The present invention is directed to a labeller for applying labels to products, and more particularly to a labeller for indexing labels from a label web and tamping the labels onto the products.
Labellers are well known for applying labels to items such as fruits, vegetables or other consumer goods. These devices typically include a label wheel that receives and holds a roll of label web, including a plurality of labels supported sequentially on a release liner. The label web is advanced from the wheel through the labeller to an edge, typically called a peel plate. The web is pulled over the edge of the peel plate to separate the labels from the support liner, allowing the labels to be deposited onto the items.
Many labellers including a tamping mechanism that can extend to deposit a label onto an item. For instance, it is common for labellers to include one or more tamping bellows, which include a tamping face in communication with a vacuum source and a positive pressure source, and are moveable between a retracted position and an extended tamping position. The tamping face of the bellows may be moved to a position adjacent to the peel plate to receive a label as the label web is indexed over the peel plate. The tamping bellows may then carry the label, using the vacuum source to hold the label on the tamping face, to a position in which the bellows communicates with a positive pressure source to extend the bellows and tamp the label onto an item to be labeled.
Although prior art labellers are generally acceptable, problems arise in a number of aspects of these labellers. For instance, difficulties arise with the release liner after the labels have been removed. The amount of this waste release liner continues to grow as additional labels are deposited onto items, creating a messy “tail” of release liner that can obstruct the user and the labeller until the user tears off or moves the tail—only to have the tail quickly grow back again.
Additional problems with prior art label webs include the replacement of label webs for labelling different types of products. In most cases, the labels on each label web are provided in a roll and are all preprinted with the same printed material for identifying a specific type of product. As a result, each time the labeller will be used to label a different type of product, the label web must be removed and replaced with another label web with the appropriate printed material for the new product to be labeled. In situations where many different types of items must be labeled and many label web changes need to be made, this type of labeller becomes inefficient.
The present invention provides a labeller that includes a waste liner rewind wheel for taking up the release liner after it has been separated from the labels, and a print mechanism positioned along the label path for real-time printing of a desired print material on the labels.
In one embodiment, the labeller includes a frame for supporting a plurality of labeller components, an extendable tamping bellows connected to the frame, a label wheel mounted on a rotatable shaft extending from said frame, the label wheel capable of supporting a label web, a peel plate mounted to the frame adjacent to the tamping bellows, a drive wheel mounted to the frame that is capable of pulling the release liner from the label wheel and around the peel plate, and a waste liner rewind wheel mounted on the shaft.
The waste liner rewind wheel may include a mechanism for adjusting the speed of the rewind wheel as the amount of waste liner on the rewind wheel increases while maintaining sufficient tension on the waste liner to pull the waste liner onto the rewind wheel. In one embodiment, the rewind wheel includes a core that receives the shaft, and a hub extending around the core. The hub frictionally engages the core such that the hub is capable of slipping with respect to the core as when a threshold amount of tension is applied by the waste liner.
In another embodiment, the print mechanism is mounted to the frame along the label path, such that the print mechanism is capable of printing on the labels as they are moved past the print mechanism. The labeller may additionally include an encoder for registering the position of the label web with respect to the print mechanism. In one embodiment, the print mechanism is moveable on the frame to provide for adjustment of the location at which the labels are printed.
In yet another embodiment, the labeller includes a rotating turret mounted to the frame. The turret includes an outer circumferential surface that supports a plurality of the tamping bellows. The turret may include an inner surface that faces the frame, and includes a plurality of port holes, with each port hole in fluid communication with one of the tamping bellows. The frame may include a positive pressure port and a vacuum port that are defined in the surface of the frame and extend around portions of the turret axis. As the turret rotates, the port holes on the turret communicate with the positive pressure port and the vacuum port. The vacuum port and the positive pressure port are positioned to provide a vacuum source to the bellows around substantially all of the bellows' rotation, and to provide a brief positive pressure source to the bellows at the position in which the bellows must extend to tamp a label onto a product.
The waste liner rewind wheel increases the efficiency of the labeller by reducing the need for a user to tear off or otherwise dispose of the waste release liner during operation of the labeller. The print mechanism mounted to the labeller enables a user to label one or more labels with a desired printed material in real-time, and to change the printed material as desired. The communicating ports on the turret and frame provide an integrated method for delivering the positive pressure source and the vacuum source to the tamping bellows.
A labeller according to one embodiment of the present invention is shown in
I. Structure
The frame 12 may be configured to contain or support a variety of the labeller head and cassette components, such as the labeller components described in detail in U.S. Pat. Nos. 6,729,375; 7,153,378; 7,158,574; and 7,363,954. The labeller components may be directly or indirectly attached to the frame. Optionally, the labeller 10 can be a one-piece labeller that includes a rear frame 12 that is formed from a single piece. The frame 12 can be formed in any suitable size and shape and formed from a wide variety of materials, such as molded plastic or metal.
