Laboratory system, laboratory sample distribution system and laboratory automation system

Information

  • Patent Grant
  • 11709171
  • Patent Number
    11,709,171
  • Date Filed
    Monday, March 4, 2019
    5 years ago
  • Date Issued
    Tuesday, July 25, 2023
    10 months ago
Abstract
A laboratory system for a laboratory automation system is presented. The laboratory system comprises a sample container carrier. The sample container carrier is configured to carry a laboratory sample container and comprises a removal detector. The removal detector is configured to interact with the laboratory sample container to detect a removal of the carried laboratory sample container from the sample container carrier. Furthermore, the laboratory system is configured to determine based on the detected removal that a before valid logic assignment of the sample container carrier to the carried laboratory sample container is invalid.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to EP 18162202.8, filed Mar. 16, 2018, which is hereby incorporated by reference.


BACKGROUND

The present disclosure generally relates to a laboratory system, a laboratory sample distribution system comprising such a laboratory system and a laboratory automation system comprising such a laboratory system and/or such a laboratory sample distribution system.


Known laboratory automation systems typically comprise a number of analytical stations and a laboratory sample distribution in order to move samples contained by laboratory sample containers carried by sample container carriers to the number of analytical stations. Such a laboratory automation system comprises a memory device adapt to store matching pairs of a unique identification (ID) corresponding to a sample container carrier and a laboratory sample container ID being carried by the sample container carrier, making it possible to control and track laboratory sample containers over a processing path.


However, there is a need for a laboratory system that ensures the integrity of a logic assignment of an analytical result to a sample.


SUMMARY

According to the present disclosure, a laboratory system for a laboratory automation system is presented. The laboratory system can comprise a sample container carrier. The sample container carrier can be configured to carry a laboratory sample container. The laboratory system can also comprise a removal detector. The removal detector can be configured to interact with the laboratory sample container to detect a removal of the carried laboratory sample container from the sample container carrier. The laboratory system can be configured to determine based on the detected removal that a before valid logic assignment of the sample container carrier to the carried laboratory sample container is invalid.


Accordingly, it is a feature of the embodiments of the present disclosure to provide for a laboratory system that ensures the integrity of a logic assignment of an analytical result to a sample. Other features of the embodiments of the present disclosure will be apparent in light of the description of the disclosure embodied herein.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The following detailed description of specific embodiments of the present disclosure can be best understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:



FIG. 1 illustrates a perspective view of a sample container carrier of a laboratory system according to an embodiment of the present disclosure.



FIG. 2 illustrates a schematic diagram of the sample container carrier of FIG. 1 comprising a memory element in form of a capacitor according to an embodiment of the present disclosure.



FIG. 3 illustrates another schematic diagram of the sample container carrier of FIG. 1 comprising a memory element in form of a capacitor according to an embodiment of the present disclosure.



FIG. 4 illustrates shows another schematic diagram of the sample container carrier of FIG. 1 comprising a memory element in form of a flip-flop according to an embodiment of the present disclosure.



FIG. 5 illustrates another schematic diagram of the sample container carrier of FIG. 1 comprising a memory element in form of a microcontroller according to an embodiment of the present disclosure.



FIG. 6 illustrates another schematic diagram of the sample container carrier of FIG. 1 comprising a memory element in form of a flip-flop according to an embodiment of the present disclosure.



FIG. 7 illustrates another schematic diagram of the sample container carrier of FIG. 1 comprising a memory element in form of a microcontroller according to an embodiment of the present disclosure.



FIG. 8 illustrates a side view of a loading and assignment station, a barcode reader and assignment station and a transmitter station of the laboratory system according to an embodiment of the present disclosure.



FIG. 9 illustrates a removal of a laboratory sample container from the sample container carrier of FIG. 1 according to an embodiment of the present disclosure.



FIG. 10 illustrates a side view of a receiver station of the laboratory system and an analytical station of the laboratory automation according to an embodiment of the present disclosure.



FIG. 11 illustrates a perspective view of the laboratory sample distribution system according to an embodiment of the present disclosure.



FIG. 12 illustrates a side view of the sample container carrier of FIG. 1 according to an embodiment of the present disclosure.





DETAILED DESCRIPTION

In the following detailed description of the embodiments, reference is made to the accompanying drawings that form a part hereof, and in which are shown by way of illustration, and not by way of limitation, specific embodiments in which the disclosure may be practiced. It is to be understood that other embodiments may be utilized and that logical, mechanical and electrical changes may be made without departing from the spirit and scope of the present disclosure.


A laboratory system for a laboratory automation system is presented. The laboratory system can comprise a sample container carrier. The sample container carrier can be configured to carry a laboratory sample container and can comprise a removal detector. The removal detector can be configured to interact with the laboratory sample container to detect and in some embodiments, to automatically detect, a removal or an unloading, respectively, of the carried laboratory sample container from the sample container carrier. Furthermore, the laboratory system can be configured to determine and in some embodiments, to automatically determine, based on or in dependence of, respectively, the detected removal that a before valid logic assignment of the sample container carrier to the carried laboratory sample container is invalid.


In one embodiment, when a first laboratory sample carrier carried by the sample container carrier container is unintentionally interchanged such as, for example, by failure or manipulation, with another second laboratory sample container, the logic assignment may be invalid. Thereby, a logic assignment of an analytical result of the second sample contained by the second carried laboratory sample container to a sample contained by the first laboratory sample container indirectly by use of the logic assignment of the sample container carrier to the first carried laboratory sample container may be wrong. So far it was possible, that this wrong logic assignment may have remained undetected.


