Laboratory sample distribution system and laboratory automation system

Information

  • Patent Grant
  • 10239708
  • Patent Number
    10,239,708
  • Date Filed
    Tuesday, February 28, 2017
    7 years ago
  • Date Issued
    Tuesday, March 26, 2019
    5 years ago
Abstract
A laboratory sample distribution system in which a sample container carrier can be centered at a specific position is presented. A laboratory automation system with such a laboratory sample distribution system is also presented.
Description
BACKGROUND

The present disclosure relates to a laboratory sample distribution system and to a laboratory automation system comprising such a laboratory sample distribution system.


Laboratory automation systems typically comprise a number of laboratory stations, for example pre-analytical, analytical and/or post-analytical stations, that are used in order to analyze or otherwise treat samples such as medical samples. For example, blood samples can be analyzed with such laboratory stations. Typically, such samples are contained in sample containers such as tubes made of transparent plastic material or glass material with an opening at the upper side.


In order to distribute such sample containers between the laboratory stations, a laboratory automation system typically comprises a laboratory sample distribution system that is adapted to automatically transport or distribute the sample containers between the laboratory stations. In a typical laboratory sample distribution system, in which a number of sample container carriers are adapted to each carry a sample container over a transport plane, a number of electro-magnetic actuators are positioned below the transport plane in order to drive the sample container carriers by magnetic forces. Such laboratory sample distribution systems provide an easily programmable and efficient means for automation of a laboratory automation system.


However, there is a need to further optimize a laboratory sample distribution system, especially regarding centering of sample container carriers over electro-magnetic actuators and/or in certain places.


SUMMARY

According to the present disclosure, a laboratory sample distribution system. The laboratory sample distribution system can comprise a number of sample container carriers. Each can be adapted to carry one or more sample containers and each can comprise at least one magnetically active device. The laboratory sample distribution system can also comprise a transport surface adapted to support the sample container carriers and a number of electro-magnetic actuators stationary arranged below the transport surface. The electro-magnetic actuators can be adapted to move the sample container carriers on top of the transport surface by applying a magnetic drive force to the sample container carriers. The laboratory sample distribution system can also comprise a control device. The control device can be configured to control the movement of the sample container carriers on top of the transport surface by driving the electro-magnetic actuators such that the sample container carriers move along corresponding transport paths. Each of the transport paths can end on top of a corresponding end-point electro-magnetic actuator. The control device can be configured to drive the end-point electro-magnetic actuator such that the end-point electro-magnetic actuator can apply a magnetic attractive centring force on the corresponding sample container carrier at the end of the corresponding transport path. The control device can be configured to drive all electro-magnetic actuators situated adjacent to the end-point electro-magnetic actuator such that the electro-magnetic actuators situated adjacent to the end-point electro-magnetic actuator can apply repulsive centring forces on the sample container carrier at the end of the corresponding transport path and such that at the position of the end-point electro-magnetic actuator, a sum of the magnetic repulsive centring forces in the transport plane can be zero. The magnetic attractive centring force and the magnetic repulsive centring forces can be larger than the magnetic drive force.


Accordingly, it is a feature of the embodiments of the present disclosure to provide further optimize a laboratory sample distribution system, especially regarding centering of sample container carriers over electro-magnetic actuators and/or in certain places. Other features of the embodiments of the present disclosure will be apparent in light of the description of the disclosure embodied herein.





BRIEF DESCRIPTION OF THE DRAWING

The following detailed description of specific embodiments of the present disclosure can be best understood when read in conjunction with the following drawing, where like structure is indicated with like reference numerals and in which:



FIG. 1 illustrates schematically a laboratory automation system 10 having a laboratory sample distribution system according to an embodiment of the present disclosure.





DETAILED DESCRIPTION

In the following detailed description of the embodiments, reference is made to the accompanying drawings that form a part hereof, and in which are shown by way of illustration, and not by way of limitation, specific embodiments in which the disclosure may be practiced. It is to be understood that other embodiments may be utilized and that logical, mechanical and electrical changes may be made without departing from the spirit and scope of the present disclosure.


A laboratory sample distribution system is presented. The laboratory sample distribution system can comprise a number of sample container carriers adapted to carry one or more sample containers. Each sample container carrier can comprise at least one magnetically active device. It can further comprise a transport surface adapted to support the sample container carriers and a number of electro-magnetic actuators stationary arranged below the transport plane. The electro-magnetic actuators can be adapted to move one of the number of sample container carriers on top of the transport surface by applying a magnetic drive force to the sample container carrier.


