This application claims priority to European Patent Application No. EP 20181103.1, filed 19 Jun. 2020, the disclosure of which is hereby incorporated by reference in its entirety.
The disclosure relates to a laboratory sample distribution system and a corresponding method of operation.
A laboratory sample distribution system is, e.g., disclosed in document WO 2013/064656 A1. Such a laboratory sample distribution system provides for a high throughput and for reliable operation. The laboratory sample distribution system comprises a number of sample container carriers, said sample container carriers each comprising at least one magnetically active device and being adapted to carry a sample container, a transport plane being adapted to support said sample container carriers, a number of electro-magnetic actuators being stationarily arranged below said transport plane, said electro-magnetic actuators being adapted to move a corresponding sample container carrier located on top of said transport plane by applying a magnetic force to said sample container carrier, and multiple IR based reflection light barriers being adapted to sense the presence and/or position of container carriers located on the transport plane.
Although the embodiments of the present disclosure are not limited to specific advantages or functionality, the disclosure provides for a laboratory sample distribution system and a corresponding method of operation enabling an efficient, reliable and cost effective determining of positions of sample container carriers located on top of the transport plane.
In accordance with one embodiment of the present disclosure, a laboratory sample distribution system is provided, the laboratory sample distribution system comprising: a number of sample container carriers, said sample container carriers each comprising at least one magnetically active device and being adapted to carry a sample container; a transport plane being adapted to support said sample container carriers; a number of electro-magnetic actuators being stationarily arranged below said transport plane, said electro-magnetic actuators being adapted to move a corresponding sample container carrier located on top of said transport plane by applying a magnetic force to said sample container carrier; a touch panel arranged below the transport plane being adapted to generate position signals (PS) depending on positions of the sample container carriers located on top of the transport plane; a position determination unit, wherein the position determination unit is adapted to determine the positions of the sample container carriers located on top of the transport plane in response to the position signals (PS), and a control unit being adapted to control the operation of the laboratory sample distribution system in response to the determined positions of the sample container carriers.
In accordance with another embodiment of the present disclosure, a method of operating a laboratory sample distribution system according to an embodiment of the present disclosure is provided, the method comprising the steps: transmitting data to the control unit via the touch panel, wherein the data is selected from the following group of data: a sample container carrier ID of a sample container carrier, a version number of a sample container carrier, information, if a sample container is closed or open, information regarding a type of a sample container, information regarding a type of a sample contained in the sample container, information, if a sample container was removed from a sample container carrier or not, information regarding a charging level of a battery powering the sample container carrier, and information regarding an operating time of a sample container carrier.
These and other features and advantages of the embodiments of the present disclosure will be more fully understood from the following detailed description taken together with the accompanying claims. It is noted that the scope of the claims is defined by the recitations therein and not by the specific discussions of features and advantages set forth in the present description.
The following detailed description of the embodiments of the present description can be best understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:
Skilled artisans appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, dimensions of some of the elements in the figures may be exaggerated relative to other elements to help improve understanding of the embodiment(s) of the present disclosure.
The laboratory sample distribution system comprises a number of sample container carriers, e.g., between 1 and 100,000 sample container carriers, said sample container carriers each comprising at least one magnetically active device and being adapted to carry a sample container, a transport plane being adapted to support said sample container carriers, a number, e.g., between 1 and 1024, of electro-magnetic actuators being stationarily arranged below said transport plane in rows and columns, said electro-magnetic actuators being adapted to move a corresponding sample container carrier located on top of said transport plane by applying a magnetic force to said sample container carrier.
The laboratory sample distribution system further comprises a touch panel arranged below the transport plane being adapted to generate position signals depending on respective positions of the sample container carriers located on top of the transport plane.
The laboratory sample distribution system further comprises a position determination unit, e.g., in form of a microprocessor-based device, wherein the position determination unit is adapted to determine the respective positions of the sample container carriers located on top of the transport plane in response to the position signals.