The removal detector of the sample container carrier can enable the detection of a possible laboratory sample container interchange by detecting the removal. Since the laboratory sample container may be interchanged, it can be determined based on the detected removal whether the before valid logic assignment of the sample container carrier to the carried laboratory sample container is invalid. Thereby, a risk of a wrong logic assignment of an analytical result to a sample can be reduced or even eliminated. In other words, the laboratory system can ensure the integrity of a logic assignment of an analytical result to a sample and thereby to a corresponding patient.


In detail, the laboratory sample container may be a sample tube and/or may have an opening at an upper, top and/or face end. Furthermore, the laboratory sample container may be made of glass or transparent plastic or any other, in particular, somewhat, solid material. Moreover, the laboratory sample container or its opening, respectively, may be closed by a closure or a cap. The closure may comprise rubber and/or plastic or may completely consist of rubber and/or plastic. Further, the closure may be embodied as a foil such as, for example, a flexible foil, or film or tape or as a lid such as, for example, a rigid lid.


Furthermore, the laboratory sample container may be configured to contain a sample. The sample may be a blood sample, a serum sample, a plasma sample, a urine sample, a CFS sample, a body sample, a water sample, a chemical sample, and the like. For example, the sample may be a liquid. The laboratory sample container or its opening, respectively, may be open for processing such as, for example, analyzing, the sample, if present, contained by the laboratory sample container.


Moreover, the laboratory sample container may comprise an ID and in one embodiment, the ID may be unique. The ID may be representative of the sample, if present, contained by the laboratory sample container. In one embodiment, the ID may comprise or be a barcode. The ID of the laboratory sample container may be denoted as a container ID.


However, it may be too complicated, too time-consuming, or even impossible to directly use the laboratory sample container, in particular, its container ID, if present, for identification of the sample in the laboratory automation system all the time and/or in each situation such as, for example, in a workflow of the laboratory automation system.


Instead of container identification, the sample container carrier such as, for example, an ID of the sample container carrier, may be directly used for identification of the sample, if present, contained by the carried laboratory sample container in the laboratory automation system.


In one embodiment, the sample container carrier may be configured to comprise an ID, such as, for example, a unique ID. The ID may be representative of the sample container carrier and/or the carried laboratory sample container and/or the sample, if present, contained by the carried laboratory sample container. The ID of the sample container carrier may be denoted as a carrier ID.


The logic assignment may be an assignment of the carrier ID to the container ID. Further, the assignment may be denoted as link or association. Valid may be denoted as correct. Invalid may be denoted as incorrect.


Furthermore, the sample container carrier may not have to comprise any identification of the carried laboratory sample container and/or the sample, if present, contained by the laboratory sample container. In one embodiment, the sample container carrier may not have to comprise a reader for reading the container ID.


Moreover, the sample container carrier may be adapted or embodied to carry only one, or a single, laboratory sample container. The sample container carrier may be denoted as single sample container carrier. Further, the sample container carrier may be configured to move the carried laboratory sample container in a laboratory sample distribution system and/or in the laboratory automation system. In one embodiment, the carried laboratory sample container may be open.


In one embodiment, the sample container carrier may be configured to determine based on the detected removal that the before valid logic assignment of the sample container carrier to the carried laboratory sample container is invalid.


The removal detector may be configured to interact with the laboratory sample container contactless or by contact such as, for example, by contacting the laboratory sample container on the outside such as, for example on the circumference, of the laboratory sample container. In one embodiment, the removal detector may be configured to detect a presence of the laboratory sample container. The removal detector may be denoted as presence detector. Furthermore, the removal detector may be arranged in a bottom, or a laboratory sample container adapter, of the sample container carrier.


According to one embodiment, the removal detector can comprise a switch such as, for example, a microswitch, an optical sensor, a capacitive sensor, a pressure sensor, a temperature sensor, and/or a shape memory alloy configured to interact with the laboratory sample container to detect such as, for example, automatically detect, a removal of the carried laboratory sample container from the sample container carrier. In one embodiment, the switch may be a mechanical switch, which may be depressed by the laboratory sample container, if present, and not depressed, if the laboratory sample container is absent such as, for example, by a spring.


According to one embodiment, the sample container carrier can comprise a memory element. The memory element can be configured to store such as, for example, automatically store, information based on the detected removal, information based on whether the logic assignment is valid, and/or information based on whether the logic assignment is invalid. This may enable or allow that information does not have to be transmitted on or at detection or at determination, but, instead, may be transmitted at a later time. In one embodiment, the memory element may be a re-writable and/or non-volatile memory element. The memory element may be an electric memory element. In one embodiment, the memory element may comprise a capacitor, a flip-flop, or a latch, respectively, a microcontroller and/or a semiconductor memory. The memory element may have two such as, for example, stable, states and may be used to store state information. In one embodiment, a first state may be that the logic assignment is valid and in a different state, second state may be that the logic assignment is invalid. Information based on the detected removal may be a time of, or a time period since, the detected removal. The time or the time period may be compared with a time or a time period since the last such as, for example, intentional, removal of a laboratory sample container from the sample container carrier or since an intentional loading of the laboratory sample container on the sample container carrier such as, for example, by the laboratory system or a control device of the laboratory system, respectively. Based on the comparison, the laboratory system, or its control device, if present, may determine, that the before valid logic assignment of the sample container carrier to the carried laboratory sample container is invalid. The control device may comprise or be an integrated circuit, a tablet computer, a smartphone, a computer, or the like. Information based on that the logic assignment is valid may be information about the laboratory sample container such as, for example, the container ID, if present, and/or the sample, if present, contained by the laboratory sample container. Based on the detected removal, the valid information may be deleted or changed such that the invalid information may be generated.