The laboratory sample distribution system can further comprise a control device. The control device can be configured to control the movement of the sample container carriers on top of the transport plane by driving the electro-magnetic actuators such that the sample container carriers move along corresponding transport paths. The transport paths can end on top of or over a corresponding end-point electro-magnetic actuator.


The control device can further be configured to energize or drive the end-point electro-magnetic actuator such that the end-point electro-magnetic actuator can apply or exert a magnetic attractive centering force on the respective sample container carrier at the corresponding end of the transport path.


With the laboratory sample distribution system, it can be possible to center the sample container carrier especially after it has moved along its transport path. This centering can, for example, be useful in order to load a sample container in the sample container carrier or in order to unload a sample container from the sample container carrier. Having the sample container carrier centered at a certain position can allow for a smoother and faster loading or unloading process. In addition, the continuing application of the centering force may prevent the sample container carrier from inadvertently changing its position that can harm such a process.


The magnetically active devices of the sample container carriers can typically be implemented as permanent magnets. However, electromagnets can also be used.


The transport surface can typically be a flat surface on which the sample container carriers can be carried and can move.


The electro-magnetic actuators can typically be implemented as solenoids. Each solenoid can have a ferromagnetic core. Typically, axes of the solenoids can be oriented vertically and can be oriented substantially parallel to each other. The ferromagnetic cores may be magnetically coupled to neighboring ferromagnetic cores.


The control device may be implemented as a microprocessor, a microcontroller, a standard computer, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or another programmable device. Especially, it may comprise a processor and a memory. The memory can comprise code that when executed by the processor can cause the processor to behave in a certain way.


The end-point electro-magnetic actuator can be chosen from the number of electro-magnetic actuators and can typically define the end-point of a respective transport path. In typical implementations, the end-point electro-magnetic actuator can be situated in the vicinity to a laboratory station or in the vicinity to sample container loader or unloader.


The control device can be configured to drive a number of electro-magnetic actuators situated adjacent to the end-point electro-magnetic actuator such that the electro-magnetic actuators situated adjacent to the end-point electro-magnetic actuator can apply repulsive centering forces on the sample container carrier at the end of the transport path. This can further assist centering of the sample container carrier at the end-point electro-magnetic actuator. The repulsive centering forces can be applied in addition to the attractive centering force at the same time. The repulsive centering forces can especially be used in order to apply forces in specific directions with defined strengths in order to correct for deviations.


The magnetic attractive centering force and the magnetic repulsive centering forces can be larger than the magnetic drive force. This can allow for a preferred holding of the sample container carrier at its position with a force that can prevent inadvertent movement of the sample container carrier.


The control device can be configured to energize or drive all electro-magnetic actuators situated adjacent to the end-point electro-magnetic actuator. This can allow for a specifically high centering force.


The control device can be configured to energize or drive all electro-magnetic actuators situated adjacent to the end-point electro-magnetic actuator such that at the position of the end-point electro-magnetic actuator a sum of the magnetic repulsive centering forces in transport plane direction can be zero. This can allow for a preferred centering of the sample container carrier without a resulting force at the position of the end-point electro-magnetic actuator, meaning that forces that would have to be applied in order to move the sample container carrier in any direction can be at a maximum. The just described situation can also mean that no resulting magnetic drive force can be caused by the magnetic repulsive centering forces. This can also prevent inadvertent movement of the sample container carrier due to the forces applied by the electro-magnetic actuators.


According to an implementation, the control device can be communicatively connected with a position detection device. The position detection device can be configured to detect a position of the sample container carrier and to deliver a position indicating signal to the control device. The control device can further be configured to adapt the magnetic repulsive centering forces, using the position indicating signal, such that the sample container carrier can be centered over the end-point electro-magnetic actuator.


With this implementation, the centering forces can be applied according to the actual position of the sample container carrier as detected by the position detection device. This can allow for a very exact positioning at a certain position where it can be intended to center the sample container carrier. The position detection device may, for example, be a camera with a system that can be adapted to analyze images.


