Laboratory sample distribution system and corresponding method of operation

Information

  • Patent Grant
  • 12000850
  • Patent Number
    12,000,850
  • Date Filed
    Thursday, June 3, 2021
    3 years ago
  • Date Issued
    Tuesday, June 4, 2024
    7 months ago
  • Inventors
  • Original Assignees
  • Examiners
    • Warden; Jill A
    • McGuirk; John
    Agents
    • Woodard, Emhardt, Henry, Reeves & Wagner, LLP
Abstract
A laboratory sample distribution system with a number of sample container carriers, each comprising at least one magnetically active device and adapted to carry a sample container; a transport plane adapted to support the carriers; a number of electro-magnetic actuators stationary arranged below the transport plane and adapted to move a corresponding carrier located on top of the transport plane by applying a magnetic force to the carrier; a touch panel arranged below the transport plane adapted to generate position signals (PS) depending on positions of the carriers located on top of the transport plane; a position determination unit adapted to determine the positions of the carriers located on top of the transport plane in response to the position signals (PS); and a control unit adapted to control the operation of the laboratory sample distribution system in response to the determined positions of the carriers.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to European Patent Application No. EP 20181103.1, filed 19 Jun. 2020, the disclosure of which is hereby incorporated by reference in its entirety.


TECHNICAL FIELD

The disclosure relates to a laboratory sample distribution system and a corresponding method of operation.


BACKGROUND

A laboratory sample distribution system is, e.g., disclosed in document WO 2013/064656 A1. Such a laboratory sample distribution system provides for a high throughput and for reliable operation. The laboratory sample distribution system comprises a number of sample container carriers, said sample container carriers each comprising at least one magnetically active device and being adapted to carry a sample container, a transport plane being adapted to support said sample container carriers, a number of electro-magnetic actuators being stationarily arranged below said transport plane, said electro-magnetic actuators being adapted to move a corresponding sample container carrier located on top of said transport plane by applying a magnetic force to said sample container carrier, and multiple IR based reflection light barriers being adapted to sense the presence and/or position of container carriers located on the transport plane.


SUMMARY

Although the embodiments of the present disclosure are not limited to specific advantages or functionality, the disclosure provides for a laboratory sample distribution system and a corresponding method of operation enabling an efficient, reliable and cost effective determining of positions of sample container carriers located on top of the transport plane.


In accordance with one embodiment of the present disclosure, a laboratory sample distribution system is provided, the laboratory sample distribution system comprising: a number of sample container carriers, said sample container carriers each comprising at least one magnetically active device and being adapted to carry a sample container; a transport plane being adapted to support said sample container carriers; a number of electro-magnetic actuators being stationarily arranged below said transport plane, said electro-magnetic actuators being adapted to move a corresponding sample container carrier located on top of said transport plane by applying a magnetic force to said sample container carrier; a touch panel arranged below the transport plane being adapted to generate position signals (PS) depending on positions of the sample container carriers located on top of the transport plane; a position determination unit, wherein the position determination unit is adapted to determine the positions of the sample container carriers located on top of the transport plane in response to the position signals (PS), and a control unit being adapted to control the operation of the laboratory sample distribution system in response to the determined positions of the sample container carriers.


In accordance with another embodiment of the present disclosure, a method of operating a laboratory sample distribution system according to an embodiment of the present disclosure is provided, the method comprising the steps: transmitting data to the control unit via the touch panel, wherein the data is selected from the following group of data: a sample container carrier ID of a sample container carrier, a version number of a sample container carrier, information, if a sample container is closed or open, information regarding a type of a sample container, information regarding a type of a sample contained in the sample container, information, if a sample container was removed from a sample container carrier or not, information regarding a charging level of a battery powering the sample container carrier, and information regarding an operating time of a sample container carrier.


These and other features and advantages of the embodiments of the present disclosure will be more fully understood from the following detailed description taken together with the accompanying claims. It is noted that the scope of the claims is defined by the recitations therein and not by the specific discussions of features and advantages set forth in the present description.





BRIEF DESCRIPTION OF THE DRAWINGS

The following detailed description of the embodiments of the present description can be best understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:



FIG. 1 shows a view of a laboratory sample distribution system according to one embodiment of the present disclosure; and



FIG. 2 shows a sensor foil having horizontal conductor paths and vertical conductor paths at different layers of the sensor foil, the sensor foil being part of a touch panel used in the laboratory sample distribution system of FIG. 1.





