprises a polyamide. The polyamide may comprise nylon-6 or nylon-66 or copolyamides such as nylon-6/66 or nylon-6/12. For example, the material may be manufactured from a polymeric material that comprises a blend of nylon-6 and nylon-66, nylon-6/66, or nylon 6/12 with other polymeric and/or non-polymeric components.


In an embodiment, the raw material the film is comprised of may be manipulated to tailor its permeability to water vapor, to either increase or decrease the water vapor permeability of the film. For example, blends of nylon-6 or nylon 6/66 with other raw materials may be processed to provide a film with a lower water vapor permeability or a higher water vapor permeability than a film processed with nylon-6 alone.


Alternatively, the film material may be manipulated by steam treatment or other processes to increase its water vapor permeability.


Preferably, an embodiment of the composition of the film material includes a polyamide such as nylon-6 or nylon-66, commercially available from Allied Signal as Capron® 3090FN, or copolyamides such as nylon-6/66, commercially available from Allied Signal as Capron® CA95YP, or nylon-6/12, commercially available from EMS as Grilon® CR8. The material may be manufactured from blends containing nylon-6, nylon-66, nylon-6/66, or nylon-6/12 with other polymeric and/or non-polymeric components. For such polyamides alone, oxygen (O2) permeability is about 0.4-1.5 cm3 mm/m2 day atm and carbon dioxide (CO2) permeability is about 1.8-3.0 cm3 mm/m2 day atm when measured at 23-25° C. and 0% relative humidity.


An embodiment of the film additionally comprises a blend of polyamides with other homopolymer polyamides. By blending a given polyamide with a second polyamide having a higher percentage of amide groups than the original polyamide, the water vapor permeability of the blend will usually be higher than that of the original polyamide. By blending a given polyamide with a second polyamide having a lower percentage of amide groups than the original polyamide, the water vapor permeability of the blend will usually be lower than that of the original polyamide. For example, nylon-6 may be blended with nylon-11 or nylon-12 to produce films having reduced water vapor permeability relative to that of nylon-6 alone and are characterized by minimal moisture condensation on the film surface when used in cooperation with a container to package produce.


An embodiment of the film comprises a blend of polyamides with copolymers containing amide groups. For example, blends of nylon-6/66 copolymer with nylon-6, in an amount ranging from 5-100% nylon-6/66 give increased water vapor permeability and gloss relative to nylon-6 alone. As a further example, the plastic packaging material may comprise nylon-6 blended with nylon-6I/6T, commercially available from Du Pont as SELAR® PA 3426, to produce films of 20 and 30 micron thickness. Ratios may be between 80-99% nylon-6 and 1-20% nylon-6I/6T. The resulting films have reduced water vapor permeability relative to nylon-6 alone and retain the ability to minimize condensation.


Another embodiment of the film material may comprise polyamides or other hydrogen bonding polymers blended with polyether-block-amides, such as Pebax® MX1205, commercially available from Elf Atochem, to increase water vapor permeability of the material relative to the polymers without polyether-block-amides.


Embodiments of the film can include varied thickness, water vapor transfer rate, gas transfer rate of CO2 and/or O2, and size and area covered by the film. For example, increased water vapor transmission can be achieved with films having a larger area.


Properties of the film are such that the water vapor transmission rate increases with temperature. This leads to removal of more moisture produced by produce or other perishable goods at higher temperatures.


In an embodiment, the film is comprised of CAPRAN® 2500, MDPE/PE, 75 EVHS1, 40 EV, 30 EVHS1, or 25EV material. Preferably, the film is comprised of CAPRAN® 2500.


CAPRAN® 2500 is a 1.0 mil (25 micron) biaxially oriented nylon 6 film. Properties of CAPRAN® 2500 are elaborated on in Table 2.


As shown in FIG. 9, in label 25 comprises film 24 and ink 40. The ink 40 cooperates with the film 24 material to allow for maintenance of optimal transfer of water vapour to mitigate condensation in the container. The ink 40 may further cooperate with the film 24 to allow desired gas transfer properties of the film 24 to be maintained. In a preferred embodiment, the ink 40 is hydrophilic and capable of transmitting water vapour. The ink is preferably non-metallic as metallic inks have low water vapor transmission rates.