According to an implementation, the control device can be configured to drive a selection of electro-magnetic actuators during movement of the sample container carrier such that the selection of electro-magnetic actuators can apply a magnetic repulsive stabilization force on the sample container carrier. This can allow for a stabilization of the sample container carrier transport path during movement. The repulsive stabilization forces can prevent the sample container carrier from leaving its intended path while moving.


According to an implementation, the control device can be configured to drive a number of electro-magnetic actuators situated adjacent to the end-point electro-magnetic actuator such that the number of electro-magnetic actuators situated adjacent to the end-point electro-magnetic actuator can exert a magnetic repulsive braking force on the sample container carrier while it is still moving. This can allow for slowing down the sample container carrier by the repulsive force. This can prevent the sample container carrier from moving over its intended end-point electro-magnetic actuator and can allow for a smooth and fast braking of the sample container carrier at the end of its path.


The invention can further relate to a laboratory automation system, comprising a number of a pre-analytical, analytical and/or post-analytical laboratory stations, and a laboratory sample distribution system as described above adapted to distribute the sample container carriers and/or sample containers between the stations. The laboratory stations may be arranged adjacent to the laboratory sample distribution system.


Pre-analytical stations may be adapted to perform any kind of pre-processing of the samples, the sample containers and/or the sample container carriers.


Analytical stations may be adapted to use the sample or part of the sample and a reagent to generate a measuring signal, the measuring signal indicating if and in which concentration, if any, an analyte exists.


Post-analytical stations may be adapted to perform any kind of post-processing of the samples, the sample containers and/or the sample container carriers.


The pre-analytical, analytical and/or post-analytical stations may comprise at least one of a decapping station, a recapping station, an aliquot station, a centrifugation station, an archiving station, a pipetting station, a sorting station, a tube type identification station, and a sample quality determining station.


Referring initially to FIG. 1, FIG. 1 shows a laboratory automation system 10 according to an embodiment. The laboratory automation system 10 can comprise a first analytical station 20, a second analytical station 25 and a laboratory sample distribution system 100. The analytical stations 20, 25 can each be adapted to perform certain analytical tasks with samples contained in sample containers. The laboratory sample distribution system 100 can be adapted to move sample containers to and from the analytical stations 20, 25.


The sample distribution system 100 can comprise a transport surface 110. Below the transport surface 110, a number of electro-magnetic actuators 120, 160, 161, 162, 163, 164 can be arranged. Each electro-magnetic actuator 120, 160, 161, 162, 163, 164 can have a ferromagnetic core 125. The electro-magnetic actuators 120, 160, 161, 162, 163, 164 can be adapted such that they can move a sample container carrier over the transport surface 110.


Below the transport surface 110, there can further be arranged a plurality of Hall-sensors 130 that can be used in order to determine respective positions of sample container carriers.


Typically, a plurality of sample container carriers can be positioned on the transport surface 110. In FIG. 1, an exemplary sample container carrier 140 is shown. The sample container carrier 140 can hold a sample container 145 and can further comprise a permanent magnet positioned inside the sample container carrier 140 so that it may not be visible in FIG. 1.


The sample distribution system 100 can further comprise a control device 150. The control device 150 can be adapted to control movement of the sample container carrier 140.


The sample container carrier 140 can already have moved along a transport path 142. The transport path 142 can extend over a plurality of electro-magnetic actuators 120, 160, 164. As long as the sample container carrier 140 moves along the transport path 142, the control device 150 can drive the electro-magnetic actuators 120, 160, 164 such that the sample container carrier 140 can be pulled from each position above an electro-magnetic actuator 120, 164 to the next.


In order to stabilize movement, electro-magnetic actuators 120 immediately adjacent to the transport path 142, especially those electro-magnetic actuators 120 that are arranged in lines parallel to the respective transport path in which only half the number of electro-magnetic actuators 120 are arranged compared with the line on which the transport path 142 extends, can be energized by the control device 150 such that they can exert a repulsive force on the sample container carrier 140.


The electro-magnetic actuator 160 at the end of the transport path 142 may be called end-point electro-magnetic actuator 160. After the sample container carrier 140 has reached the end-point electro-magnetic actuator 160, the end-point electro-magnetic actuator 160 can be driven by the control device 150 such that it can exert an attractive centering force on the sample container carrier 140. The centering force can be greater than a drive force exerted by electro-magnetic actuators 120 that is intended to drive the sample container carrier 140 along the transport path 142.