Skilled artisans appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, dimensions of some of the elements in the figures may be exaggerated relative to other elements to help improve understanding of the embodiment(s) of the present disclosure.


DETAILED DESCRIPTION

The laboratory sample distribution system comprises a number of sample container carriers, e.g., between 1 and 100,000 sample container carriers, said sample container carriers each comprising at least one magnetically active device and being adapted to carry a sample container, a transport plane being adapted to support said sample container carriers, a number, e.g., between 1 and 1024, of electro-magnetic actuators being stationarily arranged below said transport plane in rows and columns, said electro-magnetic actuators being adapted to move a corresponding sample container carrier located on top of said transport plane by applying a magnetic force to said sample container carrier.


The laboratory sample distribution system further comprises a touch panel arranged below the transport plane being adapted to generate position signals depending on respective positions of the sample container carriers located on top of the transport plane.


The laboratory sample distribution system further comprises a position determination unit, e.g., in form of a microprocessor-based device, wherein the position determination unit is adapted to determine the respective positions of the sample container carriers located on top of the transport plane in response to the position signals.


The laboratory sample distribution system further comprises a control unit, e.g., in form of a Personal Computer, being adapted to control the operation of the laboratory sample distribution system in response to the determined positions of the sample container carriers.


The control unit and the position determination unit may be embodied as different units or may be embodied using a common microprocessor based device.


According to an embodiment, the touch panel is embodied as a conventional multi-touch capacitive touch panel. A capacitive touch panel typically comprises an insulator, such as glass, coated with a transparent conductor, such as indium tin oxide (ITO). Touching the surface of the touch panel typically results in a distortion of the touch panel's electrostatic field, measurable as a change in capacitance. Different technologies may be used to determine the positions of the sample container carriers, e.g., surface capacitance, projected capacitance, mutual capacitance, self-capacitance, etc. Reference is also made to the relevant technical literature regarding multi-touch capacitive touch panels. According to the disclosure, this basically well-known technology may also be used to determine the positions of the sample container carriers located on top of the transport plane.


The conventional multi-touch capacitive touch panel may be a conventional so called projected capacitive touch sensor (PCT) that is, e.g., used in smartphones or tablets. A PCT used for smartphones or tablets typically comprises a touch sensor foil and a display. According to the disclosure, only the touch sensor foil is used for position determination. These touch sensor foils can be manufactured in any shape and size and may, e.g., be adhesively mounted under the transport plane.


Since PCT sensors are made for detection of capacitive changes usually either a conductive mass must be provided or a connection to ground. Nevertheless, it has been found that the magnetically active device, e.g., in form of a permanent magnet, of the sample container carrier induces a specific signal pattern in the capacitive touch sensor foil which can be used by the position determination unit to determine the positions of the sample container carriers located on top of the transport plane, i.e., on top of the touch sensor foil.


According to an embodiment, the touch panel is a passive panel being based on electromagnetic induction. Passive touch panels make use of electromagnetic induction, where the horizontal and vertical wires of the touch panel operate as both transmitting and receiving coils. The touch panel generates an electromagnetic or a magnetic signal, which may, e.g., be received by a transmitting device of the sample container carrier. The wires in the touch panel then change to a receiving mode and read the signal generated by the transmitting device. By using (electro-) magnetic signals, the touch panel is able to power the sample container carrier with this signal such that the sample container carriers used with the touch panel do not need batteries. Reference is also made to the relevant technical literature.


According to an embodiment, the induction based passive touch panel comprises a thin, in particular self-adhesive, sensor foil having horizontal conductor paths and vertical conductor paths at different layers of the sensor foil, and a switching electronics connected to the horizontal and vertical conductor paths, wherein the switching electronics is adapted to connect the horizontal and vertical conductor paths such that coils at different locations on the touch panel are formed in a time-multiplex manner, wherein each position signal of the position signals is formed in a corresponding one of the coils.


According to an embodiment, each sample container carrier comprises a data transmitting device being adapted to transmit data to the control unit via the touch panel.


According to an embodiment, the data transmitting device is contactlessly supplied with electrical energy by means of the touch panel.


The method of operating a laboratory sample distribution system as described above comprises the steps: transmitting data to the control unit via the touch panel, wherein the data is selected form the following group of data: a sample container carrier ID of a sample container carrier, a version number of a sample container carrier, information, if a sample container is closed or open, information regarding a type of a sample container, information regarding a type of a sample contained in the sample container, information, if a sample container was removed from a sample container carrier or not, information regarding a charging level of a battery powering the sample container carrier, and information regarding an operating time of a sample container carrier.