In the embodiment illustrated in
The peel plate 28 can be formed in any suitable shape and size and can include an upper surface 33 and a lower surface 35. In the illustrated embodiment, the terminal end 31 of the peel plate 28 is of a sufficient width such that the individual labels are peeled from the support wheel when they pass across the lower surface 35 and turn about the terminal end 31. The peel plate 28 is positioned adjacent the bellows 30, such that as the individual labels are peeled from the wheel, they can each be placed on the tamping face of a bellows 30.
Each bellows 30 is adapted to extend to tamp the label from the tamping face 32 of the bellows onto an object, such as an item of produce. The labeller 10 can include single or multiple, stationary or moving tamping bellows. The bellows 30 can be located above or below the peel plate 28 to receive labels as they are peeled from the release liner 11. Each bellows 30 can be formed from a flexible material, such as rubber or silicone. In the illustrated embodiment, the bellows 30 has a series of accordion-like folds, such that the bellows 30 is capable of extending outward to place the labels on the products.
The tamping face 32 of each bellows 30 is perforated with holes 33. In one embodiment, the label is held on the tamping face 32 via vacuum pressure communicated through the vacuum holes 33 (
In the illustrated embodiment, the multiple bellows 30 are mounted to a rotating turret 26.
As shown in
In one embodiment, the turret 26 rotates on the axle and against the porting surface 51, which may be a low friction material (i.e. stainless steel) or low-friction coated metal or plastic or a mechanical bearing (i.e. lazy Susan). As the turret 26 rotates, the port holes 52 are in fluid communication with the vacuum port 44 and the pressure port 42. More particularly, in the illustrated embodiment, the port holes 52 are generally in fluid communication with the horseshoe shaped vacuum port 44, such that the bellows 30 and tamping face are in fluid communication with the vacuum to hold the bellows in a retracted position and to hold a label on the tamping face. When the bellows 30 pass the pressure port 44, however, the port holes 52 and bellows 30 are in fluid communication with the positive pressure to extend the bellows and release the label.
The peel plate 28 (or 29) can be formed in any suitable shape and size. In the illustrated embodiment, the peel plate is generally square in shape, with the release liner traveling lengthwise across the plate 28 (
The label position on the bellows 30 may be determined by a combination of one or more sensors to detect label position and/or the position of the waste liner drive roller pins. For example, the label position on the bellows 30 may be determined by a label sensor 34 (
The label position on the bellow 30 may be additionally or alternatively be determined by a toothed belt or gear, or multiple belts or gears, that mechanically synchronize the label and bellow positions. For example, the label position on the bellows 30 may be determined by electrically or mechanically synchronizing two or more drives that separately drive the label feed and/or rewind and/or turret 26 and/or print mechanism (discussed below).
In one embodiment, the labeller 10 includes a printing mechanism 104 adapted to print a desired printed material on the labels before they are placed onto objects. The printing mechanism 104 can be mounted on the frame 12 at one or more label positions prior to the peel plate dispensing edge to print real-time, variable, or the same product information and/or identification. For instance, in the embodiment illustrated in
In the embodiment illustrated in
In one embodiment, the print mechanism 104 is electrically coupled to a system controller (not shown) and a user input interface (not shown). The controller may be programmed to allow a user to input a desired print type and control the print mechanism to output labels with that print type. The print mechanism and/or controller may incorporate software or hardware speed and/or position sensing device to signal and control the printer to print the information while matching the label dispensing speed to maintain accurate print location on the labels. In one embodiment, the encoder 103 may be electrically connected to the controller to control the print mechanism and/or signal the software to improve the print registration and/or print image quality (i.e. contrast, darkness, dpi).
In the illustrated embodiment, the label wheel 86 and rewind wheel 88 are formed as a multi-disc assembly that supports both the pre-loaded label roll and waste liner together on the rotating rewind shaft 90. For example,
In this embodiment, both the label web and the waste liner 13 are wound around the same axis, which would typically rotate both the label wheel 86 and the rewind wheel 88 at the same speed. However, the radius of the label web is typically larger than that of the waste liner on the rewind wheel, because as the labeller 10 begins to operate, the rewind hub 92 is empty and only accumulates waste liner as the labels are pulled from the liner 11. Thus, to account for the fact that the distance that the label rewind hub 92 must rotate to wind a particular amount of waste liner 13 decreases as the diameter of the waste liner 13 increases, the labeller 10 can include a mechanism, such as gripping mechanism 63, which is incorporated in the rewind disc assembly 61 to alter the speed of the rewind wheel with respect to the shaft 90. The gripping mechanism 63 holds the rewind disc assembly 61 on the rotating rewind shaft 90 during the rewind operation to provide a mechanical “slipping” action as the rotating rewind shaft 90 is rotated faster than the rewind disc assembly, in order to rewind and maintain tension on the waste liner. As shown, the label rewind assembly includes a label rewind core 70 that mounts directly onto the shaft and rotates at the same rate of the shaft, and a rewind hub 72 that rotates about the label rewind core 70.
As shown in
Optionally, the waste liner rewind hub 92 may include an indent 84 in the outer circumference of the hub to allow a finger or other device to be placed under the rewound waste liner to improve and simplify removal of the waste liner. The waste liner hub 92 may be removable from the labeller 10, for instance, by pulling the rewind hub 92 and the third disc 64 off the labeller.