Before the sample container carrier 140 reaches the end-point electro-magnetic actuator 160, an adjacent electro-magnetic actuator 162 that is located in a possible extension of the transport path 142 can be driven by the control device 150 such that it can exert a repulsive force on the sample container carrier 140. This repulsive force can be a brake force that can be used in order to smoothly and quickly brake the sample container carrier 140 so that it can stop over the end-point electro-magnetic actuator 160. After the sample container carrier 140 has stopped over the end-point electro-magnetic actuator 160, three further adjacent electro-magnetic actuators 161, 163, 164 can also be driven by the control device 150 such that they can exert repulsive forces on the sample container carrier 140 that can sum to a vanishing force at the intended position.


The laboratory sample distribution system 100 can further comprise a position detection device 170 embodied as a camera that can be connected with the control device 150. The camera 170 can be adapted to exactly determine the position of the sample container carrier 140 on the transport surface 110. If the sample container carrier 140 is not exactly centered at the position where it should be centered, the camera 170 can detect such a deviation and report it to the control device 150. The control device 150 can then adapt the repulsive forces of the electro-magnetic actuators 161, 162, 163, 164 adjacent to the end-point electro-magnetic actuator 160 such that a correction force can be applied to the sample container carrier 140. The correction force can center the sample container carrier 140 exactly at the intended position.


It is noted that terms like “preferably,” “commonly,” and “typically” are not utilized herein to limit the scope of the claimed embodiments or to imply that certain features are critical, essential, or even important to the structure or function of the claimed embodiments. Rather, these terms are merely intended to highlight alternative or additional features that may or may not be utilized in a particular embodiment of the present disclosure.


For the purposes of describing and defining the present disclosure, it is noted that the term “substantially” is utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. The term “substantially” is also utilized herein to represent the degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.


Having described the present disclosure in detail and by reference to specific embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the disclosure defined in the appended claims. More specifically, although some aspects of the present disclosure are identified herein as preferred or particularly advantageous, it is contemplated that the present disclosure is not necessarily limited to these preferred aspects of the disclosure.

Claims
  • 1. A laboratory sample distribution system, the laboratory sample distribution system comprising: a number of sample container carriers, each being adapted to carry one or more sample containers and each comprising at least one magnetically active device;a transport surface adapted to support the sample container carriers;a number of electro-magnetic actuators stationary arranged below the transport surface, the electro-magnetic actuators adapted to move the sample container carriers on top of the transport surface by applying a magnetic drive force to the sample container carriers; anda control device, wherein the control device is configured to control the movement of the sample container carriers on top of the transport surface by driving the electro-magnetic actuators such that the sample container carriers move along corresponding transport paths, wherein each of the transport paths ends on top of a corresponding end-point electro-magnetic actuator, wherein the control device is configured to drive the end-point electro-magnetic actuator such that the end-point electro-magnetic actuator applies a magnetic attractive centring force on the corresponding sample container carrier at the end of the corresponding transport path, wherein the control device is configured to drive all electro-magnetic actuators situated adjacent to the end-point electro-magnetic actuator such that the electro-magnetic actuators situated adjacent to the end-point electro-magnetic actuator apply repulsive centring forces on the sample container carrier at the end of the corresponding transport path and such that at the position of the end-point electro-magnetic actuator, a sum of the magnetic repulsive centring forces in the transport plane is zero, and wherein the magnetic attractive centring force and the magnetic repulsive centring forces are larger than the magnetic drive force.
  • 2. The laboratory sample distribution system according to claim 1, wherein the control device is communicatively connected to a position detection device and wherein the position detection device is configured to detect a position of the sample container carrier and to provide a position indicating signal to the control device.
  • 3. The laboratory sample distribution system according to claim 2, wherein the control device is configured to adapt the magnetic repulsive centring forces using the position indicating signal such that the sample container carrier is centred over the end-point electro-magnetic actuator.
  • 4. The laboratory sample distribution system according to claim 1, wherein the control device is configured to drive a selection of electro-magnetic actuators during movement of the sample container carrier such that the selection of electro-magnetic actuators applies a magnetic repulsive stabilization force on the sample container carrier.
  • 5. The laboratory sample distribution system according to claim 1, wherein the control device is configured to drive the number of electro-magnetic actuators situated adjacent to the end-point electro-magnetic actuator such that the number of electro-magnetic actuators situated adjacent to the end-point electro-magnetic actuator exert a magnetic repulsive braking force on the sample container carrier while it is still moving.
  • 6. A laboratory automation system, the laboratory automation system comprising: a number of laboratory stations; anda laboratory sample distribution system according to claim 1 adapted to distribute sample containers between the laboratory stations.
  • 7. The laboratory automation system according to claim 6, wherein the number of laboratory stations are pre-analytical, analytical and/or post-analytical stations.
Priority Claims (1)
Number Date Country Kind
14184039 Sep 2014 EP regional
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of PCT/EP2015/070459, filed Sep. 8, 2015, which is based on and claims priority to EP 14184039.7, filed Sep. 9, 2014, which is hereby incorporated by reference.