According to an embodiment, data to be transmitted are transferred by means of load modulation.


According to an embodiment, it is checked, if a determined position of a sample container carrier corresponds to a predetermined processing position on the transport plane, and if the determined position of a sample container carrier corresponds to the predetermined processing position on the transport plane, initiating a data transmission between the sample container carrier located at the processing position and the control unit, e.g., by generating an alternating magnetic field by means of the touch panel powering the sample container carrier. A predetermined processing position may, e.g., be a position where a pick and place device removes a sample container from a sample container carrier or inserts a sample container into a sample container carrier, etc.


According to an embodiment, electrical energy is contactlessly supplied to the data transmitting device of the sample container carrier located at the processing position by means of the touch panel.



FIG. 1 shows a laboratory sample distribution system 100.


The laboratory sample distribution system 100 comprises sample container carriers 140 being adapted to carry a sample container 145 containing a laboratory sample to be analyzed. The sample container carriers 140 each comprise a magnetically active device in form of a permanent magnet 141.


The laboratory sample distribution system 100 further comprises a flat transport plane or surface 110 being adapted to support or carry said sample container carriers 140.


The laboratory sample distribution system 100 further comprises electro-magnetic actuators 120 being stationarily arranged in rows and columns below said transport plane 110. The electro-magnetic actuators 120 are adapted to move a corresponding sample container carrier 140 located on top of said transport plane 100 by applying a magnetic force to said sample container carrier 140.


The laboratory sample distribution system 100 further comprises a multi-touch-capable touch panel 200 arranged below the transport plane 110 and being adapted to generate position signals PS depending on positions of the sample container carriers 140 located on top of the transport plane 110.


The laboratory sample distribution system 100 further comprises a position determination unit 170, wherein the position determination unit 170 is adapted to determine the positions of the sample container carriers 140 located on top of the transport plane 110 in response to the position signals PS.


The laboratory sample distribution system 100 further comprises a control unit 180 being adapted to control the operation of the laboratory sample distribution system 100 in response to the determined positions of the sample container carriers 140.


The touch panel 200 may be embodied as a multi-touch capacitive touch panel or as a passive touch panel being based on electromagnetic induction or as a combination thereof.



FIG. 2 shows a sensor foil 210 having horizontal conductor paths 211 and vertical conductor paths 212 at different layers 213, 214 of the sensor foil 210. The sensor foil 210 may be part of the passive touch panel 200 being based on electromagnetic induction used in the laboratory sample distribution system of FIG. 1. The passive touch panel 200 being based on electromagnetic induction may further comprise a switching electronics 215 connected to the horizontal and vertical conductor paths 211, 212, wherein the switching electronics 215 is adapted to connect the horizontal and vertical conductor paths 211, 212 such that coils 216 at different and sensitive locations on the touch panel 200 are formed in a time-multiplex manner, wherein a respective position signal of the position signals PS is formed in a corresponding one of the coils 216.


Again referring to FIG. 1, each sample container carrier 140 comprises a data transmitting device 142 being adapted to transmit data to the control unit 180 via the touch panel 200. The data transmitting device 142 is contactlessly supplied with electrical energy by means of the touch panel 200. In order to supply electrical energy to the data transmitting device 142 an alternating magnetic field may be generated by means of the coils 216 of the touch panel 200, wherein the alternating magnetic field induces an alternating voltage in a receiving coil of the transmitting device 142.


A sample container carrier 140 may communicate data to the control unit 180 via the touch panel 200, e.g., by means of load modulation, as used in and well-known from RFID technology.


The data to be transmitted may, e.g., be selected from the following group of data: a sample container carrier ID of a sample container carrier 140, a version number of a sample container carrier 140, information, if a sample container 145 is closed or open, information regarding a type (geometrical properties/dimensions, material, etc.) of a sample container 145, information regarding a type (blood, urine, etc.) of a sample contained in the sample container 145, information, if a sample container 145 was removed from a sample container carrier 140 or not, information regarding a charging level of a battery powering the sample container carrier 140, and information regarding an operating time of a sample container carrier 140.