According to an embodiment, the sample container carrier can comprise a receiver. The receiver can be configured to receive such as, for example, to automatically and/or wireless receive, information based on that the logic assignment is valid such as, for example, from outside the sample container carrier, and to store the information on the memory element. In one embodiment, this may be denoted to arm the sample container carrier or its memory element, respectively. The receiver may be different from the removal detector. Additionally, or alternatively, the receiver may be an electric receiver and/or a wireless receiver such as, for example, a radio receiver such as, for example, comprising an antenna.


According to an embodiment, the sample container carrier can comprise a transmitter. The transmitter can be configured to transmit such as, for example, to automatically and/or wireless transmit, information based on the detected removal, information based on whether the logic assignment is valid, and/or information, whether the logic assignment is invalid such as, for example, to outside the sample container carrier. In one embodiment, the transmitter may be different from the removal detector. Additionally, or alternatively, the transmitter may be an electric transmitter and/or a wireless transmitter such as, for example, a radio transmitter such as, for example, comprising an antenna. Information may be such as described above in the context of the memory element. In one embodiment, if the valid information is deleted, the transmitter may be configured not to transmit.


According to an embodiment, the sample container carrier can comprise a transponder. The transponder can comprise the transmitter and a receiver. Furthermore, the transponder can be configured to receive such as, for example, to automatically and/or wireless receive, an interrogation such as, for example, an interrogation signal or an interrogation wave, respectively, for the information such as, for example, by its receiver, and to transmit such as, for example, to automatically transmit, the information in response to the received interrogation such as, for example, by its transmitter. This may enable that only the interrogated sample container carrier transmits. In one embodiment, the transponder may be different from the removal detector. Additionally, or alternatively, the transponder may be an electric transponder and/or a wireless transponder such as, for example, a radio transponder. The transmitter and the receiver may be combined such as, for example, they may be denoted as transceiver. The receiver may be embodied as described above. In one embodiment, the transponder may be embodied as a radio-frequency identification (RFID) label or tag.


According to an embodiment, the transponder can be a near-field communication (NFC) transponder. This can enable that only the sample container carrier may be interrogated. In one embodiment, a communication range may be in the range from about 1 centimeter (cm) to about 10 cm, in another embodiment, from about 2 cm to about 8 cm, in yet another embodiment, from about 3 cm to about 6 cm, and in still yet another embodiment, about 4 cm.


According to an embodiment, the receiver can be configured to collect such as, for example to automatically collect, energy such as, for example, electrical energy and/or of the interrogation, and to supply such as, for example, to automatically supply, the sample container carrier such as, for example, its removal detector and/or its memory element, if present, with the collected energy. In one embodiment, the sample container carrier may be denoted as passive sample container carrier and/or power harvesting sample container carrier. In other words, the sample container carrier may be configured to be only supplied by the collected energy. Further, in other words, the sample container carrier may not have to comprise its own power source such as, for example, an accumulator and/or a battery.


According to an embodiment, the laboratory system can comprise a receiver station. The receiver station can be configured to receive such as, for example, to automatically and/or wireless receive, information based on the detected removal, information that the logic assignment is valid, and/or information that the logic assignment is invalid, from the sample container carrier. In one embodiment, the receiver station may be different from the sample container carrier. Additionally, or alternatively, the receiver station may be an electric receiver station and/or a wireless receiver station such as, for example a radio receiver station such as, for example, comprising an antenna such as, for example, a RDIF receiver station and/or a NFC receiver station. In one embodiment, the receiver station may be configured to transmit such as, for example, to automatically and/or wireless transmit, the interrogation. The receiver station may be denoted as reader station. Information may be such as described above in the context of the memory element. In one embodiment, if the valid information is deleted, the receiver station may not receive or not be able to read-out information. This can enable or allow the receiver station to recognize that the logic assignment is invalid.


According to an embodiment, the laboratory system can comprise a transmitter station. The transmitter station can be configured to transmit such as, for example, to automatically and/or wireless transmit, information that the logic assignment is valid, to the sample container carrier. In one embodiment, this may be denoted to arm the sample container carrier or its memory element, if present, respectively. Additionally, or alternatively, the transmitter station may be different from the sample container carrier. Furthermore, the transmitter station may be an electric transmitter station and/or a wireless transmitter station such as, for example a radio transmitter station such as, for example, comprising an antenna such as, for example, a RDIF transmitter station and/or a NFC transmitter station. The transmitter station may be denoted as writer station. Information may be such as described above in the context of the memory element.


According to an embodiment, the laboratory system can comprise a barcode reader and assignment station. The barcode reader and assignment station can be configured to read such as, for example, to automatically read, a barcode of the laboratory sample container and to logically assign such as, for example, to automatically assign, the read barcode to the sample container. In one embodiment, the barcode reader and assignment station may be configured to transmit the read barcode to the sample container carrier. Additionally, or alternatively, the barcode reader and assignment station may be different from the sample container carrier. Furthermore, the barcode reader and assignment station may be an electric barcode reader and assignment station such as, for example, the barcode reader and assignment station may comprise a camera.