US Referenced Citations (167)
Number Name Date Kind
3273727 Rogers et al. Sep 1966 A
3653485 Donlon Apr 1972 A
3901656 Durkos et al. Aug 1975 A
4150666 Brush Apr 1979 A
4395164 Beltrop et al. Jul 1983 A
4544068 Cohen Oct 1985 A
4771237 Daley Sep 1988 A
5120506 Saito et al. Jun 1992 A
5295570 Grecksch et al. Mar 1994 A
5309049 Kawada et al. May 1994 A
5523131 Isaacs et al. Jun 1996 A
5530345 Murari et al. Jun 1996 A
5636548 Dunn et al. Jun 1997 A
5641054 Mod et al. Jun 1997 A
5651941 Stark et al. Jul 1997 A
5720377 Lapeus et al. Feb 1998 A
5735387 Polaniec et al. Apr 1998 A
5788929 Nesti Aug 1998 A
6045319 Uchida et al. Apr 2000 A
6062398 Thalmayr May 2000 A
6141602 Igarashi et al. Oct 2000 A
6151535 Ehlers Nov 2000 A
6184596 Ohzeki Feb 2001 B1
6191507 Peltier et al. Feb 2001 B1
6206176 Blonigan et al. Mar 2001 B1
6255614 Yamakawa et al. Jul 2001 B1
6260360 Wheeler Jul 2001 B1
6279728 Jung et al. Aug 2001 B1
6293750 Cohen et al. Sep 2001 B1
6429016 McNeil Aug 2002 B1
6444171 Sakazume et al. Sep 2002 B1
6571934 Thompson et al. Jun 2003 B1
7028831 Veiner Apr 2006 B2
7078082 Adams Jul 2006 B2
7122158 Itoh Oct 2006 B2
7278532 Martin Oct 2007 B2
7326565 Yokoi et al. Feb 2008 B2
7425305 Itoh Sep 2008 B2
7428957 Schaefer Sep 2008 B2
7578383 Itoh Aug 2009 B2
7597187 Bausenwein et al. Oct 2009 B2
7850914 Veiner et al. Dec 2010 B2
7858033 Itoh Dec 2010 B2
7875254 Garton et al. Jan 2011 B2
7939484 Loeffler et al. May 2011 B1
8240460 Bleau et al. Aug 2012 B1
8281888 Bergmann Oct 2012 B2
8502422 Lykkegaard Aug 2013 B2
8796186 Shirazi Aug 2014 B2
8833544 Stoeckle et al. Sep 2014 B2
8973736 Johns et al. Mar 2015 B2
9097691 Onizawa et al. Aug 2015 B2
9187268 Denninger et al. Nov 2015 B2
9211543 Ohga et al. Dec 2015 B2
9239335 Heise et al. Jan 2016 B2
9423410 Buehr Aug 2016 B2
9423411 Riether Aug 2016 B2
9567167 Sinz Feb 2017 B2
9575086 Heise et al. Feb 2017 B2
9593970 Sinz Mar 2017 B2
9598243 Denninger et al. Mar 2017 B2
9618525 Malinowski et al. Apr 2017 B2
9658241 Riether et al. May 2017 B2
9664703 Heise et al. May 2017 B2
20020009391 Marquiss et al. Jan 2002 A1
20020028158 Wardlaw Mar 2002 A1
20040050836 Nesbitt et al. Mar 2004 A1
20040084531 Itoh May 2004 A1
20050061622 Martin Mar 2005 A1
20050109580 Thompson May 2005 A1
20050194333 Veiner et al. Sep 2005 A1
20050196320 Veiner et al. Sep 2005 A1
20050226770 Allen et al. Oct 2005 A1
20050242963 Oldham Nov 2005 A1
20050247790 Itoh Nov 2005 A1
20050260101 Nauck et al. Nov 2005 A1
20050271555 Itoh Dec 2005 A1
20060000296 Salter Jan 2006 A1
20060047303 Ortiz et al. Mar 2006 A1
20060219524 Kelly et al. Oct 2006 A1
20070116611 DeMarco May 2007 A1
20070210090 Sixt et al. Sep 2007 A1