The control unit 180 may check, if a determined position of a sample container carrier 140 corresponds to a defined processing position 111 on the transport plane 110. The processing position 111 may, e.g., be a position where processing of the sample container carrier 140, processing of the sample container 145 and/or processing of the sample contained in the sample container 145 may take place. The processing position 111 may, e.g., correspond to a position where a sample container 145 is transferred to a laboratory station 20 such that the sample contained in the sample container 145 may be analyzed by means of the laboratory station 20.


If the determined position of a sample container carrier 140 corresponds to the predetermined processing position 111 on the transport plane 110, a data transmission between the sample container carrier 140 located at the processing position and the control unit 180 may be initiated, e.g., by means of activating a coil 216 located below the processing position 111 to generate an alternating magnetic field contactlessly supplying the data transmitting device 142 with electrical energy such that data can be transmitted to the control unit 180.

Claims
  • 1. A laboratory sample distribution system, the laboratory sample distribution system comprising: a number of sample container carriers, said sample container carriers each comprising at least one magnetically active device and carrying a sample container;a transport plane supporting said sample container carriers;a number of electro-magnetic actuators being stationarily arranged below said transport plane, said electro-magnetic actuators moving a corresponding sample container carrier located on top of said transport plane by applying a magnetic force to said sample container carrier;a touch panel arranged below the transport plane generating position signals (PS) depending on positions of the sample container carriers located on top of the transport plane;a position determination unit, wherein the position determination unit determines the positions of the sample container carriers located on top of the transport plane in response to the position signals (PS); anda control unit controlling the operation of the laboratory sample distribution system in response to the determined positions of the sample container carriers.
  • 2. The laboratory sample distribution system according to claim 1, wherein the touch panel is a passive panel being based on electromagnetic induction.
  • 3. The laboratory sample distribution system according to claim 2, wherein the touch panel further comprises a sensor foil having horizontal conductor paths and vertical conductor paths at different layers of the sensor foil; and a switching electronics connected to the horizontal and vertical conductor paths, wherein the switching electronics connects the horizontal and vertical conductor paths such that coils at different locations on the touch panel are formed in a time-multiplex manner, wherein each of the position signals (PS) is formed in a corresponding one of the coils.
  • 4. The laboratory sample distribution system according to claim 1, wherein each sample container carrier comprises a data transmitting device transmitting data to the control unit via the touch panel.
  • 5. The laboratory sample distribution system according to claim 2, wherein the data transmitting device is contactlessly supplied with electrical energy by means of the touch panel.
