The technology disclosed herein may be applicable to the selection and/or configuration of various types of lab instruments.
Generally, laboratories such as may perform tests on various types of substances may require both laboratory instruments to perform the tests and reagents with which the tests may be performed. Various ways of balancing competing considerations related to laboratory instrument selection and reagent allocation have been tried. However, it is believed that no approach to selecting laboratory instruments and configuring them with reagents or other consumables as described herein has previously been used in the art.
The disclosed technology can be used to implement a variety of methods, systems, machines and computer program products. For example, in some aspects, based on this disclosure one of ordinary skill in the art may implement a method comprising defining a formal representation of demand for tests to be performed at a laboratory and providing a recommendation of one or more laboratory instruments to use in performing the tests and an allocation of reagents among the one or more laboratory instruments based on the formal representation comprising a set of pre-defined parameters to optimize a cost associated with performing the test. Computer program products comprising instructions operable to configure a computer to perform such methods, and machines comprising computers configured with instructions operable to, when executed, cause the computer to perform such methods, may also be implemented in some aspects.
Further information on how the disclosed technology could potentially be implemented is set forth herein, and variations on the sample will be immediately apparent to and could be practiced without undue experimentation by those of ordinary skill in the art based on the material which is set forth in this document. Accordingly, exemplary methods and machines described in this summary should be understood as being illustrative only, and should not be treated as limiting on the scope of protection provided by this or any related document.
Turning now to the figures,
Some embodiments may use alternatives to a browser based interface such as described above. For example, in some embodiments a user computer 101 may be provided with a special purpose client application which may automatically interact with a server 102 using custom data transmission protocols, rather than relying on a browser which would interpret general purpose languages, such as HTML, JavaScript or others. Similarly, it is possible that, rather than using an architecture with a remote server as shown in
Turning now to
In the process of
Continuing with the discussion of
Also, as shown in
Finally, after the appropriate allocation(s) has/have been generated 205, the reagents may be allocated 206 to the instrument(s) according to the generated allocations. For example, if a solver identifies a set of values for xhsj (each of which would represent a number of reagent bottles of size s for test h that should be assigned to analyzer j) which would result in minimization of the cost function of equation 7, then for a period of time during which the demand profile used to derive that set of values was deemed valid (e.g., a month) the analytic instruments in the lab could be stocked with the numbers and sizes of reagent bottles provided by the generated set of xhsj values. Then, when the demand profile(s) were no longer valid (e.g., at the end of a month), new profile(s) may be defined 203, new allocations may be generated 205, and the process may repeat.
It should be understood that, while the above discussion provided a set of equations which some embodiments may use in determining an optimized allocation of reagents to laboratory instruments, use of the above equations is not mandatory, and other embodiments may use other equations. For example, in some embodiments, a set of equations such as equations 1-7 above may be decomposed into separate sets of equations for each of the disciplines of the tests that a laboratory performs, and those separate sets of equations may be optimized individually to find allocations for each of the instruments in the lab. To illustrate, consider table 1, below, which presents a set of equations that could be used for determining optimized allocations for specific disciplines.
In the set of equations of table 1, X and Hd would represent, respectively, the laboratory instruments and tests which were specific to the particular discipline under consideration.
Other variations may also be possible in some embodiments. For example, some embodiments may apply techniques similar to those described above for determining an optimized allocation of reagents to the problem of determining an optimized selection of instruments for a lab. This may be done, for example, in a case where a new lab is being set up and a consultant or sales representative is making recommendations regarding the equipment which the lab may want to purchase. In this type of case, equations such as equations 8-14 below may be used to represent constraints to be considered in the instrument selection problem, while equation 15 may represent a cost function which would be minimized to determine an optimal selection of instruments.
It is also possible that some embodiments may combine optimized instrument selection with optimized reagent allocation. Some embodiments may include a step of pre-calculating the number of each type of instrument to include in a set of potential analyzers, in order to ensure that enough potential instruments of each type are included while also providing bounds which could help reduce the risk that the optimization problem would be incomputable. In embodiments where this type of pre-calculation takes place, equations 16-19, below, may be used to define the number of potential instruments of each type.
In an embodiment which uses equations such as equations 16-19 to define the set of potential instruments (M), and which uses uj as a decision variable which is 1 if instrument j from set M is selected and 0 otherwise, a set of equations such as shown in table 2 (below) could be used to define both the constraints which a laboratory would have to satisfy, as well as the cost function to be minimized by appropriate selection of instruments and allocation of reagents.
In the set of equations of table 2, uj is 1 if instrument j is selected and is otherwise 0, HMhj is 1 if test h can potentially be done by analyzer j and is otherwise 0, LSj denotes the lifespan of machine j, ND denotes the number of lab working days per year (e.g., ND=365) and the remaining parameters have the same meanings set forth in the context of equations 3-7 and 12-14 and table 1.