20070248496 Bondioli et al. Oct 2007 A1
20070276558 Kim Nov 2007 A1
20080012511 Ono Jan 2008 A1
20080029368 Komori Feb 2008 A1
20080056328 Rund et al. Mar 2008 A1
20080131961 Crees et al. Jun 2008 A1
20090004732 LaBarre et al. Jan 2009 A1
20090022625 Lee et al. Jan 2009 A1
20090081771 Breidford et al. Mar 2009 A1
20090128139 Drenth et al. May 2009 A1
20090142844 Le Comte Jun 2009 A1
20090180931 Silbert et al. Jul 2009 A1
20090322486 Gerstel Dec 2009 A1
20100000250 Sixt Jan 2010 A1
20100152895 Dai Jun 2010 A1
20100175943 Bergmann Jul 2010 A1
20100186618 King et al. Jul 2010 A1
20100255529 Cocola et al. Oct 2010 A1
20100300831 Pedrazzini Dec 2010 A1
20100312379 Pedrazzini Dec 2010 A1
20110050213 Furukawa Mar 2011 A1
20110124038 Bishop et al. May 2011 A1
20110172128 Davies et al. Jul 2011 A1
20110186406 Kraus et al. Aug 2011 A1
20110287447 Norderhaug et al. Nov 2011 A1
20120037696 Lavi Feb 2012 A1
20120129673 Fukugaki et al. May 2012 A1
20120178170 Van Praet Jul 2012 A1
20120211645 Tullo et al. Aug 2012 A1
20120275885 Furrer et al. Nov 2012 A1
20120282683 Mototsu Nov 2012 A1
20120295358 Ariff et al. Nov 2012 A1
20120310401 Shah Dec 2012 A1
20130034410 Heise Feb 2013 A1
20130153677 Leen et al. Jun 2013 A1
20130180824 Kleinikkink et al. Jul 2013 A1
20130263622 Mullen et al. Oct 2013 A1
20130322992 Pedrazzini Dec 2013 A1
20140170023 Saito et al. Jun 2014 A1
20140234949 Wasson et al. Aug 2014 A1
20150014125 Hecht Jan 2015 A1
20150166265 Pollack et al. Jun 2015 A1
20150241457 Miller Aug 2015 A1
20150273468 Croquette et al. Oct 2015 A1
20150273691 Pollack Oct 2015 A1
20150276775 Mellars et al. Oct 2015 A1
20150276776 Riether Oct 2015 A1
20150276777 Riether et al. Oct 2015 A1
20150276778 Riether et al. Oct 2015 A1
20150276782 Riether Oct 2015 A1
20160003859 Wenczel et al. Jan 2016 A1
20160025756 Pollack et al. Jan 2016 A1
20160054341 Edelmann Feb 2016 A1
20160077120 Riether Mar 2016 A1
20160229565 Margner Aug 2016 A1
20160274137 Baer Sep 2016 A1
20160282378 Malinowski et al. Sep 2016 A1
20160341750 Sinz et al. Nov 2016 A1
20160341751 Huber et al. Nov 2016 A1
20170059599 Riether Mar 2017 A1
20170096307 Mahmudimanesh et al. Apr 2017 A1
20170097372 Heise et al. Apr 2017 A1
20170101277 Malinowski Apr 2017 A1
20170108522 Baer Apr 2017 A1
20170131307 Pedain May 2017 A1
20170131309 Pedain May 2017 A1
20170131310 Volz et al. May 2017 A1
20170138971 Heise et al. May 2017 A1
20170160299 Schneider et al. Jun 2017 A1
20170168079 Sinz Jun 2017 A1
20170174448 Sinz Jun 2017 A1
20170184622 Sinz et al. Jun 2017 A1
20170248623 Kaeppeli et al. Aug 2017 A1
20170248624 Kaeppeli et al. Aug 2017 A1
20170363608 Sinz Dec 2017 A1
20180067141 Mahmudimanesh et al. Mar 2018 A1