The laboratory sample distribution system further comprises a control unit, e.g., in form of a Personal Computer, being adapted to control the operation of the laboratory sample distribution system in response to the determined positions of the sample container carriers.
The control unit and the position determination unit may be embodied as different units or may be embodied using a common microprocessor based device.
According to an embodiment, the touch panel is embodied as a conventional multi-touch capacitive touch panel. A capacitive touch panel typically comprises an insulator, such as glass, coated with a transparent conductor, such as indium tin oxide (ITO). Touching the surface of the touch panel typically results in a distortion of the touch panel's electrostatic field, measurable as a change in capacitance. Different technologies may be used to determine the positions of the sample container carriers, e.g., surface capacitance, projected capacitance, mutual capacitance, self-capacitance, etc. Reference is also made to the relevant technical literature regarding multi-touch capacitive touch panels. According to the disclosure, this basically well-known technology may also be used to determine the positions of the sample container carriers located on top of the transport plane.
The conventional multi-touch capacitive touch panel may be a conventional so called projected capacitive touch sensor (PCT) that is, e.g., used in smartphones or tablets. A PCT used for smartphones or tablets typically comprises a touch sensor foil and a display. According to the disclosure, only the touch sensor foil is used for position determination. These touch sensor foils can be manufactured in any shape and size and may, e.g., be adhesively mounted under the transport plane.
Since PCT sensors are made for detection of capacitive changes usually either a conductive mass must be provided or a connection to ground. Nevertheless, it has been found that the magnetically active device, e.g., in form of a permanent magnet, of the sample container carrier induces a specific signal pattern in the capacitive touch sensor foil which can be used by the position determination unit to determine the positions of the sample container carriers located on top of the transport plane, i.e., on top of the touch sensor foil.
According to an embodiment, the touch panel is a passive panel being based on electromagnetic induction. Passive touch panels make use of electromagnetic induction, where the horizontal and vertical wires of the touch panel operate as both transmitting and receiving coils. The touch panel generates an electromagnetic or a magnetic signal, which may, e.g., be received by a transmitting device of the sample container carrier. The wires in the touch panel then change to a receiving mode and read the signal generated by the transmitting device. By using (electro-) magnetic signals, the touch panel is able to power the sample container carrier with this signal such that the sample container carriers used with the touch panel do not need batteries. Reference is also made to the relevant technical literature.
According to an embodiment, the induction based passive touch panel comprises a thin, in particular self-adhesive, sensor foil having horizontal conductor paths and vertical conductor paths at different layers of the sensor foil, and a switching electronics connected to the horizontal and vertical conductor paths, wherein the switching electronics is adapted to connect the horizontal and vertical conductor paths such that coils at different locations on the touch panel are formed in a time-multiplex manner, wherein each position signal of the position signals is formed in a corresponding one of the coils.
According to an embodiment, each sample container carrier comprises a data transmitting device being adapted to transmit data to the control unit via the touch panel.
According to an embodiment, the data transmitting device is contactlessly supplied with electrical energy by means of the touch panel.
The method of operating a laboratory sample distribution system as described above comprises the steps: transmitting data to the control unit via the touch panel, wherein the data is selected form the following group of data: a sample container carrier ID of a sample container carrier, a version number of a sample container carrier, information, if a sample container is closed or open, information regarding a type of a sample container, information regarding a type of a sample contained in the sample container, information, if a sample container was removed from a sample container carrier or not, information regarding a charging level of a battery powering the sample container carrier, and information regarding an operating time of a sample container carrier.
According to an embodiment, data to be transmitted are transferred by means of load modulation.
According to an embodiment, it is checked, if a determined position of a sample container carrier corresponds to a predetermined processing position on the transport plane, and if the determined position of a sample container carrier corresponds to the predetermined processing position on the transport plane, initiating a data transmission between the sample container carrier located at the processing position and the control unit, e.g., by generating an alternating magnetic field by means of the touch panel powering the sample container carrier. A predetermined processing position may, e.g., be a position where a pick and place device removes a sample container from a sample container carrier or inserts a sample container into a sample container carrier, etc.