  • 6. The laboratory sample distribution system according to claim 1, wherein the touch panel is a multi-touch capacitive touch panel comprising a touch sensor foil, and wherein the position determination unit determines the positions of the sample container carriers located on top of the transport plane using a specific signal pattern in the capacitive touch sensor foil induced by the magnetically active devices of the sample container carriers in the capacitive touch sensor foil.
  • 7. A method of operating a laboratory sample distribution system according to claim 1, the method comprising the steps: transmitting data to the control unit via the touch panel, wherein the data is selected from the following group of data: a sample container carrier ID of a sample container carrier of the number of sample container carriers,a version number of a sample container carrier of the number of sample container carriers,information, if a sample container of a sample container carrier of the number of sample container carriers, is closed or open,information regarding a physical property of a sample container of a sample container carrier of the number of sample container carriers,information regarding an anatomical origin of a sample contained in a sample container of a sample container carrier of the number of sample container carriers,information if a sample container of a sample container carrier of the number of sample container carriers was removed from its corresponding sample container carrier or not,information regarding a charging level of a battery powering a sample container carrier of the number of sample container carriers, andinformation regarding an operating time of a sample container carrier of the number of sample container carriers.
  • 8. The method according to claim 7, wherein the data to be transmitted are transferred by means of load modulation.
  • 9. The method according to claim 7, comprising the steps: checking, if a determined position of a sample container carrier of the number of sample container carriers corresponds to a predetermined processing position on the transport plane, andif the determined position of a sample container carrier of the number of sample container carriers corresponds to the predetermined processing position on the transport plane, initiating a data transmission between the sample container carrier located at the processing position and the control unit.
  • 10. The method according to claim 9, further comprising contactlessly supplying electrical energy by means of the touch panel to a data transmitting device of the sample container carrier located at the processing position.
Priority Claims (1)
Number Date Country Kind
20181103 Jun 2020 EP regional
US Referenced Citations (188)
Number Name Date Kind
3273727 Rogers et al. Sep 1966 A
3653485 Donlon Apr 1972 A
3901656 Durkos et al. Aug 1975 A
4150666 Brush Apr 1979 A
4395164 Beltrop et al. Jul 1983 A
4544068 Cohen Oct 1985 A
4771237 Daley Sep 1988 A
5120506 Saito et al. Jun 1992 A
5295570 Grecksch et al. Mar 1994 A
5309049 Kawada et al. May 1994 A
5457368 Jacobsen et al. Oct 1995 A
5523131 Isaacs et al. Jun 1996 A
5530345 Murari et al. Jun 1996 A
5636548 Dunn et al. Jun 1997 A
5641054 Mori et al. Jun 1997 A
5651941 Stark et al. Jul 1997 A
5720377 Apeus et al. Feb 1998 A
5735387 Polaniec et al. Apr 1998 A
5788929 Nesti Aug 1998 A
6045319 Uchida et al. Apr 2000 A
6062398 Thalmayr May 2000 A
6141602 Garashi et al. Oct 2000 A
6151535 Ehlers Nov 2000 A
6184596 Ohzeki Feb 2001 B1
6191507 Peltier et al. Feb 2001 B1
6206176 Blonigan et al. Mar 2001 B1
6255614 Yamakawa et al. Jul 2001 B1
6260360 Wheeler Jul 2001 B1
6279728 Jung et al. Aug 2001 B1
6293750 Cohen et al. Sep 2001 B1
6429016 McNeil Aug 2002 B1
6444171 Sakazume et al. Sep 2002 B1
6571934 Thompson et al. Jun 2003 B1
7028831 Veiner Apr 2006 B2
7078082 Adams Jul 2006 B2
7122158 Itoh Oct 2006 B2