According to an embodiment, the laboratory system can comprise a loading and assignment station. The loading and assignment station can be configured to load such as, for example, automatically load, the laboratory sample container on the sample container carrier and to determine such as, for example, to automatically determine that the logic assignment of the sample container carrier to the loaded laboratory sample container is valid. In one embodiment, the loading and assignment station may be configured to transmit information that the logic assignment of the sample container carrier to the loaded laboratory sample container is valid to the sample container carrier. Additionally, or alternatively, the loading and assignment station may be different from the sample container carrier. Furthermore, the loading and assignment station may be an electric loading and assignment station. Moreover, the loading and assignment station may be denoted as inserting and assignment station.


A laboratory sample distribution system for a laboratory automation system is also presented. The laboratory sample distribution system can comprise a laboratory system as described above, a transport plane, a number of drive elements (e.g. 1 to 10000) and a control device. The transport plane can be configured to support the sample container carrier such as, for example, with the carried laboratory sample container. The number of drive elements can be configured to move such as, for example, to automatically move, the sample container carrier such as, for example, with the carried laboratory sample container, on the transport plane. The control device can be configured to control such as, for example, to automatically control, the number of drive elements such that the sample container carrier can move on the transport plane along a corresponding such as, for example, individual, transport path.


By use of the laboratory system according, the advantages of the laboratory system, as discussed above, may be made applicable for the laboratory sample distribution system.


In one embodiment, the transport plane may be denoted as transport surface. To support the sample container carrier may be denoted to carry the sample container carrier. The sample container carrier may be translationally moved on or over the transport plane. Furthermore, the sample container carrier may be configured to move in two dimensions on the transport plane. Moreover, the sample container carrier may slide over the transport plane. In one embodiment, the laboratory sample distribution system may comprise a plurality of sample container carriers (e.g. 1 to 1000) such as, for example, as described above. The number of drive elements may be a number of electric drive elements. The control device may be configured to control the number of drive elements such that the plurality of sample container carriers can move on the transport plane along corresponding such as, for example, individual, transport paths simultaneously. Further, the control device may comprise or be an integrated circuit, a tablet computer, a smartphone or a computer.


Furthermore, the receiver station, the transmitter station, the barcode reader and assignment station and/or the loading and assignment station, if present, may be arranged adjacent or directly next to the laboratory sample distribution system such as, for example, to the transport plane of the laboratory sample distribution system.


According to an embodiment, the sample container carrier can comprise a magnetically active device. The number of drive elements can comprise a number of electro-magnetic actuators. The number of electro-magnetic actuators can be stationary arranged below the transport plane and can be configured to move such as, for example, to automatically move, the sample container carrier on the transport plane by applying a magnetic drive force to the sample container carrier. The control device can be configured to control such as, for example, to automatically control, the number of electro-magnetic actuators, such that the sample container carrier can move on the transport plane along the corresponding transport path.


In one embodiment, the number of electro-magnetic actuators may be configured to generate a magnetic field to move the sample container carrier on the transport plane. The magnetically active device may be configured to interact with the magnetic field generated by the number of electro-magnetic actuators such that the magnetic drive force can be applied to the sample container carrier. In one embodiment, the magnetically active device may be a permanent magnet or an electro-magnet. Additionally, or alternatively, the magnetically active device may comprise a magnetically soft material. The number of electro-magnetic actuators may be a number of solenoids surrounding ferromagnetic cores. Furthermore, the number of electro-magnetic actuators may be driven or energized individually in order to generate or to provide the magnetic field. Moreover, the electro-magnetic actuators may be arranged in two dimensions such as, for example, in a grid having rows and columns, along which the electro-magnetic actuators can be arranged. Further, the electro-magnetic actuators may be arranged in a plane substantially parallel to the transport plane.


Additionally, or alternatively, the number of drive elements may comprise at least one wheel and a drive motor to drive the wheel. The drive motor and the wheel may be configured to move such as, for example, to automatically move, the sample container carrier on the transport plane. The control device may be configured to control such as, for example, to automatically control, the at least one wheel and/or the drive motor such that the sample container carrier can move on the transport plane along the corresponding transport path. In one embodiment, the sample container carrier may comprise the at least one wheel and/or the at least one drive motor.


A laboratory automation system is also presented. The laboratory automation system can comprise a number of analytical stations. The number of analytical stations can be configured to analyze such as, for example, to automatically analyze, a sample. Furthermore, the laboratory automation system can comprise a laboratory system as described above and/or a laboratory sample distribution system as described above. The laboratory sample distribution system, if present, can be configured to move such as, for example, to automatically move, the sample container carrier to the number of analytical stations. The laboratory automation system or its control device, if present, can be configured to prevent such as, for example, to automatically prevent, analyzing and/or logically assigning an analytical result to the sample contained by the carried laboratory sample container based on the determined invalid logic assignment such as, for example, of the sample container carrier to the laboratory sample container.


By use of the laboratory system and/or the laboratory sample distribution system, the advantages of the laboratory system and/or the laboratory sample distribution system, as discussed above, may be made applicable for the laboratory automation system.


In other words, the laboratory automation system or its control device, if present, may be adapted to reject such as, for example, to automatically reject, the sample container carrier, the carried laboratory sample container and/or the sample contained by the laboratory sample container based on the determined invalid logic assignment. Additionally, or alternatively, the laboratory automation system or its control device, if present, may be configured to allow such as, for example, to automatically allow, analyzing and/or logically assigning the analytical result to the sample contained by the carried laboratory sample container based on such as, for example, the determined, valid logic assignment such as, for example, of the sample container carrier to the laboratory sample container.


The number of analytical stations may be different from the sample container carrier. In one embodiment, the number of analytical stations may be configured to use the sample or a part of the sample and a reagent to generate a measuring signal, the measuring signal indicating if and in which concentration, if any, an analyte exists.