The label is functional in that it provides graphic and identifying information, while allowing water vapor to transmit.


Messaging provided on the label can be customized through application of ink in various designs which may include words, logos, brands, colors and pictures.


In an embodiment, the label further serves to seal in antimicrobial vapors held within the container in order to maintain antimicrobial activity within the compartment of the system. The purpose of maintaining antimicrobial activity within the compartment of the system is to mitigate growth of pathogens and microbials and thus mitigate spoilage of perishable goods such as produce within the system.


As shown in FIG. 8, the system comprises a film cooperating with a container to seal the compartment defined by the container from the environment outside the container. The container may be comprised of a rigid material or a flexible material. Preferably, the container is comprised of a rigid material, as the rigid material protects the container contents to mitigate bruising of perishable goods in the compartment of the container when packages are stored in close vicinity to one another during packing, shipment, and storage. The film provides for a relatively higher permeability to water vapor and gas than the container, effectively controlling the rate of water vapor transfer and gas flow from inside the container to outside the container.


As shown in FIG. 8, the container 10 is comprised of a base 12 defining the compartment 14 for holding perishable materials 16, the base 12 further defining an opening 18 providing communication between the compartment 14 and the outside environment. The container 10 further comprises a lid 20 which cooperates with the container base 12 to form a seal over the opening 18. The lid defines a second opening 22. The film 24 cooperates with the surface 26 of the lid 20, allowing the film 24 to seal the second opening 22 and control flow of gas and water vapor transfer between the compartment 14 defined by the base 12 and lid 20, and the outside environment. The film 24 may be sealed to the lid 20 by an adhesive.


The lid 20 may further comprise a recessed surface 28 relative to a raised surface 26 of the rest of the lid 20, the second opening 22 defined by the recessed surface 28. The film 24 may be applied to the portion of the lid 20 raised relative to the recessed area to cover and seal the space 32 defined by the recessed surface 28 and walls 32 between the raised surface 26 and recessed surface 28. The walls 32 connecting the raised surface 26 and recessed surface 28 may be substantially perpendicular or they may be slanted relative to the surfaces 26 and 28.


As shown in FIG. 8, the second opening 22 is comprised of a plurality perforations 34 defined by the recessed surface 28. The recessed surface 28 and the film 24 adhered to the raised surface 26 may define a second compartment 36 formed to fit a sachet 38 containing contents suitable for mitigating spoilage of perishable items. Sachet 38 contents may comprise an oxidizing material or other means of mitigating growth of microorganisms in the compartment.


As shown in FIG. 8, any of the openings defined by the container or container lid may be comprised of a plurality of perforations defined by the container or container lid.


In an embodiment, the second opening 22 defined by the lid is 3″ by 4″ and the film 24 is sized as a 5″×4″.


As shown in FIG. 9, The film 24 can be die cut on the printing line. Ink 40 can be applied as a silk screening process. A screening process could include application of a base coat of background 42 color such as white with the other colors applied subsequently in the silk screening process.


In an embodiment of the system, the container is formed from corrugated flat stock that has low carbon dioxide and oxygen transmission rates (1700-2000 cm3/m2/d and 500-700 cm3/m2/d, respectively at a relative humidity of 85-100% at −0.5 to 15° C.) and is impervious to water vapor transmission. Preferably the oxygen transmission rate of the corrugated flat stock is 600 cm3/m2/d. To achieve the low rates of oxygen, carbon dioxide and water vapor transmission rates, a linerboard consisting of 40 gsm kraft/35 gsmPP/170 gsm kraft is corrugated on one or both sides of the fluting material. The carton design consists of raised corners with intermediate support provided by either the corrugate or the lid corner supports. In this embodiment, the system further comprises plastic lid of unique design that is form fitted to the box and sealed with a high barrier tape. The film is applied to the surface of the lid to seal the second opening.


An embodiment of the lid is comprised of a plastic material. The plastic material is preferably polyethylene terephthalate (PETE).