According to an embodiment, electrical energy is contactlessly supplied to the data transmitting device of the sample container carrier located at the processing position by means of the touch panel.
The laboratory sample distribution system 100 comprises sample container carriers 140 being adapted to carry a sample container 145 containing a laboratory sample to be analyzed. The sample container carriers 140 each comprise a magnetically active device in form of a permanent magnet 141.
The laboratory sample distribution system 100 further comprises a flat transport plane or surface 110 being adapted to support or carry said sample container carriers 140.
The laboratory sample distribution system 100 further comprises electro-magnetic actuators 120 being stationarily arranged in rows and columns below said transport plane 110. The electro-magnetic actuators 120 are adapted to move a corresponding sample container carrier 140 located on top of said transport plane 100 by applying a magnetic force to said sample container carrier 140.
The laboratory sample distribution system 100 further comprises a multi-touch-capable touch panel 200 arranged below the transport plane 110 and being adapted to generate position signals PS depending on positions of the sample container carriers 140 located on top of the transport plane 110.
The laboratory sample distribution system 100 further comprises a position determination unit 170, wherein the position determination unit 170 is adapted to determine the positions of the sample container carriers 140 located on top of the transport plane 110 in response to the position signals PS.
The laboratory sample distribution system 100 further comprises a control unit 180 being adapted to control the operation of the laboratory sample distribution system 100 in response to the determined positions of the sample container carriers 140.
The touch panel 200 may be embodied as a multi-touch capacitive touch panel or as a passive touch panel being based on electromagnetic induction or as a combination thereof.
Again referring to
A sample container carrier 140 may communicate data to the control unit 180 via the touch panel 200, e.g., by means of load modulation, as used in and well-known from RFID technology.
The data to be transmitted may, e.g., be selected from the following group of data: a sample container carrier ID of a sample container carrier 140, a version number of a sample container carrier 140, information, if a sample container 145 is closed or open, information regarding a type (geometrical properties/dimensions, material, etc.) of a sample container 145, information regarding a type (blood, urine, etc.) of a sample contained in the sample container 145, information, if a sample container 145 was removed from a sample container carrier 140 or not, information regarding a charging level of a battery powering the sample container carrier 140, and information regarding an operating time of a sample container carrier 140.
The control unit 180 may check, if a determined position of a sample container carrier 140 corresponds to a defined processing position 111 on the transport plane 110. The processing position 111 may, e.g., be a position where processing of the sample container carrier 140, processing of the sample container 145 and/or processing of the sample contained in the sample container 145 may take place. The processing position 111 may, e.g., correspond to a position where a sample container 145 is transferred to a laboratory station 20 such that the sample contained in the sample container 145 may be analyzed by means of the laboratory station 20.
If the determined position of a sample container carrier 140 corresponds to the predetermined processing position 111 on the transport plane 110, a data transmission between the sample container carrier 140 located at the processing position and the control unit 180 may be initiated, e.g., by means of activating a coil 216 located below the processing position 111 to generate an alternating magnetic field contactlessly supplying the data transmitting device 142 with electrical energy such that data can be transmitted to the control unit 180.