7278532 Martin Oct 2007 B2
7326565 Yokoi et al. Feb 2008 B2
7425305 Itoh Sep 2008 B2
7428957 Schaefer Sep 2008 B2
7578383 Itoh Aug 2009 B2
7597187 Bausenwein et al. Oct 2009 B2
7850914 Veiner et al. Dec 2010 B2
7858033 Itoh Dec 2010 B2
7875254 Garton et al. Jan 2011 B2
7939484 Loeffler et al. May 2011 B1
8240460 Bleau et al. Aug 2012 B1
8281888 Bergmann Oct 2012 B2
8502422 Lykkegaard Aug 2013 B2
8796186 Shirazi Aug 2014 B2
8833544 Stoeckle et al. Sep 2014 B2
8973736 Johns et al. Mar 2015 B2
9056720 Van De Loecht et al. Jun 2015 B2
9097691 Onizawa et al. Aug 2015 B2
9211543 Ohga et al. Dec 2015 B2
9239335 Heise et al. Jan 2016 B2
9423410 Buehr Aug 2016 B2
9423411 Riether Aug 2016 B2
9567167 Sinz Feb 2017 B2
9575086 Heise et al. Feb 2017 B2
9593970 Sinz Mar 2017 B2
9618525 Malinowski et al. Apr 2017 B2
9664703 Heise et al. May 2017 B2
9772342 Riether Sep 2017 B2
9791468 Riether et al. Oct 2017 B2
9810706 Riether et al. Nov 2017 B2
9902572 Mahmudimanesh et al. Feb 2018 B2
9939455 Schneider et al. Apr 2018 B2
9952242 Riether Apr 2018 B2
9969570 Heise et al. May 2018 B2
9989547 Pedain Jun 2018 B2
10006927 Sinz et al. Jun 2018 B2
10012666 Riether Jul 2018 B2
10031150 Heise et al. Jul 2018 B2
10094843 Malinowski et al. Oct 2018 B2
10119982 Baer Nov 2018 B2
10126317 Heise et al. Nov 2018 B2
10160609 Malinowski Dec 2018 B2
10175259 Riether Jan 2019 B2
10197586 Sinz et al. Feb 2019 B2
10239708 Sinz Mar 2019 B2
10261103 Pedain Apr 2019 B2
10288634 Kaeppeli May 2019 B2
10352953 Huber et al. Jul 2019 B2
10416183 Hassan Sep 2019 B2
10450151 Heise et al. Oct 2019 B2
10495657 Malinowski Dec 2019 B2
10509049 Sinz et al. Dec 2019 B2
20020009391 Marquiss et al. Jan 2002 A1
20030092185 Qureshi et al. May 2003 A1
20040050836 Nesbitt et al. Mar 2004 A1
20040084531 Itoh May 2004 A1
20050061622 Martin Mar 2005 A1
20050109580 Thompson May 2005 A1
20050194333 Veiner et al. Sep 2005 A1
20050196320 Veiner et al. Sep 2005 A1
20050226770 Allen et al. Oct 2005 A1
20050242963 Oldham et al. Nov 2005 A1
20050247790 Itoh Nov 2005 A1
20050260101 Nauck et al. Nov 2005 A1
20050271555 Itoh Dec 2005 A1
20060000296 Salter Jan 2006 A1
20060047303 Ortiz et al. Mar 2006 A1
20060219524 Kelly et al. Oct 2006 A1
20070116611 DeMarco May 2007 A1
20070210090 Sixt et al. Sep 2007 A1
20070248496 Bondioli et al. Oct 2007 A1
20070276558 Kim Nov 2007 A1
20080012511 Ono Jan 2008 A1
20080029368 Komori Feb 2008 A1
20080056328 Rund et al. Mar 2008 A1
20080131961 Crees et al. Jun 2008 A1
20090004732 LaBarre et al. Jan 2009 A1
20090022625 Lee et al. Jan 2009 A1
20090081771 Breidford et al. Mar 2009 A1
20090128139 Drenth et al. May 2009 A1
20090142844 Le Comte Jun 2009 A1
20090180931 Silbert et al. Jul 2009 A1
20090322486 Gerstel Dec 2009 A1
20100000250 Sixt Jan 2010 A1
20100152895 Dai Jun 2010 A1
20100175943 Bergmann Jul 2010 A1
20100186618 King et al. Jul 2010 A1
20100255529 Cocola et al. Oct 2010 A1
20100300831 Pedrazzini Dec 2010 A1
20100312379 Pedrazzini Dec 2010 A1
20110050213 Furukawa Mar 2011 A1
20110124038 Bishop et al. May 2011 A1
20110172128 Davies et al. Jul 2011 A1
20110186406 Kraus et al. Aug 2011 A1
20110287447 Norderhaug et al. Nov 2011 A1
20120037696 Lavi Feb 2012 A1
20120129673 Fukugaki et al. May 2012 A1
20120178170 Van Praet Jul 2012 A1
20120211645 Tullo et al. Aug 2012 A1
20120275885 Furrer et al. Nov 2012 A1
20120282683 Mototsu Nov 2012 A1
20120295358 Ariff et al. Nov 2012 A1
20120310401 Shah Dec 2012 A1
20130153677 Leen et al. Jun 2013 A1
20130180824 Kleinikkink et al. Jul 2013 A1
20130263622 Mullen et al. Oct 2013 A1
20130322992 Pedrazzini Dec 2013 A1
20140170023 Saito et al. Jun 2014 A1
20140184564 Yeh Jul 2014 A1
20140231217 Denninger Aug 2014 A1
20140234949 Nasson et al. Aug 2014 A1