In an embodiment of the system, the label may be designed from the following materials:












TABLE 1







Mean
Mean Moisture




O2 Barrier
Barrier



Mean
(15 degree C.
(15 degrees C.



Grammage
90% RH
100%



(g/m2:
Oxtran 2/20).
RH Permatran



approx.
(cm3/m2/day
W3/33)


Material Origin
microns)
to 100% O2)
(g/m2/day)


















Fresha
32.6
3120
1.43


PeakFresh
33.1
2668
1.09


Indian Big Line
21.4
6116
2.20


(33.3% AC0895)


Indian Small Line
19.9
6751
2.25


(33.3% AC0895)


Turkish Line 5
21.1
5495
2.04


(33.3% AC0895)


Turkish Line 5
20.3
7475
1.52


(without masterbatch)


Donington “Clear”
29.4
3903
1.16


(2.5% AY0830)


Donington “Clear”
29.0
4130
1.20


(5% AY0830)


Britton Merlin 0895
20.4
6314
3.20


21 um blue


Marchant 0895 21 um
21.5
4819
2.94


blue


Marchant MBC1 21
18.5
6372
2.24


um own recipe


Marchant 0875 21 um
21.3
3794
1.45


own recipe


Sylvaphane 0875 blue
24.6
7020
2.39


Sylvaphane 0895 blue
24.9
6731
1.57


Compost Ready
31.7 = 25 μm
341
42.5


1294S 25 um


Compost Ready
33.2 = 25 μm
278
50.0


1294SLE 25 um









A perceived advantage of the system is that mass production of containers, or in some embodiments container bases and lids, can be economically achieved. This is followed by application of customized films having properties optimized to control water vapor and gas transfer rate of the system to mitigate spoilage of perishable goods. When the film is a label, the design of ink on the label may be customized. Application of customized films and labels to mass produced containers, container bases and lids to form a system for mitigating spoilage of perishable goods provides for economic efficiencies in production.


Example 1

Bell peppers were harvested and transported to a cooler within 4 hours of harvest. The peppers are cooled to 7° C. within 6 hours by pressure cooling. They are held in forced air cooling at 7° C. overnight (75-90% RH). Peppers are packed containers comprising a ½ Euro box (30 cm×40 cm×11 cm tall). The container was comprised of corrugated linerboard consisting of 40 gsm kraft/35 gsmPP/170 gsm kraft. The container has low oxygen and carbon dioxide transmission rates and are impervious to water vapor transmission. A polyethylene terephthalate lid having a 4″ by 3″ opening was form fitted to the box and sealed with a high barrier tape to the opening at the top of each container.


Films of 5″ by 4″ dimensions were adhered and sealed to the lid to cover the openings. Film adhered to the containers were selected from the a list of films consisting of FreshTec, Capran 2500, 75EVHS1, 40EV, 30EVHS1, 25EV. Each box is weighted and the weight was recorded on the box and in a record book.


The material properties of the 6 films tested are outlined in Table 2.









TABLE 2







typical properties at 23 C. - 50% RH unless otherwise noted






















WVTR
O2TR



Gauge
Yield
Tensile



(g/m2/day) -
(cc/m2/day) -


Material
(microns)
(m2/kg)
Strength
Gloss
Haze
COF
100% RH
0% RH @38 C.





(MDPE/PE)
2-3 mm





0.1 cm3/m2/day
947 ± 32 at 24° C.


Capran 2500
25 (1 mil)
34.1
235-290 MPa
90-140 @ 20 C.
2.3-3.4%

171-202
20-36


75 EVHS1
75
10.7
62 N/mm2
75 @ 45 degrees
≤2
0.5
170
458 @ 25 C.


40EV
40
20.0
62 N/mm2
75 @ 45 degrees
≤2
0.5
250
645 @ 25 C.


30EVHS1
30
26.8
62 N/mm2
75 @ 45 degrees
≤2
0.5
350
965 @ 25 C.


25EV
25
32.1
62 N/mm2
75 @ 45 degrees
≤2
0.5
466
1245 @ 25 C. 