Number | Date | Country | Kind |
---|---|---|---|
20181103 | Jun 2020 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
3273727 | Rogers et al. | Sep 1966 | A |
3653485 | Donlon | Apr 1972 | A |
3901656 | Durkos et al. | Aug 1975 | A |
4150666 | Brush | Apr 1979 | A |
4395164 | Beltrop et al. | Jul 1983 | A |
4544068 | Cohen | Oct 1985 | A |
4771237 | Daley | Sep 1988 | A |
5120506 | Saito et al. | Jun 1992 | A |
5295570 | Grecksch et al. | Mar 1994 | A |
5309049 | Kawada et al. | May 1994 | A |
5457368 | Jacobsen et al. | Oct 1995 | A |
5523131 | Isaacs et al. | Jun 1996 | A |
5530345 | Murari et al. | Jun 1996 | A |
5636548 | Dunn et al. | Jun 1997 | A |
5641054 | Mori et al. | Jun 1997 | A |
5651941 | Stark et al. | Jul 1997 | A |
5720377 | Apeus et al. | Feb 1998 | A |
5735387 | Polaniec et al. | Apr 1998 | A |
5788929 | Nesti | Aug 1998 | A |
6045319 | Uchida et al. | Apr 2000 | A |
6062398 | Thalmayr | May 2000 | A |
6141602 | Garashi et al. | Oct 2000 | A |
6151535 | Ehlers | Nov 2000 | A |
6184596 | Ohzeki | Feb 2001 | B1 |
6191507 | Peltier et al. | Feb 2001 | B1 |
6206176 | Blonigan et al. | Mar 2001 | B1 |
6255614 | Yamakawa et al. | Jul 2001 | B1 |
6260360 | Wheeler | Jul 2001 | B1 |
6279728 | Jung et al. | Aug 2001 | B1 |
6293750 | Cohen et al. | Sep 2001 | B1 |
6429016 | McNeil | Aug 2002 | B1 |
6444171 | Sakazume et al. | Sep 2002 | B1 |
6571934 | Thompson et al. | Jun 2003 | B1 |
7028831 | Veiner | Apr 2006 | B2 |
7078082 | Adams | Jul 2006 | B2 |
7122158 | Itoh | Oct 2006 | B2 |
7278532 | Martin | Oct 2007 | B2 |
7326565 | Yokoi et al. | Feb 2008 | B2 |
7425305 | Itoh | Sep 2008 | B2 |
7428957 | Schaefer | Sep 2008 | B2 |
7578383 | Itoh | Aug 2009 | B2 |
7597187 | Bausenwein et al. | Oct 2009 | B2 |
7850914 | Veiner et al. | Dec 2010 | B2 |
7858033 | Itoh | Dec 2010 | B2 |
7875254 | Garton et al. | Jan 2011 | B2 |
7939484 | Loeffler et al. | May 2011 | B1 |
8240460 | Bleau et al. | Aug 2012 | B1 |
8281888 | Bergmann | Oct 2012 | B2 |
8502422 | Lykkegaard | Aug 2013 | B2 |
8796186 | Shirazi | Aug 2014 | B2 |
8833544 | Stoeckle et al. | Sep 2014 | B2 |
8973736 | Johns et al. | Mar 2015 | B2 |
9056720 | Van De Loecht et al. | Jun 2015 | B2 |
9097691 | Onizawa et al. | Aug 2015 | B2 |
9211543 | Ohga et al. | Dec 2015 | B2 |
9239335 | Heise et al. | Jan 2016 | B2 |
9423410 | Buehr | Aug 2016 | B2 |
9423411 | Riether | Aug 2016 | B2 |
9567167 | Sinz | Feb 2017 | B2 |
9575086 | Heise et al. | Feb 2017 | B2 |
9593970 | Sinz | Mar 2017 | B2 |
9618525 | Malinowski et al. | Apr 2017 | B2 |
9664703 | Heise et al. | May 2017 | B2 |
9772342 | Riether | Sep 2017 | B2 |
9791468 | Riether et al. | Oct 2017 | B2 |