20180074087 Heise et al. Mar 2018 A1
20180106821 Vollenweider et al. Apr 2018 A1
20180156835 Hassan Jun 2018 A1
20180188280 Malinowski Jul 2018 A1
20180210000 van Mierlo Jul 2018 A1
20180210001 Reza Jul 2018 A1
20180217174 Malinowski Aug 2018 A1
20180217176 Sinz et al. Aug 2018 A1
20180224476 Birrer et al. Aug 2018 A1
Foreign Referenced Citations (88)
Number Date Country
201045617 Apr 2008 CN
102109530 Jun 2011 CN
3909786 Sep 1990 DE
102012000665 Aug 2012 DE
102011090044 Jul 2013 DE
0601213 Oct 1992 EP
0775650 May 1997 EP
0916406 May 1999 EP
1122194 Aug 2001 EP
1524525 Apr 2005 EP
2119643 Nov 2009 EP
2148117 Jan 2010 EP
2327646 Jun 2011 EP
2447701 May 2012 EP
2500871 Sep 2012 EP
2589966 May 2013 EP
2589968 May 2013 EP
2502675 Feb 2014 EP
2887071 Jun 2015 EP
2165515 Apr 1986 GB
S56-147209 Nov 1981 JP
60-223481 Nov 1985 JP
61-081323 Apr 1986 JP
S61-069604 Apr 1986 JP
S61-094925 May 1986 JP
S61-174031 Aug 1986 JP
S61-217434 Sep 1986 JP
S62-100161 May 1987 JP
S63-31918 Feb 1988 JP
S63-48169 Feb 1988 JP
S63-82433 May 1988 JP
S63-290101 Nov 1988 JP
1148966 Jun 1989 JP
H01-266860 Oct 1989 JP
H02-87903 Mar 1990 JP
03-112393 May 1991 JP
03192013 Aug 1991 JP
H03-38704 Aug 1991 JP
H04-127063 Apr 1992 JP
H05-69350 Mar 1993 JP
H05-142232 Jun 1993 JP
H05-180847 Jul 1993 JP
06-26808 Feb 1994 JP
H06-148198 May 1994 JP
06-156730 Jun 1994 JP
06-211306 Aug 1994 JP
07-228345 Aug 1995 JP
07-236838 Sep 1995 JP
H07-301637 Nov 1995 JP
H09-17848 Jan 1997 JP
H11-083865 Mar 1999 JP
H11-264828 Sep 1999 JP
H11-304812 Nov 1999 JP
H11-326336 Nov 1999 JP
2000-105243 Apr 2000 JP
2000-105246 Apr 2000 JP
2001-124786 May 2001 JP
2001-240245 Sep 2001 JP
2005-001055 Jan 2005 JP
2005-249740 Sep 2005 JP
2006-106008 Apr 2006 JP
2007-309675 Nov 2007 JP
2007-314262 Dec 2007 JP
2007-322289 Dec 2007 JP
2009-036643 Feb 2009 JP
2009-062188 Mar 2009 JP
2009-145188 Jul 2009 JP
2009-300402 Dec 2009 JP
2010-243310 Oct 2010 JP
2013-172009 Feb 2013 JP
2013-190400 Sep 2013 JP
685591 Sep 1979 SU
1996036437 Nov 1996 WO
2003042048 May 2003 WO
2007024540 Mar 2007 WO
2008133708 Nov 2008 WO
2009002358 Dec 2008 WO
2010042722 Apr 2010 WO
2012170636 Jul 2010 WO
2010087303 Aug 2010 WO
2010129715 Nov 2010 WO
2012158520 Nov 2012 WO
2012158541 Nov 2012 WO
2013152089 Oct 2013 WO
2013169778 Nov 2013 WO
2013177163 Nov 2013 WO
2014059134 Apr 2014 WO
2014071214 May 2014 WO
Non-Patent Literature Citations (1)
Entry
International Search Report dated Nov. 6, 2015, in Application No. PCT/EP2015/070459, 3 pages.
Related Publications (1)
Number Date Country
20170174448 A1 Jun 2017 US
Continuations (1)
Number Date Country
Parent PCT/EP2015/070459 Sep 2015 US
Child 15444625 US