It should be further noted that the MDPE/PE film had an approximate CO2 transmission rate of 2,732 cm3/m2/day±101, and a CO2 to O2 transmission rate ratio of approximately 2.79 at 23° C. and 52% RH.


Each container and film combination holding peppers was stored at between 3 and 4° C., and observations on visible moisture and the state of the peppers were recorded over time.


Evaluations were performed on the peppers immediately upon removal from storage and after two days at 18° C. and 50% RH. Samples taken for evaluation of color maturity and firmness at harvest, day 0, day 14, day 21 and day 28+. Samples were evaluated for fruit condition, stem shrivel, fruit shrivel, moisture level, decay, flavor and texture based on a five point scale, as well as carbon dioxide levels and weight loss on a percentage basis.


Tests of each container label combination were performed in duplicate and results are shown in FIGS. 1-6 and in Table 3.









TABLE 3







Observations from pepper storage trials.

















Rating



Process/



or CO2


Date
Temp
Label
Weight
Observations
Reading
















May 30,
Cooler
MDPE/PE
5
lbs
Packing Day, Day 1



2013
Temp

5.65
oz
Internal temperatures of peppers in all



3° C.
Capran 2500
5
lbs
containers were measured at 9° C.





5.20
oz




75 EVHS1
5
lbs





5.20
oz




40EV
5
lbs





5.85
oz




30EVHS1
5
lbs





5.90
oz




25EV
5
lbs





6.10
oz


May 31,
Cooler
MDPE/PE


Moisture droplets on lid


2013
Temp
Capran 2500


No Visible moisture



4° C.
75 EVHS1


No Visible moisture




40EV


Small amount of moisture on label




30EVHS1


No Visible moisture




25EV


No Visible moisture


Jun. 3,
Cooler
MDPE/PE


Moisture present on lid and peppers


2013
Temp
Capran 2500


No Visible moisture



3° C.
75 EVHS1


No Visible moisture




40EV


No Visible moisture




30EVHS1


No Visible moisture




25EV


Visible moisture on lid and peppers







could be due to placement in fridge at







back of box


Jun. 5,
Cooler
MDPE/PE


Water dripping off Lid
6


2013
Temp
Capran 2500


No Visible moisture
1



4° C.
75 EVHS1


Moisture starting to form on lid
5




40EV


Moisture starting to form on lid
3




30EVHS1


Water droplets forming
4




25EV


Water droplets forming
2


Jun. 7,
Cooler
MDPE/PE
5
lbs
Heavy moisture
6


2013
Temp

5.70
oz



4° C.
Capran 2500
5
lbs
Very little moisture
1





5.20
oz




75 EVHS1
5
lbs
Heavy moisture under label only
5





5.20
oz




40EV
5
lbs
Moisture under label
4





5.85
oz




30EVHS1
5
lbs
Water Droplets on lid
3





5.85
oz




25EV
5
lbs
Light moisture under label
2





5.70
oz


Jun. 17,
Cooler
MDPE/PE
5
lbs
Heavy mold on one pepper Minor
2.10%


2013
Temp

5.60
oz
mold on one pepper



3° C.
Capran 2500
5
lbs
Very little moisture Still by far the best
2.20%





5.20
oz




75 EVHS1
5
lbs
Minor mold starting to form on Stem
1.70%





5.15
oz




40EV
5
lbs
Mold forming on bruise
2.00%





5.70
oz




30EVHS1
5
lbs
Heavy Mold on one Stem minor mold
2.70%





5.70
oz
on other




25EV
5
lbs
Mold starting to form on stems
2.50%





5.95
oz


Jul. 4,
Cooler
MDPE/PE
5
lbs
Heavy moisture on lid, One pepper
2.60%


2013
Temp

5.60
oz
heavy mold and decay, 5 stems with



3° C.