9810706 | Riether et al. | Nov 2017 | B2 |
9902572 | Mahmudimanesh et al. | Feb 2018 | B2 |
9939455 | Schneider et al. | Apr 2018 | B2 |
9952242 | Riether | Apr 2018 | B2 |
9969570 | Heise et al. | May 2018 | B2 |
9989547 | Pedain | Jun 2018 | B2 |
10006927 | Sinz et al. | Jun 2018 | B2 |
10012666 | Riether | Jul 2018 | B2 |
10031150 | Heise et al. | Jul 2018 | B2 |
10094843 | Malinowski et al. | Oct 2018 | B2 |
10119982 | Baer | Nov 2018 | B2 |
10126317 | Heise et al. | Nov 2018 | B2 |
10160609 | Malinowski | Dec 2018 | B2 |
10175259 | Riether | Jan 2019 | B2 |
10197586 | Sinz et al. | Feb 2019 | B2 |
10239708 | Sinz | Mar 2019 | B2 |
10261103 | Pedain | Apr 2019 | B2 |
10288634 | Kaeppeli | May 2019 | B2 |
10352953 | Huber et al. | Jul 2019 | B2 |
10416183 | Hassan | Sep 2019 | B2 |
10450151 | Heise et al. | Oct 2019 | B2 |
10495657 | Malinowski | Dec 2019 | B2 |
10509049 | Sinz et al. | Dec 2019 | B2 |
20020009391 | Marquiss et al. | Jan 2002 | A1 |
20030092185 | Qureshi et al. | May 2003 | A1 |
20040050836 | Nesbitt et al. | Mar 2004 | A1 |
20040084531 | Itoh | May 2004 | A1 |
20050061622 | Martin | Mar 2005 | A1 |
20050109580 | Thompson | May 2005 | A1 |
20050194333 | Veiner et al. | Sep 2005 | A1 |
20050196320 | Veiner et al. | Sep 2005 | A1 |
20050226770 | Allen et al. | Oct 2005 | A1 |
20050242963 | Oldham et al. | Nov 2005 | A1 |
20050247790 | Itoh | Nov 2005 | A1 |
20050260101 | Nauck et al. | Nov 2005 | A1 |
20050271555 | Itoh | Dec 2005 | A1 |
20060000296 | Salter | Jan 2006 | A1 |
20060047303 | Ortiz et al. | Mar 2006 | A1 |
20060219524 | Kelly et al. | Oct 2006 | A1 |
20070116611 | DeMarco | May 2007 | A1 |
20070210090 | Sixt et al. | Sep 2007 | A1 |
20070248496 | Bondioli et al. | Oct 2007 | A1 |
20070276558 | Kim | Nov 2007 | A1 |
20080012511 | Ono | Jan 2008 | A1 |
20080029368 | Komori | Feb 2008 | A1 |
20080056328 | Rund et al. | Mar 2008 | A1 |
20080131961 | Crees et al. | Jun 2008 | A1 |
20090004732 | LaBarre et al. | Jan 2009 | A1 |
20090022625 | Lee et al. | Jan 2009 | A1 |
20090081771 | Breidford et al. | Mar 2009 | A1 |
20090128139 | Drenth et al. | May 2009 | A1 |
20090142844 | Le Comte | Jun 2009 | A1 |
20090180931 | Silbert et al. | Jul 2009 | A1 |
20090322486 | Gerstel | Dec 2009 | A1 |
20100000250 | Sixt | Jan 2010 | A1 |
20100152895 | Dai | Jun 2010 | A1 |
20100175943 | Bergmann | Jul 2010 | A1 |
20100186618 | King et al. | Jul 2010 | A1 |
20100255529 | Cocola et al. | Oct 2010 | A1 |
20100300831 | Pedrazzini | Dec 2010 | A1 |
20100312379 | Pedrazzini | Dec 2010 | A1 |
20110050213 | Furukawa | Mar 2011 | A1 |
20110124038 | Bishop et al. | May 2011 | A1 |
20110172128 | Davies et al. | Jul 2011 | A1 |