Of course, it should be understood that, in some embodiments, additional variations for organizing equations used to optimize instrument selection and/or configuration may be possible. For example, in some embodiments, the problem of selecting non-analytical instruments (e.g., centrifuges) may be separated out and addressed by minimizing equation 20, below, subject to the constraints of equations 12 and 13.
The problem of selecting analytical instruments (and the configuration of what reagents should be allocated to which of those instruments) could then be addressed using equations such as set forth in table 1 to separately optimize the necessary instruments for each discipline having tests which the laboratory would process.
Other types of variations may also be possible. For example, in some embodiments which populate sets of potential instruments for optimization as described above, it may be possible to specify existing instruments which should be included in the sets and always be selected as constraints. This may be beneficial, for example, if a laboratory is considering expansion of its capabilities, and wants to know what additional instruments it should buy to do so, rather than what instruments would be optimal if it were operating on a completely blank slate. Similarly, if a laboratory is seeking to make long term strategic decisions regarding purchasing various types of instruments, it may utilize technology such as disclosed herein along with projections of demand for various types of test for the coming year. As another example of a type of variation which may be possible in some embodiments, some embodiments may be used to optimize selection and/or configuration of instruments which include analyzers associated with multiple disciplines. The may be done, for example, by modeling individual analyzers as having multiple parts, with each of the parts being associated with a particular discipline and having a capacity for holding reagents that would be used to perform tests in that discipline. A set of equations which, in some embodiments, may be used for identifying optimal instrument selections and configurations for these type of multi-discipline instruments is presented in table 3, below.
In table 3, the p is used as the index of an analyzer part in set P of analyzer parts, and other parameters which include references to part p should be understood as being analogous to similar parameters discussed previously in the context of single part analyzers. For example, APOCjp should be seen as analogous to APOCj, and is used in table 3 to represent the operational capacity of part p of analyzer j. Similarly, xhsjp should be understood as the number of reagent bottles h with size s assigned to part p of analyzer j; MPDjpd should be understood as a value representing if part p of analyzer j is in discipline d (and would be 1 if yes and 0 otherwise); HMPhjp should be understood as a value representing if test h can potentially be done by part p of analyzer j (and would be 1 of yes and 0 otherwise); gjp should be understood as the hourly capacity of part p of analyzer j in terms of tests; RKjp should be understood as the number of reagent bottle positions of part p of analyzer j; and yhjp should be understood as representing whether test h is done by part p of analyzer j (and would be 1 if yes and 0 otherwise). ND and LSj have the same meaning as when those parameters were used in table 2.
As yet another example of a potential variation, it is possible that, in some embodiments, constraints and a cost function could be modeled in a way which omits calibration costs (discussed previously in connection with the parameter hj). For instance, this may be beneficial in cases where calibration costs are linked to specific tests run on instruments (e.g., those in the hematology discipline). Exemplary equations which could be used for identifying optimized instrument selections and reagent allocations while disregarding calibration costs which may be used in some embodiments are set forth below in table 4. In that table uj would be an integer having a value of 0 or 1 depending on whether a particular instrument was selected, and all other parameters would have the same meanings as discussed previously in the context of equations 2-5 and 12-14 and table 2.
Further variations on, features for, and potential implementations and applications of the inventors' technology will be apparent to, and could be practiced without undue experimentation by, those of ordinary skill in the art in light of this disclosure. Accordingly, neither this document, nor any document which claims the benefit of this document's disclosure, should be treated as being limited to the specific embodiments of the inventor's technology which are described herein.
As used herein, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. The invention has now been described in detail for the purposes of clarity and understanding. However, it will be appreciated that certain changes and modifications may be practiced within the scope of the appended claims.
As used herein “laboratory instrument” or “instrument” refers to a device which is used in analyzing samples or facilitating or enabling that analysis. Examples of these types of devices include analytic instruments, centrifugation machines, and sorting and routing machines.
As used herein, the term “machine” refers to a device or combination of devices.
As used herein, the term “set” refers to a number, group, or combination of zero or more things of similar nature, design, or function.
As used herein, a statement that a thing is done “without any manual intervention” means that the thing is done automatically.
As used herein, the term “based on” means that something is determined at least in part by the thing that it is indicated as being “based on.” To indicate that something must be completely determined based on something else, it would be described as being based “exclusively” on whatever it is completely determined by.
As used herein, modifiers such as “first,” “second,” and so forth are simply labels used to improve readability, and are not intended to imply any temporal or substantive difference between the items they modify. For example, referring to items as a “first program” and a “second program” in the claims should not be understood to indicate that the “first program” is created first, or that the two programs would necessarily cause different things to happen when executed by a computer. Similarly, when used in the claims, the words “computer” and “server” should be understood as being synonyms, with the different terms used to enhance the readability of the claims and not to imply any physical or functional difference between items referred to using those different terms.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/065996 | 12/17/2018 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62607624 | Dec 2017 | US |