Furthermore, the laboratory automation system may comprise a number of pre-analytical stations and/or post-analytical stations. The number of pre-analytical stations may be configured to perform any kind of pre-processing of the sample, the laboratory sample container and/or the sample container carrier. The number of post-analytical stations may be configured to perform any kind of post-processing of the sample, the laboratory sample container and/or the sample container carrier.


The number of pre-analytical, analytical and/or post-analytical stations may comprise at least one of a decapping station, a recapping station, an aliquot station, a centrifugation station, an archiving station, a pipetting station, a sorting station, a tube type identification station, a sample quality determining station, an add-on buffer station, a liquid level detection station, a sealing/desealing station, a pushing station, a belt station, a conveying system station and/or a gripper station for moving the laboratory sample container to or from the sample container carrier.


Moreover, the number of analytical, pre-analytical and/or post-analytical stations, if present, may be arranged adjacent or directly next to the laboratory sample distribution system, if present, such as, for example, to the transport plane of the laboratory sample distribution system.


In one embodiment, the laboratory sample distribution system, if present, may be configured to move the sample container carrier to the number of pre-analytical stations, post-analytical stations, the receiver station, the transmitter station, the barcode reader and assignment station and/or the loading and assignment station, if present. In one embodiment, the laboratory sample distribution system may be configured to move the sample container carrier in between the stations.



FIGS. 1 to 12 show a laboratory automation system 10. The laboratory automation system 10 can comprise a laboratory sample distribution system 100. The laboratory sample distribution system 100 can comprise a laboratory system 200.


The laboratory system 200 can comprise a sample container carrier 210. The sample container carrier 210 can be configured to carry a laboratory sample container 130 and can comprise a removal detector 220. The removal detector 220 can be configured to interact with the laboratory sample container 130 to detect a removal of the carried laboratory sample container 130 from the sample container carrier 210. Furthermore, the laboratory system 200 can be configured to determine based on the detected removal that a before valid logic assignment of the sample container carrier 210 to the carried laboratory sample container 130 is invalid.


In the shown embodiment, the laboratory sample container 130 can be designed as a tube and can have an opening 131 such as, for example, at an upper, end, as shown in FIGS. 2 and 8-12. Furthermore, the laboratory sample container 130 can contain a liquid sample 139.


In detail, the sample container carrier 210 can comprise at least one holding element 219, as shown in FIGS. 1, 8-10, and 12. The at least one holding element 219 can be configured to hold the laboratory sample container 130 such as, for example, at a circumference of the laboratory sample container 130. Moreover, the sample container carrier 130 can comprise a holding region such as, for example, defined by the at least one holding element 219, for the laboratory sample container 130.


The removal detector 220 can be arranged in a bottom of the sample container carrier 210, such as, for example, at lower end of the holding region.


In the shown embodiment, the removal detector 220 can be configured to interact with the laboratory sample container 130 by contact such as, for example, by contacting the laboratory sample container 130 at its circumference. In detail, the removal detector 220 can comprise a switch 221 such as, for example, a mechanical switch, as shown in FIGS. 2-7. The switch 221 can be configured to be depressed such as, for example, by a spring by the laboratory sample container 130, if present, and not depressed, if the laboratory sample container 130 is absent.


In alternative embodiments, the removal detector may be configured to interact with the laboratory sample container contactless. Additionally, or alternatively, in alternative embodiments, the removal detector may comprise an optical sensor, a capacitive sensor, a pressure sensor, a temperature sensor, and/or a shape memory alloy configured to interact with the laboratory sample container to detect a removal of the carried laboratory sample container from the sample container carrier.


Further, the sample container carrier 210 can comprise a memory element 230. In the shown embodiment, the memory element 230 can be configured to store information based on that the logic assignment is valid and information based on that the logic assignment is invalid. In alternative embodiments, the memory element may be configured to store information based on the detected removal, in particular a time of or a time period since the detected removal.


In detail, the memory element 230 can comprise a capacitor in FIGS. 2 and 3, a flip-flop in FIGS. 4 and 6, and a microcontroller in FIGS. 5 and 7. In one embodiment, the memory element can have two states. In a first state, the logic assignment is valid and, in a second state, the logic assignment is invalid.


Furthermore, the sample container carrier 210 can comprise a transponder 240 such as, for example, a RFID, NFC transponder such as, for example, comprising an antenna. The transponder 240 can comprise a receiver 241 and a transmitter 242.


The receiver 241 can be configured to receive information based on that the logic assignment is valid and to store the information on the memory element 230. This may be denoted to arm the sample container carrier 210 or its memory element 230, respectively.


In the shown embodiment, the transmitter 242 can be configured to transmit information based on that the logic assignment is valid. In alternative embodiments, the transmitter may be configured to transmit information based on the detected removal and/or information that the logic assignment is invalid.


In detail, the removal detector 220 can be configured to delete information based on that the logic assignment is valid such as, for example, from the memory element 230, based on the detected removal. In other words, the removal detector 220 can be configured to store information based on that the logic assignment is invalid such as, for example, on the memory element 230. If the valid information is deleted or the information is that the logic assignment is invalid, respectively, the transmitter 242 does not transmit.


In one embodiment, the transponder 240 can be configured to receive an interrogation for the information such as, for example, by its receiver 241, and to transmit the information such as, for example, that the logic assignment is valid, in response to the received interrogation such as, for example, by its transmitter 242.