20110186406 | Kraus et al. | Aug 2011 | A1 |
20110287447 | Norderhaug et al. | Nov 2011 | A1 |
20120037696 | Lavi | Feb 2012 | A1 |
20120129673 | Fukugaki et al. | May 2012 | A1 |
20120178170 | Van Praet | Jul 2012 | A1 |
20120211645 | Tullo et al. | Aug 2012 | A1 |
20120275885 | Furrer et al. | Nov 2012 | A1 |
20120282683 | Mototsu | Nov 2012 | A1 |
20120295358 | Ariff et al. | Nov 2012 | A1 |
20120310401 | Shah | Dec 2012 | A1 |
20130153677 | Leen et al. | Jun 2013 | A1 |
20130180824 | Kleinikkink et al. | Jul 2013 | A1 |
20130263622 | Mullen et al. | Oct 2013 | A1 |
20130322992 | Pedrazzini | Dec 2013 | A1 |
20140170023 | Saito et al. | Jun 2014 | A1 |
20140184564 | Yeh | Jul 2014 | A1 |
20140231217 | Denninger | Aug 2014 | A1 |
20140234949 | Nasson et al. | Aug 2014 | A1 |
20150014125 | Hecht | Jan 2015 | A1 |
20150140668 | Mellars et al. | May 2015 | A1 |
20150166265 | Pollack et al. | Jun 2015 | A1 |
20150241457 | Miller | Aug 2015 | A1 |
20150273468 | Croquette et al. | Oct 2015 | A1 |
20150273691 | Pollack | Oct 2015 | A1 |
20150276775 | Mellars et al. | Oct 2015 | A1 |
20150276781 | Riether et al. | Oct 2015 | A1 |
20160003859 | Wenczel et al. | Jan 2016 | A1 |
20160025756 | Pollack et al. | Jan 2016 | A1 |
20160054341 | Edelmann | Feb 2016 | A1 |
20160087693 | Shimomura | Mar 2016 | A1 |
20160229565 | Margner | Aug 2016 | A1 |
20170108522 | Baer | Apr 2017 | A1 |
20170131310 | Volz et al. | May 2017 | A1 |
20170168079 | Sinz | Jun 2017 | A1 |
20170248623 | Kaeppeli et al. | Aug 2017 | A1 |
20170248624 | Kaeppeli et al. | Aug 2017 | A1 |
20170363608 | Sinz | Dec 2017 | A1 |
20180067141 | Mahmudimanesh et al. | Mar 2018 | A1 |
20180106821 | Vollenweider et al. | Apr 2018 | A1 |
20180107300 | Lin | Apr 2018 | A1 |
20180128848 | Schneider et al. | May 2018 | A1 |
20180188280 | Malinowski | Jul 2018 | A1 |
20180210000 | van Mierlo | Jul 2018 | A1 |
20180210001 | Reza | Jul 2018 | A1 |
20180224476 | Birrer et al. | Aug 2018 | A1 |
20180340951 | Kaeppell | Nov 2018 | A1 |
20180340952 | Kaeppeli et al. | Nov 2018 | A1 |
20180348244 | Ren | Dec 2018 | A1 |
20180348245 | Schneider et al. | Dec 2018 | A1 |
20190018027 | Hoehnel | Jan 2019 | A1 |
20190076845 | Huber et al. | Mar 2019 | A1 |
20190076846 | Durco et al. | Mar 2019 | A1 |
20190086433 | Hermann et al. | Mar 2019 | A1 |
20190094251 | Malinowski | Mar 2019 | A1 |
20190094252 | Waser et al. | Mar 2019 | A1 |
20190101468 | Haldar | Apr 2019 | A1 |
20190285660 | Kopp et al. | Sep 2019 | A1 |
20200200783 | Durco | Jun 2020 | A1 |
20200400698 | Tafner et al. | Dec 2020 | A1 |
Number | Date | Country |
---|---|---|
201045617 | Apr 2008 | CN |
102109530 | Jun 2011 | CN |
3909786 | Sep 1990 | DE |
