The subject matter of the application relates generally to a label roll, including a label roll with an electronic element.
As the use of plastic cards for credit cards, identification cards and the like continues to become more widespread, credit card fraud and identification card fraud are becoming increasing problems. The ease in which criminals have been able to manufacture or manipulate current cards is a result of the existence of the easily-altered magnetic stripe storage medium used by current cards. These magnetic stripes are easy to program and reprogram using commonly available technology, resulting, e.g., in so-called magnetic stripe cloning.
Thus, there is a need in the plastic card industry to provide a more secure plastic card that is more difficult or nearly impossible to duplicate or manipulate. The likely successor to the magnetic stripe cards is known as a memory card or smart card. The smart card can generally be described as a card having an integrated circuit with memory that is capable of securely storing data and/or executing processing functions.
Contact smart cards make contact through several contact pads place on the surface of the card. These pads provide electrical connectivity when inserted into a reader, which is typically used as a communications medium between the smart card and a host. Cards typically do not contain batteries—power is supplied by the card reader—through some of these contact pads.
The most recent development in smart cards is a contactless card that interacts with a terminal reader using electromagnetic coupling. The smart card incorporates an inlay that is a symmetrical substrate incorporating a micro-chip bounded to an antenna and functioning as the heart of a radio-frequency identification (RFID) part, a near field communication (NFC) chip, or similar chip credential. This smart card requires only proximity to a reader antenna to communicate. Contactless cards also typically operate without batteries and obtain power through induction from the electromagnetic field of the reader antenna. When in proximity to a reader antenna, they accumulate charge from the electromagnetic field, power up and consequently respond to commands over the same radio frequency channel, communicating in a bi-directional manner. Contactless technology is rapidly replacing traditional machine readable identification technologies in numerous applications such as those employing bar codes and magnetic stripes, offering substantially enhanced security and convenience.
Self-adhesive smart card labels are a special type of smart card for easily adding contactless smart card technology to another type of device or form factor (e.g., a key fob, a mobile phone or a PDA). The labels contain a RFID or NFC chip and antenna and allow a user to encode and read them like a smart card. The labels are available in various shapes and sizes and may be used for access control, time and attendance, membership/loyalty programs, logical access, storage of biometric templates, parking, electronic purse, and many other applications requiring secure and reliable read/write cards.
Like other labels, smart card labels are typically provided on label rolls. Such label rolls comprise a liner carrying the labels. When unrolling the label roll, to print the labels for example, the liner is guided by a thin printer roller. While this technique is well established for standard paper labels, smart card labels cause problems when printed using a conventional label printer. Because typical smart card labels have a thickness of about 300 μm or greater and the thin printer roller typically has a radius of below 300 μm, the thin printer roller may be caught between two labels.
Therefore, what it is needed is a label roll that may be unrolled through a printing device including a thin printer roller, even if the radius of the thin printer roller is equal to or smaller than the thickness of a label provided on the label roll.
The above objective is achieved by the label roll described herein comprising a liner and labels affixed to the liner, where each edge of a label that neighbors another label in a release direction of the label roll comprises at least one protuberance that engages with a recess in an edge of that other label and/or at least one recess that is engaged by a protuberance in an edge of the adjacent label. The engagement of protuberances and recesses of the labels of the label roll causes a thin printer roller of a printing device that guides the liner of the label rolls to the printing device to always rest on the surface of both neighboring labels on passing from one label to another, thereby preventing the thin printer roller from being caught between two labels.
In some embodiments, each edge of a label that neighbors another label in a release direction of the label roll comprises at least one protuberance that engages with a recess in an edge of that other label and at least one recess that is engaged by a protuberance in edge of the following label. This allows the length of the protuberances and the depth of the recesses to be smaller compared to a label wherein each edge of the label only comprises a protuberance or a recess. Therefore, a smaller part of the label has to be reserved for protuberances and recesses. In some embodiments, each edge of a label that neighbors another label in a release direction of the label roll is wave-shaped to provide protuberances and recesses.
In some embodiments, a distance between the edge of a label and each other label that neighbors that label in a release direction is equal over the whole width of that labels. This allows a thin printer roller to be smoothly moved from the surface of one label to the surface of a neighboring label. In some embodiments, the distance between the edge of a label and each other label that neighbors that label in a release direction is greater than the thickness of the labels. This allows easy separation of the labels from the liner.
In some embodiments, each label has a thickness of at least 300 μm which is a typical thickness of a smart card label.
In some embodiments, at least one label comprises a predefined sticker that may be separated from the label. The sticker can have any shape so that the label roll provides stickers according to the needs of the user. In some embodiments, the sticker does not include any protuberance or recess of an edge of the label. In some embodiments, the surface of the predefined sticker is printed and the border of the printing extends beyond the predefined sticker. Because a conventional liner comprises a release layer on its surface, e.g., a silicon layer, the conventional liner typically does not accept any dye. However, if only the sticker has to be printed and not the complete label, it is possible to print beyond the predefined sticker on the rest of the label to guarantee that the border of the sticker is completely covered with dye without risking that any dye is deposited on the liner, which could result in transporting the dye onto the labels and into a printing device. In some embodiments, the predefined stickers separated from the rest of the label by a cut line to allow easy separation of the sticker from the rest of the label.
In some embodiments, the predefined sticker comprises an electronic element, such as an RFID-chip or an NFC-chip and antenna. In these embodiments, the predefined sticker is a smart card or NFC sticker.
In some embodiments, each label includes at least one cut line that separates at least one protuberance and/or at least one recess from the label. In some embodiments, each cut line extends to the liner, allowing the labels to be easily separated from the label roll.
Other aspects and advantages of the invention will become evident from the following detailed description taken in conjunction with accompanying drawings illustrating the principals of the invention by way of example only.
The advantages of the invention described above, together with further advantages, may be better understood by referring to the following description taken in conjunction with the accompanying drawings. The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention.
In another embodiment of the invention shown in
In another embodiment, each label 32a, 32b includes a cut line 33a, 33b comprised of perforations. In another embodiment, each label 32a, 32b includes a cut line or perforation line 33a, 33b in the form of the wave pattern and located with the gap that separates the protuberances and the recesses of one edge of label 32a from label, 32b. Each of the cut lines or perforations lines 33a, 33b may extend with liner 31.
In another embodiment shown in
One skilled in the art will realize the invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting of the invention described herein.