Moreover, in FIGS. 2-6, the receiver 241 can be configured to collect energy such as, for example, from the received information and/or from the interrogation, and to supply the sample container carrier 210 such as, for example, its memory element 230, with the collected energy.


In FIG. 7, the sample container carrier 210 can comprise its own power source 211 such as, for example, a battery.


Further, the laboratory system 200 can comprise a loading and assignment station 300 such as, for example, comprising a gripper, as shown in FIG. 8. The loading and assignment station 300 can be configured to load the laboratory sample container 130 on the sample container carrier 210 and to determine that the logic assignment of the sample container carrier 210 to the loaded laboratory sample container 300 is valid.


Furthermore, the laboratory system 200 can comprise a barcode reader and assignment station 310 such as, for example, comprising a camera. The barcode reader and assignment station 310 can be configured to read a barcode (BC) of the laboratory sample container 130 and to logically assign the read barcode (BC) to the sample container 210.


Moreover, the laboratory system can comprise a transmitter station 320 such as, for example, a RFID, NFC transmitter station such as, for example, comprising an antenna. The transmitter station 320 can be configured to transmit information that the logic assignment is valid to the sample container carrier 210. This may be denoted to arm the sample container carrier 210 or its memory element 230, respectively. In one embodiment, the transmitter station 320 can be configured to transmit energy such as, for example, with the information to the sample container carrier 210.


In the shown embodiment, the transmitter station 320 can transmit the read barcode (BC) of the laboratory sample container 130 to the sample container 210. Thereby, information that the logic assignment of the sample container carrier 210 to the loaded laboratory sample container 130 is valid can be transmitted to the sample container carrier 210. In one embodiment, the loading and assignment station 300, the barcode reader and assignment station 310, and the transmitter station 320 can be functionally coupled such as, for example, in signal connection with each other, as shown in FIG. 8 by a dotted line.


In detail, the sample container carrier 210 or its transponder 240, respectively, can comprise a control circuit 243. The received barcode (BC) can be stored by the control circuit 243.


Further, the memory element 230 comprising the capacitor in FIG. 2 can be charged by power harvesting such as, for example, via a power harvesting output PW of the transponder 240 or its control circuit 243, respectively. When the laboratory sample container 130 is removed, as shown in FIG. 9, the capacitor 230 can be uncharged. The memory state can be read out by the transponder 240 or its control circuit 243, respectively such as, for example, via a digital input (DI) of the control circuit 243, with the next interrogation. Furthermore, the sample container carrier 210 can comprise a time-delay-resistor 244 such as, for example, in order to avoid a too fast recharge of the capacitor 230 such as, for example, during the next interrogation. If the memory state is the second state that the logic assignment is invalid, the stored barcode (BC) can be deleted by the control circuit 243 and no response can be transmitted. If the memory state is the first state that the logic assignment is valid, the stored barcode (BC) can be transmitted.


The memory element 230 comprising the capacitor in FIG. 3 can be charged by power harvesting such as, for example, triggered by a digital output (DO) of the control circuit 243. When the laboratory sample container 130 is removed, the capacitor 230 can be uncharged. The memory state can be read out by the transponder 240 or its control circuit 243, respectively, with the next interrogation, wherein a recharge of the capacitor 230 can be avoided by not triggering the digital output (DO).


The memory element 230 comprising the flip-flop such as, for example, a RS flip-flop, in FIG. 4 can be buffered by a capacitor 245 charged by power harvesting. The flip-flop 230 can be set by the digital output (DO). When the laboratory sample container 130 is removed, the flip-flop 230 can be reset. The memory state can be read out by the transponder 240 or its control circuit 243, respectively, with the next interrogation, wherein a setting of the flip-flop 230 can be avoided by not triggering the digital output (DO).


The memory element 230 comprising the microcontroller in FIG. 5 can be buffered by the capacitor 245 charged by power harvesting. The microcontroller 230 can check the removal detector 220 or a status of the removal detector 220, respectively, and can store it. The memory state can be read out by the transponder 240 or its control circuit 243, respectively, with the next interrogation such as, for example, by a bus connection in between the control circuit 243 and the microcontroller 230.


The memory element 230 comprising the flip-flop such as, for example, a RS flip-flop, in FIG. 6 can be buffered by the capacitor 245 charged by power harvesting. The flip-flop 230 can be set by the digital output (DO). When the laboratory sample container 130 is removed, the flip-flop 230 can be reset. A microcontroller 246 can be supplied by power harvesting such as, for example, with the collected energy. The memory state can be read out by the transponder 240 or its control circuit 243, respectively, with the next interrogation such as, for example, by a bus connection in between the control circuit 243 and the flip-flop 230 via the microcontroller 246. In other words, the microcontroller 246 can be configured, in particular only configured, for communication between the control circuit 243 and the flip-flop 230.


The memory element 230 comprising the microcontroller in FIG. 7 can be powered by the power source 211. The microcontroller 230 can check the removal detector 220 or a status of the removal detector 220, respectively, and can store it such as, for example, by a signal from a digital output to a digital input. When the laboratory sample container 130 is removed, the digital input can detect this. The digital output may be set to low, in what may save energy. The memory state can be read out by the transponder 240 or its control circuit 243, respectively, with the next interrogation such as, for example, by a bus connection in between the control circuit 243 and the microcontroller 230.


In other words, the sample container carrier 210 can be configured to determine based on the detected removal that the before valid logic assignment of the sample container carrier 210 to the carried laboratory sample container 130 is invalid.