notable mold, peppers cuts crisp




Capran 2500
5
lbs
Light moisture on lid, very slight mold
3.10%





5.00
oz
starting to form on stems, one pepper







starting to decay, pepper cuts crisp




75 EVHS1
5
lbs
Medium to heavy moisture on lid,
2.60%





5.10
oz
Medium to light moisture forming on







stems, 2 peppers starting to decay, one







pepper heavy decay, mold has formed







on bruises, cuts crisp




40EV
5
lbs
Medium to light moisture on lid, light
3.10%





5.60
oz
mold on stems, mold on bruises, 3







peppers starting to decay, peppers cut







crisp, 3 peppers look spotted light and







dark green in colour




30EVHS1
5
lbs
Heavy mold on 4 peppers, 5 peppers
3.40%





5.40
oz
heavy decay, Light moisture on lid,







peppers cuts crisp




25EV
5
lbs
Light moisture on lid, Light mold
3.40%





5.75
oz
forming on stems, heavy mold around







stem base on one pepper, 2 peppers







starting to decay, cuts crisp









The results are further illustrated in photographs of pepper storage over the lifetime of the experiment. These can be seen in FIGS. 1-6.


Example 2

Peppers were packaged as described in example 1. Either Capran 2500 or MDPE/PE films were adhered to the lids covering the openings. Packaged peppers were stored at either room temperature or a lower temperature. Observations from the test are recorded in Table 4.









TABLE 4







Capran 2500 vs. FreshTec at room temperature and refrigerated













Label




Date
Process
Tested
Weight
Observations















May 14, 2013
Room Temp
MDPE/PE
6
Lbs
Packing Day, Day 1





2.95
oz
Internal temps of Pepper



Room Temp
Capran
6
Lbs
12 C.




2500
1.70
oz



Cooler 10° C.
MDPE/PE
6
Lbs





1.70
oz



Cooler 10° C.
Capran
6
Lbs




2500
0.90
oz


May 15, 2013
Room Temp
MDPE/PE


No visible moisture



Room Temp
Capran


No visible moisture




2500



Cooler Temp
MDPE/PE


Start of visible moisture



8° C.



Cooler Temp
Capran


No visible moisture



8° C.
2500


May 17, 2013
Room Temp
MDPE/PE


No visible moisture



Room Temp
Capran


No visible moisture




2500



Cooler Temp
MDPE/PE


Minimal moisture, Warmed



4° C.



up to room temp for 8







hours



Cooler Temp
Capran


No visible moisture,



4° C.
2500


Warmed up to room temp







for 8 hours


May 21, 2013
Room Temp
MDPE/PE


No visible moisture



Room Temp
Capran


No visible moisture




2500



Cooler Temp
MDPE/PE


Excessive moisture, Warm



1° C.



up to room temp for 8







hours



Cooler Temp
Capran


Moisture forming under



1° C.
2500


abel area, Warm up to







room temp for 8 hours


May 22, 2013
Room Temp
MDPE/PE
6
Lbs
No visible moisture





2.70
oz



Room Temp
Capran
6
Lbs
No visible moisture




2500
1.30
oz



Cooler Temp
MDPE/PE
6
Lbs
Water dripping off lid,



1° C.

1.65
oz
Warm up to room temp for







8 hours



Cooler Temp
2500
6
Lbs
Moisture really visible



1° C.

0.85
oz
now, Warm up to room







temp for 8 hours


May 23, 2013
Room Temp
MDPE/PE


No visible moisture



Room Temp
Capran


No visible moisture




2500



Cooler Temp
MDPE/PE


Moisture staying about the



1° C.



same, Warm up to room







temp for 8 hours



Cooler Temp
Capran


Increasing moisture build



1° C.
2500


up, Warm up to room temp







for 8 hours


May 24, 2013
Room Temp
MDPE/PE


No Visible moisture



Room Temp
Capran


No Visible moisture




2500



Cooler Temp
MDPE/PE


Warm up to room Temp for



1° C.



8 hours



Cooler Temp
Capran


Warm up to room Temp for



1° C.
2500


8 hours


May 27, 2013
Room Temp
MDPE/PE
6
Lbs
Mold on tip of stems and





2.60
oz
mold starting to form on







bottom of box



Room Temp
Capran
6
Lbs
Mold on tip of stems




2500
1.10
oz



Cooler Temp
MDPE/PE
6
Lbs
Moisture on lid and on



1° C.