102012000665 | Aug 2012 | DE |
102011090044 | Jul 2013 | DE |
0601213 | Oct 1992 | EP |
0775650 | May 1997 | EP |
0916406 | May 1999 | EP |
1122194 | Aug 2001 | EP |
1524525 | Apr 2005 | EP |
2119643 | Nov 2009 | EP |
2148117 | Jan 2010 | EP |
2327646 | Jun 2011 | EP |
2447701 | May 2012 | EP |
2500871 | Sep 2012 | EP |
2502675 | Feb 2014 | EP |
2887071 | Jun 2015 | EP |
3001288 | Mar 2016 | EP |
2165515 | Apr 1986 | GB |
S56-147209 | Nov 1981 | JP |
60-223481 | Nov 1985 | JP |
61-081323 | Apr 1986 | JP |
S61-069604 | Apr 1986 | JP |
S61-094925 | May 1986 | JP |
S61-174031 | Aug 1986 | JP |
S61-217434 | Sep 1986 | JP |
S62-100161 | May 1987 | JP |
S63-31918 | Feb 1988 | JP |
S63-48169 | Feb 1988 | JP |
S63-82433 | May 1988 | JP |
S63-290101 | Nov 1988 | JP |
1148966 | Jun 1989 | JP |
H01-266860 | Oct 1989 | JP |
H02-87903 | Mar 1990 | JP |
03-112393 | May 1991 | JP |
03-192013 | Aug 1991 | JP |
H03-38704 | Aug 1991 | JP |
H04-127063 | Apr 1992 | JP |
H05-69350 | Mar 1993 | JP |
H05-142232 | Jun 1993 | JP |
H05-180847 | Jul 1993 | JP |
06-26808 | Feb 1994 | JP |
H06-148198 | May 1994 | JP |
06-156730 | Jun 1994 | JP |
06-211306 | Aug 1994 | JP |
07-228345 | Aug 1995 | JP |
07-236838 | Sep 1995 | JP |
H07-301637 | Nov 1995 | JP |
H09-17848 | Jan 1997 | JP |
H11-083865 | Mar 1999 | JP |
H11-264828 | Sep 1999 | JP |
H11-304812 | Nov 1999 | JP |
H11-326336 | Nov 1999 | JP |
2000-105243 | Apr 2000 | JP |
2000-105246 | Apr 2000 | JP |
2001-124786 | May 2001 | JP |
2001-240245 | Sep 2001 | JP |
2005-001055 | Jan 2005 | JP |
2005-249740 | Sep 2005 | JP |
2006-106008 | Apr 2006 | JP |
2007-309675 | Nov 2007 | JP |
2007-314262 | Dec 2007 | JP |
2007-322289 | Dec 2007 | JP |
2009-033424 | Feb 2009 | JP |
2009-036643 | Feb 2009 | JP |
2009033424 | Feb 2009 | JP |
2009-062188 | Mar 2009 | JP |
2009-145188 | Jul 2009 | JP |
2009-300402 | Dec 2009 | JP |
2010-243310 | Oct 2010 | JP |
2010-271204 | Dec 2010 | JP |
2011-086103 | Apr 2011 | JP |
2013-172009 | Feb 2013 | JP |
2013-190400 | Sep 2013 | JP |
685591 | Sep 1979 | SU |
1996036437 | Nov 1996 | WO |
2003042048 | May 2003 | WO |
2007024540 | Mar 2007 | WO |
2008133708 | Nov 2008 | WO |
2009002358 | Dec 2008 | WO |
2010042722 | Apr 2010 | WO |
2012170636 | Jul 2010 | WO |
2010087303 | Aug 2010 | WO |
2010129715 | Nov 2010 | WO |
2012158520 | Nov 2012 | WO |
2012158541 | Nov 2012 | WO |
2013064656 | May 2013 | WO |
2013152089 | Oct 2013 | WO |
2013169778 | Nov 2013 | WO |
2013177087 | Nov 2013 | WO |
2013177163 | Nov 2013 | WO |
2014059134 | Apr 2014 | WO |
2014071214 | May 2014 | WO |
2015104263 | Jul 2015 | WO |
Number | Date | Country | |
---|---|---|---|
20210396775 A1 | Dec 2021 | US |