Further, the laboratory system 200 can comprise a receiver station 330 such as, for example, a RFID, NFC receiver station such as, for example, comprising an antenna, as shown in FIG. 10. In the shown embodiment, the receiver station 330 can be configured to receive information based on that the logic assignment is valid such as, for example, the barcode (BC) of the laboratory sample container 130 from the sample container carrier 210. In alternative embodiments, the receiver station may be configured to receive information based on the detected removal and/or information that the logic assignment is invalid.


In detail, the receiver station 330 can be configured to transmit the interrogation and the sample container carrier 210 responds, if the logic assignment is still valid. If the valid information is deleted, the sample container carrier 210 does not respond and the receiver station 330 does not receive information. This can enable the receiver station 330 to recognize that the logic assignment is invalid. In one embodiment, the receiver station 330 can be configured to transmit energy such as, for example, with the interrogation to the sample container carrier 210.


Furthermore, the laboratory automation system 10 can comprise a number of analytical stations 20. The number of analytical stations 20 can be configured to analyze the sample 139. The laboratory automation system 200 can be configured to prevent analyzing such as, for example, by the number of analytical stations 20, and/or logically assigning an analytical result to the sample 139 contained by the carried laboratory sample container 130 based on the determined invalid logic assignment. In one embodiment, the sample container carrier 210 can be rejected based on the determined invalid logic assignment.


Additionally, the laboratory automation system 10 can be configured to allow analyzing and/or logically assigning the analytical result to the sample 139 contained by the carried laboratory sample container 130 based on the valid logic assignment.


In one embodiment, the receiver station 330 and the number of analytical stations 20 can be functionally coupled such as, for example, in signal connection with each other, as shown in FIG. 10 by a dotted line.


The logic assignment such as, for example, from the sample container carrier 210 transmitted and from the receiver station 330 received valid logic assignment in form of the barcode (BC), can allow or can make it possible to control and track the laboratory sample container 130 or the sample 139 contained by the laboratory sample container 139, respectively, over a workflow or a processing path, respectively.


Self-evidently, more than the two analytical stations 20 shown in FIG. 11 may be comprised in the laboratory automation system 10.


The laboratory sample container 130 or its opening 131, respectively, can be open for processing such as, for example, analyzing, the sample 139 contained by the laboratory sample container 130.


Moreover, the sample container carrier 210 can be configured to move the carried such as, for example, an open, laboratory sample container 130 in the laboratory sample distribution system 100, as shown in FIG. 8-11, and/or in the laboratory automation system 10.


The laboratory sample distribution system 100 can comprise a transport plane 110, a number of drive elements 120, and a control device 125. The transport plane 110 can be configured to support the sample container carrier 210. The number of drive elements 120 can be configured to move the sample container carrier 210 on the transport plane 110. The control device 125 can be configured to control the number of drive elements 120 such that the sample container carrier 210 can move on the transport plane 110 along a corresponding transport path.


Further, the laboratory automation system 10 can comprise a number of pre-analytical stations and/or post-analytical stations.


The loading and assignment station 300, the barcode reader and assignment station 310, the transmitter station 320, the receiver station 330, the number of analytical stations 20, the number of pre-analytical stations, and the number of post-analytical stations can be arranged adjacent to the laboratory sample distribution system 100 such as, for example to the transport plane 110.


Furthermore, the laboratory sample distribution system 100 can be configured to move the sample container carrier 210 to the loading and assignment station 300, the barcode reader and assignment station 310, the transmitter station 320, the receiver station 330, the number of analytical stations 20, the number of pre-analytical stations, and the number of post-analytical stations.


Moreover, the control device 125 can be configured to control the loading and assignment station 300, the barcode reader and assignment station 310, the transmitter station 320, the receiver station 330, the number of analytical stations 20, the number of pre-analytical stations, and the number of post-analytical stations.


In detail, the sample container carrier 210 can be translationally moved in two dimensions x, y being substantially perpendicular to each other on the transport plane 110. In the shown embodiment, a sliding surface of the sample container carrier 210 can be configured to be in contact with the transport plane 110 and can enable performing movements such as, for example, slides, of the sample container carrier 210 on the transport plane 110. In one embodiment, the laboratory sample distribution system 100 can comprise a plurality of sample container carriers 110. Self-evidently, more than the three sample container carriers 210 shown in FIG. 11 may be comprised in the laboratory sample distribution system 100. The control device 125 can be configured to control the number of drive elements 120 such that the plurality of sample container carriers 210 can move on the transport plane 110 along corresponding such as, for example, individual, transport paths, simultaneously.


In the shown embodiment, the sample container carrier 210 can comprise a magnetically active device 215 such as, for example, in the form of a permanent magnet, as shown in FIG. 12. The number of drive elements 120 can comprise a number of electro-magnetic actuators 121. The number of electro-magnetic actuators 121 can be stationary arranged below the transport plane 110 and can be configured to move the sample container carrier 210 on the transport plane 110 by applying a magnetic drive force to the sample container carrier 210. The control device 125 can be configured to control the number of electro-magnetic actuators 121 such that the sample container carrier 210 can move on the transport plane 110 along the corresponding transport path.


In detail, the number of electro-magnetic actuators 121 can be configured to generate a magnetic field to move the sample container carrier 210 on the transport plane 110. The magnetically active device 215 can be configured to interact with the magnetic field generated by the number of electro-magnetic actuators 121 such that the magnetic drive force can be applied to the sample container carrier 210. Furthermore, the number of electro-magnetic actuators 121 can be driven individually in order to generate the magnetic field. In one embodiment, the number of electro-magnetic actuators 121 can be implemented as solenoids having a solid ferromagnetic core. Moreover, the electro-magnetic actuators 121 can be quadratically arranged in a grid having rows and columns such as, for example, in a plane substantially parallel to the transport plane 110. In each center of a quadrat formed by corresponding electro-magnetic actuators 121, no electro-magnetic actuator can be arranged. In other words, in each second row and in each second position, there can be no electro-magnetic actuator 121.