1.65
oz
peppers, Warm to room







Temp for 8 hours



Cooler Temp
Capran
6
Lbs
Moisture on lid and on



1° C.
2500
0.80
oz
peppers but still seem to be







less moisture then the







FreshTec label, Warm to







room Temp for 8 hours


Jun. 10, 2013
Room Temp
MDPE/PE
6
Lbs
Extreme mold on stems, on





1.80
oz
the box and on the pepper







themselves, End of this







experiment



Room Temp
Capran
6
Lbs
Heavy Mold build up on




2500
0.40
oz
Stems and start to grow







mold on pepper themselves,







End of this experiment



Cooler Temp
MDPE/PE
6
Lbs
Very slight mold growth on



8° C.

1.45
oz
tip of stems



Cooler Temp
Capran
6
Lbs
Very slight mold growth on



8° C.
2500
0.60
oz
tip of stems


Jun. 17, 2013
Cooler Temp
MDPE/PE
6
Lbs
Mold staying about the



8° C.

0.50
oz
same as last week, CO2







2.3%



Cooler Temp
Capran
6
Lbs
Mold staying about the



8° C.
2500
1.35
oz
same as last week, CO2







1.9%


Jul. 4, 2013
Cooler temp
MDPE/PE
6
Lbs
Heavy water on lid, CO2



8° C.

1.15
oz
2.8%, Light mold on stems,







6 peppers starting to decay,







decay of pepper heavier







where carton was touching







peppers, pepper still cut







crisp



Cooler temp
Capran
5
Lbs
Excessive Moisture on lids



8° C.
2500
15.95
oz
but ½ of FreshTec label







box, CO2 4.5%, 2 peppers







heavy decay, heavy mold







on stems, Pepper still crisp







to cut



Cooler
MDPE/PE
.55
oz
Pitting and start of decay on







one pepper, start of slight







dehydration



Cooler
Capran
.95
oz
Pitting on one pepper, one




2500


pepper with heavy decay







where it was touching







paper, the other pepper is







soft to touch



Room Temp
MDPE/PE
1.15
oz



Room Temp
Capran
1.30
oz




2500









Example 3

Cherries and peppers were packaged as described in Example 1. Only Capran 2500 film was adhered the lids to cover the openings in the lids. In some pepper packages, sachets containing oxidizing compounds (sodium chlorite, citric acid and an inert carrier) were placed in the containers to mitigate growth of microbes and spoilage of the peppers or cherries. Time-lapse observations are provided in Table 5.









TABLE 5







Observations of packaged cherries and peppers.











Date
Process
Label Tested
Weight
Observations















Jul. 4, 2013
Cooler
Cherries with
9
lbs
Brix on Cherries 16 (test with



Temp 3° C.
reg lid Capran
4.25
oz
10 cherries) Internal




2500 no


Temp 11.5° C.




Sachet




Cherries with
9
lbs
Cherries where Dumped in




all but 4 holes
4.50
oz
water for a second and put




covered


into box wet




Capran 2500




no sachet




Peppers with
6
lbs
Pepper internal Temp was




Reg lid


12.5° C.




Capran2500




5 g Sachet




Peppers with
5
lbs




all but 4 holes
11.20
oz




covered




Capran 2500




5 g sachet




Peppers reg
5
lbs




lid Capran
11.95
oz




2500 no




sachet




Peppers with
5
lbs




all but 4 holes
11.50
oz




covered




Capran 2500




no Sachet


Jul. 8, 2013
Cooler
Cherries with


Light moisture on lid and



Temp 3° C.
reg lid Capran


under label CO2 4.6%




2500 no




Sachet




Cherries with


Very light moisture around




all but 4 holes


taped areas to cover holes




covered


CO2 6.1




Capran 2500




no sachet




Peppers with


Stems have being bleached




Reg lid


from sachet, heavier right




Capran 2500


under sachet but still




5 g Sachet


bleaching of stem near







outside of box, CO2 2.2%




Peppers with


No visible moisture, No




all but 4 holes


notable bleaching of stems




covered


CO2 2.1%




Capran 2500




5 g sachet




Peppers reg


No visible moisture




lid Capran


CO2 1.5%




2500 no




sachet




Peppers with


Moisture around taped areas




all but 4 holes


CO2 1.6%




covered




Capran 2500




no Sachet


Jul. 11, 2013
Cooler
Cherries with


No changes since July 8



Temp 3° C.