20150014125 Hecht Jan 2015 A1
20150140668 Mellars et al. May 2015 A1
20150166265 Pollack et al. Jun 2015 A1
20150241457 Miller Aug 2015 A1
20150273468 Croquette et al. Oct 2015 A1
20150273691 Pollack Oct 2015 A1
20150276775 Mellars et al. Oct 2015 A1
20150276781 Riether et al. Oct 2015 A1
20160003859 Wenczel et al. Jan 2016 A1
20160025756 Pollack et al. Jan 2016 A1
20160054341 Edelmann Feb 2016 A1
20160087693 Shimomura Mar 2016 A1
20160229565 Margner Aug 2016 A1
20170108522 Baer Apr 2017 A1
20170131310 Volz et al. May 2017 A1
20170168079 Sinz Jun 2017 A1
20170248623 Kaeppeli et al. Aug 2017 A1
20170248624 Kaeppeli et al. Aug 2017 A1
20170363608 Sinz Dec 2017 A1
20180067141 Mahmudimanesh et al. Mar 2018 A1
20180106821 Vollenweider et al. Apr 2018 A1
20180107300 Lin Apr 2018 A1
20180128848 Schneider et al. May 2018 A1
20180188280 Malinowski Jul 2018 A1
20180210000 van Mierlo Jul 2018 A1
20180210001 Reza Jul 2018 A1
20180224476 Birrer et al. Aug 2018 A1
20180340951 Kaeppell Nov 2018 A1
20180340952 Kaeppeli et al. Nov 2018 A1
20180348244 Ren Dec 2018 A1
20180348245 Schneider et al. Dec 2018 A1
20190018027 Hoehnel Jan 2019 A1
20190076845 Huber et al. Mar 2019 A1
20190076846 Durco et al. Mar 2019 A1
20190086433 Hermann et al. Mar 2019 A1
20190094251 Malinowski Mar 2019 A1
20190094252 Waser et al. Mar 2019 A1
20190101468 Haldar Apr 2019 A1
20190285660 Kopp et al. Sep 2019 A1
20200200783 Durco Jun 2020 A1
20200400698 Tafner et al. Dec 2020 A1
Foreign Referenced Citations (94)
Number Date Country
201045617 Apr 2008 CN
102109530 Jun 2011 CN
3909786 Sep 1990 DE
102012000665 Aug 2012 DE
102011090044 Jul 2013 DE
0601213 Oct 1992 EP
0775650 May 1997 EP
0916406 May 1999 EP
1122194 Aug 2001 EP
1524525 Apr 2005 EP
2119643 Nov 2009 EP
2148117 Jan 2010 EP
2327646 Jun 2011 EP
2447701 May 2012 EP
2500871 Sep 2012 EP
2502675 Feb 2014 EP
2887071 Jun 2015 EP
3001288 Mar 2016 EP
2165515 Apr 1986 GB
S56-147209 Nov 1981 JP
60-223481 Nov 1985 JP
61-081323 Apr 1986 JP
S61-069604 Apr 1986 JP
S61-094925 May 1986 JP
S61-174031 Aug 1986 JP
S61-217434 Sep 1986 JP
S62-100161 May 1987 JP
S63-31918 Feb 1988 JP
S63-48169 Feb 1988 JP
S63-82433 May 1988 JP
S63-290101 Nov 1988 JP
1148966 Jun 1989 JP
H01-266860 Oct 1989 JP
H02-87903 Mar 1990 JP
03-112393 May 1991 JP
03-192013 Aug 1991 JP
H03-38704 Aug 1991 JP
H04-127063 Apr 1992 JP
H05-69350 Mar 1993 JP
H05-142232 Jun 1993 JP
H05-180847 Jul 1993 JP
06-26808 Feb 1994 JP
H06-148198 May 1994 JP
06-156730 Jun 1994 JP
06-211306 Aug 1994 JP
07-228345 Aug 1995 JP
07-236838 Sep 1995 JP
H07-301637 Nov 1995 JP
H09-17848 Jan 1997 JP
H11-083865 Mar 1999 JP
H11-264828 Sep 1999 JP
H11-304812 Nov 1999 JP
H11-326336 Nov 1999 JP
2000-105243 Apr 2000 JP
2000-105246 Apr 2000 JP
2001-124786 May 2001 JP
2001-240245 Sep 2001 JP
2005-001055 Jan 2005 JP
2005-249740 Sep 2005 JP
2006-106008 Apr 2006 JP
2007-309675 Nov 2007 JP
2007-314262 Dec 2007 JP
2007-322289 Dec 2007 JP
2009-033424 Feb 2009 JP
2009-036643 Feb 2009 JP
2009033424 Feb 2009 JP
2009-062188 Mar 2009 JP
2009-145188 Jul 2009 JP
2009-300402 Dec 2009 JP
2010-243310 Oct 2010 JP
2010-271204 Dec 2010 JP
2011-086103 Apr 2011 JP
2013-172009 Feb 2013 JP
2013-190400 Sep 2013 JP
685591 Sep 1979 SU
1996036437 Nov 1996 WO
2003042048 May 2003 WO
2007024540 Mar 2007 WO
2008133708 Nov 2008 WO
2009002358 Dec 2008 WO
2010042722 Apr 2010 WO
2012170636 Jul 2010 WO
2010087303 Aug 2010 WO
2010129715 Nov 2010 WO
2012158520 Nov 2012 WO
2012158541 Nov 2012 WO
2013064656 May 2013 WO
2013152089 Oct 2013 WO
2013169778 Nov 2013 WO
2013177087 Nov 2013 WO
2013177163 Nov 2013 WO
2014059134 Apr 2014 WO
2014071214 May 2014 WO
2015104263 Jul 2015 WO
Related Publications (1)
Number Date Country
20210396775 A1 Dec 2021 US