One of the waste liner rewind discs 62 or 64 can include a pin or other device (not shown) inserted or rotated in the outer circumference of the hub to extend the hub outer circumference while the waste liner is being rewound. The device could be removed or rotated to decrease the waste liner rewind disc circumference making it easier to remove the waste liner by decreasing the of the waste liner tension against the waste liner rewind disc.
The rotating components of the labeller 10 can be driven by any suitable drive arrangement. In one embodiment, the labeller includes a single drive motor 100, connected to the drive wheel 17 for driving the various labeller components. The drive motor 100 drives the drive wheel 17 to rotate, which may drive the label web, label wheel, and waste liner wheel to rotate by pulling the release liner. Multiple gears (such as the drive wheel gear 98 and the turret gear 40 shown in
The labeller drive 100 may be a DC electric motor, an AC electric motor, a stepper motor, a servo motor, a pneumatic or hydraulic motor, an electric or pneumatic or hydraulic linear or rotary cylinder (
Another labeller embodiment is shown in
Also in the
II. Operation
In operation, the labeller 10 may begin by actuating the drive motor 100 to begin indexing the label web 11. The motor 100 may be electrically connected to the controller and a under input interface, such that the motor 100 is actuate by the controller after a particular input by the user. When the motor is actuated, the drive wheel 17 rotates at least an amount to index one label past the peel plate and onto the tamping face 32 of a bellows 30. In one embodiment, the drive wheel 17 may include a series of protrusions around its circumference that interfit with holes in the release liner to aid in pulling the label web 11 from the label wheel and around the various idler pulleys and other components to the peel plate 28. The rotation of the drive wheel 17 alone may pull the label web 11 off the label wheel 86 and around the peel plate 28, and may pull the waste release liner 13 onto the rewind wheel 88. In another embodiment, the drive gear 98 opposite the drive wheel 17 may be connected to other labeller components, such as the label wheel 86 and rewind wheel 88 to aid in driving the label web 11.
As the label web 11 is pulled around the peel plate 28, the labels are separated from the release liner 13. The release liner 13 is then pulled around the drive wheel 17, and the tapered pulleys 94, which help to direct the release liner on to the rewind wheel 88. The release liner is pulled around the pulley held by the tension arm 107, and wound onto the rewind wheel 88. As noted above, as additional release liner 13 is pulled onto the rewind wheel 88, the slip mechanism allows the hub 92 to slip with respect to the core 70, which accounts for the fact that the distance that the label rewind hub 92 must rotate to wind a particular amount of waste liner 13 decreases as the diameter of the waste liner 13 increases. In one embodiment, the rewind wheel may be large enough to accommodate the release liner 13 from an entire label web roll, such that the rewind wheel 88 does not need to be removed and emptied until the label roll has been completely used.
In an embodiment including a print mechanism, as the label web 11 is indexed, the print mechanism 104 may print a desired printed material onto each individual label. The print registration is controlled by the pinch roller 103 and the encoder 105, which may interact with the controller and a user input interface to print the correct printed material at the correct location and with the correct contrast and resolution.
As the labels are indexed over the peel plate 28, the position of the labels may be monitored by a sensor 34, such as an optical sensor, which may communicate with the controller to actuate the motor 100, or another motor, to drive the turret gear 40 and the turret 26. The turret then rotates to move a tamping bellows 30 to the label position, wherein the bellows 30 communicates with the positive pressure source via the positive pressure port 42 to extend the bellows 30 and tamp the label onto a product.
The above description is that of the current embodiment of the invention. Various alterations and changes can be made without departing from the spirit and broader aspects of the invention as defined in the appended claims, which are to be interpreted in accordance with the principles of patent law including the doctrine of equivalents. Any reference to claim elements in the singular, for example, using the articles “a,” “an,” “the” or “said,” is not to be construed as limiting the element to the singular.
Number | Name | Date | Kind |
---|---|---|---|
4015292 | Kirn | Mar 1977 | A |
4330097 | George et al. | May 1982 | A |
4547252 | Lamers | Oct 1985 | A |
5380381 | Otruba | Jan 1995 | A |
5628468 | Jung et al. | May 1997 | A |
5730816 | Murphy | Mar 1998 | A |
6179030 | Rietheimer | Jan 2001 | B1 |
6257294 | Weisbeck | Jul 2001 | B1 |
6561246 | Yang | May 2003 | B2 |
6764235 | Coret et al. | Jul 2004 | B2 |
6942403 | Hohberger et al. | Sep 2005 | B2 |
20030221788 | Dods | Dec 2003 | A1 |
20040011915 | Korthauer | Jan 2004 | A1 |
20040089423 | Nielsen | May 2004 | A1 |
20040154749 | Rice | Aug 2004 | A1 |
20050279463 | Ridenour | Dec 2005 | A1 |
20100101731 | Sleiman et al. | Apr 2010 | A1 |
Number | Date | Country |
---|---|---|
2008046222 | Apr 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20090272493 A1 | Nov 2009 | US |
Number | Date | Country | |
---|---|---|---|
61050600 | May 2008 | US |