reg lid Capran




2500 no




Sachet




Cherries with


No changes since July 8




all but 4 holes




covered




Capran 2500




no sachet




Peppers with


No changes since July 8




Reg lid




Capran 2500




5 g Sachet




Peppers with


No changes since July 8




all but 4 holes




covered




Capran 2500




5 g sachet




Peppers reg


No changes since July 8




lid Capran


moved to 8° C. cooler




2500 no




sachet




Peppers with


No changes since July 8




all but 4 holes


moved to 8° C. cooler




covered




Capran 2500




no Sachet







Brix on cherries 16.5 (test 10







cherries)


Aug 9, 2013
Cooler
Cherries with
9
lbs
CO2 6.4%



Temp 3° C.
reg lid Capran
3.80
oz
Stems still green, minor mold




2500 no


on 5-6 cherries




Sachet




Cherries with
9
lbs
CO2 11.7%




all but 4 holes
4.05
oz
Heavy moisture on lid, green




covered


stems mold on 2-3 cherries




Capran 2500




no sachet




Peppers with
5
lbs
CO2 2.3%




Reg lid
15.90
oz
Very little moisture, heavy




Capran 2500


bleaching of stems, stems




5 g Sachet


starting to dry out




Peppers with
5
lbs
CO2 3.0%




all but 4 holes
11.25
oz
No moisture on lid, slight




covered


bleaching on stems, 1 pepper




Capran 2500


minor decay




5 g sachet



Cooler
Peppers reg
5
lbs
CO2 5.4%



Temp 8 C.
lid Capran
12.05
oz
Heavy moisture on lid, mold




2500 no


forming on tips of stems




sachet




Peppers with
5
lbs
CO2 6.8%




all but 4 holes
11.20
oz
Heavy moisture on lid




covered




Capran 2500




no Sachet









Other variations and modifications of the invention are possible. All such modifications or variations are believed to be within the sphere and scope of the invention as defined by the claims appended hereto.

Claims
  • 1. A system for mitigating spoilage of perishable produce, the system comprising: a container defining a compartment for storage of perishable produce;a lid for the container, the lid comprising a recessed surface relative to a raised surface of the rest of the lid, the recessed surface defining a plurality of perforations in the recessed surface; anda label comprising a polyamide film and a hydrophilic ink, the polyamide film comprising:an oxygen transfer rate of 20-1245 cm3/m2/day atm at 25° C. and 0% relative humidity,a carbon dioxide permeability of 60-100 cm3/m2/day atm at 25° C. and 0% relative humidity,a water vapor transmission rate of between 170 and 470 g m2/day at 38° C. and 0% relative humidity,wherein the polyamide film sealed to the raised surface of the lid and covering the recessed surface of the lid to form a space between the polyamide film and the recessed surfacea sachet positioned in the space between the recessed surface of the lid and the polyamide film, the sachet containing an oxidizing compound.
  • 2. The system of claim 1, wherein the film is transparent.
  • 3. The system of claim 1, wherein the film has a thickness of 500-10,000 μm.
  • 4. The system of claim 1, wherein the film has a surface area of 90-500 cm2.
  • 5. The system of claim 1, wherein the container is formed from a rigid material formed to maintain shape when carrying perishable produce.
  • 6. The system of in claim 1, wherein the film is comprised of mixtures of nylon with other polymeric and non-polymeric components.
  • 7. The system of claim 6, wherein the film is comprised of one or more of nylon-6, nylon-66, nylon-6/66 or nylon-6/12.
  • 8. The system of claim 1, wherein the oxidizing compound comprises sodium chlorite, citric acid and an inert carrier.
  • 9. A system for mitigating spoilage of perishable produce, the system comprising: a container defining a compartment for storage of perishable produce and/or flowers and having a first opening;a lid attached to the first opening, the lid defining a recessed surface therein and defining a second opening further defined by a plurality of perforations in the recessed surface in communication with the compartment;a label comprising a polyamide film and a hydrophilic ink, the polyamide film comprising:an oxygen transfer rate of 20-36 cm3/m2/day atm at 25° C. and 0% relative humidity,a carbon dioxide permeability of 60-100 cm3/m2/day atm at 25° C. and 0% relative humidity,a water vapor transmission rate of between 170 and 470 g m2/day at 38° C. and 0% relative humidity,wherein the polyamide film is sealed to the lid and covering the recessed surface to form a space between the polyamide film and the second opening, anda sachet positioned in the space between the recessed surface of the lid and the polyamide film, the sachet containing an oxidizing compound.
  • 10. The system of claim 9, wherein the hydrophilic ink forms a graphic and and/or identifying information.
  • 11. The system of claim 9, wherein the water vapor transfer rate of the film increases with an increase in temperature.
  • 12. The system of claim 9, wherein the lid comprises a recessed surface relative to a surrounding raised surface of the lid, the second opening being defined by the recessed surface and wherein the film is attached to the raised surface of the lid to cover and seal a space defined by the recessed surface and walls between the raised surface and the recessed surface.
  • 13. The system of claim 12, wherein the recessed surface defines a plurality of perforations.
  • 14. The system of claim 9, wherein the film seals within the compartment antimicrobial vapors from the sachet.
  • 15. The system of claim 9, wherein the oxidizing compound comprises sodium chlorite, citric acid and an inert carrier.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a national phase entry under 35 U.S.C. § 371 of PCT/CA2015/050282 filed on Apr. 8, 2015, which claims priority to U.S. Provisional Patent Application No. 61/977,126 filed on Apr. 9, 2014, the entirety of each of which is incorporated by this reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/CA2015/050282 4/8/2015 WO
Publishing Document Publishing Date Country Kind
WO2015/154182 10/15/2015 WO A
US Referenced Citations (30)
Number Name Date Kind
3507667 Michel Apr 1970 A
3944127 Bruke Mar 1976 A
4769262 Ferrar Sep 1988 A
4830863 Jones May 1989 A
5045331 Antoon, Jr. Sep 1991 A
5209972 Super May 1993 A
5698249 Hayashi et al. Dec 1997 A
5938012 Yeager Aug 1999 A
6013293 De Moor Jan 2000 A
6119855 Yeager Sep 2000 A
6190710 Nir et al. Feb 2001 B1
7165376 Kawashima Jan 2007 B2
8771770 Crump Jul 2014 B1
20030102080 Mallik Jun 2003 A1
20030215551 Garwood Nov 2003 A1
20040022676 Hamilton Feb 2004 A1
20050106291 Kawashima May 2005 A1
20050142310 Hatley Jun 2005 A1
20050194387 Banks Sep 2005 A1
20060110554 Bernig May 2006 A1
20060147588 Garwood Jul 2006 A1
20060255055 Mulder Nov 2006 A1
20070012696 Levie Jan 2007 A1
20070092610 Mize Apr 2007 A1
20080014383 Varriano-Marston Jan 2008 A1
20120219671 Siegel Aug 2012 A1
20120228182 Ting Sep 2012 A1
20140116900 Machado May 2014 A1
20140326620 Mir Nov 2014 A1
20170275078 Lidster Sep 2017 A1
Foreign Referenced Citations (7)
Number Date Country
1295972 Feb 1992 CA
2483026 Oct 2003 CA
102007030191 Jan 2009 DE
2775962 Sep 1999 FR
2330818 May 1999 GB
WO2008076075 Jun 2008 WO
2014104237 Jul 2014 WO
Related Publications (1)
Number Date Country
20170021991 A1 Jan 2017 US
Provisional Applications (1)
Number Date Country
61977126 Apr 2014 US