Further, the laboratory sample distribution system 100 can comprise a number of Hall-sensors 140. The number of Hall-sensors 140 can be arranged such that a position of a respective sample container carrier 210 on the transport plane 110 can be detected. The control device 125 can be functionally coupled to such as, for example, in signal connection with, the Hall-sensors 140 for detecting the position of the sample container carrier 210. The control device 125 can be configured to control the electro-magnetic actuators 121 in response to the detected position.


As the above discussed embodiments reveal, a laboratory system can be provided that can ensure integrity of a logic assignment of an analytical result to a sample. Furthermore, a laboratory sample distribution system can be provided comprising such a laboratory system and a laboratory automation system comprising such a laboratory system and/or such a laboratory sample distribution system.


It is noted that terms like “preferably,” “commonly,” and “typically” are not utilized herein to limit the scope of the claimed embodiments or to imply that certain features are critical, essential, or even important to the structure or function of the claimed embodiments. Rather, these terms are merely intended to highlight alternative or additional features that may or may not be utilized in a particular embodiment of the present disclosure.


For the purposes of describing and defining the present disclosure, it is noted that the term “substantially” is utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. The term “substantially” is also utilized herein to represent the degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.


Having described the present disclosure in detail and by reference to specific embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the disclosure defined in the appended claims. More specifically, although some aspects of the present disclosure are identified herein as preferred or particularly advantageous, it is contemplated that the present disclosure is not necessarily limited to these preferred aspects of the disclosure.

Claims
  • 1. A laboratory system for a laboratory automation system, wherein the laboratory automation system comprises a number of analytical stations, the laboratory system comprising: a sample container carrier comprising a memory element, a transmitter and a receiver, wherein the sample container carrier is configured to carry only one laboratory sample container between the number of analytical stations, the sample container carrier having a logic assignment to the carried laboratory sample container;a removal detector arranged in a bottom of a holding region of the sample container carrier and in contact with a lower end of the laboratory sample container's outside circumference,wherein the removal detector comprises a switch, wherein when a laboratory sample container is present in the sample container carrier, the switch is depressed by the lower end of the laboratory sample container,wherein the removal detector detects a removal of the carried laboratory sample container from the sample container carrier when the switch is no longer depressed by the lower end of the laboratory sample container,wherein the memory element is encoded with information based oninformation based on whether the logic assignment of the sample container carrier is valid, and/orinformation based on whether the logic assignment of the sample container carrier is invalid,wherein the laboratory system determines based on a detected removal that a previously valid logic assignment of the sample container carrier to the carried laboratory sample container is now invalid and in response to the detected removal the previously valid logic assignment is deleted from memory,wherein the receiver receives information based on whether the logic assignment is valid, and stores the information on the memory element, anda control device configured to control the transmitter:to transmit information based on whether the logic assignment is valid, andto not transmit if the previously valid logic assignment was deleted and/or the logic assignment is invalid.
  • 2. The laboratory system according to claim 1, further comprising: a receiver station, wherein the receiver station receives information from the sample container carrier based on whether the logic assignment is valid.
  • 3. The laboratory system according to claim 1, further comprising a transmitter station, wherein the transmitter station is configured to transmit information whether the logic assignment is valid to the sample container carrier.
  • 4. The laboratory system according to claim 1, further comprising: a barcode reader and assignment station, the control device controlling the barcode reader and assignment station to read a barcode of the laboratory sample container and to logically assign the read barcode to the sample container.
  • 5. The laboratory system according to claim 1, further comprising: a loading and assignment station, the control device controlling the loading and assignment station to load the laboratory sample container on the sample container carrier and to transmit to the sample container carrier that the logic assignment of the sample container carrier to the loaded laboratory sample container is valid.
  • 6. A laboratory sample distribution system for a laboratory automation system, the laboratory sample distribution system comprising: the laboratory system according to claim 1;a transport plane, wherein the transport plane is configured to support the sample container carrier; anda number of drive elements, wherein the number of drive elements is configured to move the sample container carrier on the transport plane, the control device controlling the number of drive elements such that the sample container carrier moves on the transport plane along a corresponding transport path.
  • 7. The laboratory sample distribution system according to claim 6, wherein the sample container carrier comprises a magnetically active device, wherein the number of drive elements comprises a number of electro-magnetic actuators, wherein the number of electro-magnetic actuators is stationarily arranged below the transport plane and is configured to move the sample container carrier on the transport plane by applying a magnetic drive force to the sample container carrier, and wherein the control device controls the number of electro-magnetic actuators such that the sample container carrier moves on the transport plane along the corresponding transport path.
  • 8. A laboratory automation system, the laboratory automation system comprising: a number of analytical stations, wherein the number of analytical stations is configured to analyze a sample; andthe laboratory sample distribution system according to claim 6, wherein the laboratory sample distribution system is configured to move the sample container carrier to the number of analytical stations, wherein the laboratory automation system is configured to prevent analyzing and/or logically assigning an analytical result to the sample contained by the carried laboratory sample container based on the determined invalid logic assignment.
Priority Claims (1)
Number Date Country Kind
18162202 Mar 2018 EP regional
US Referenced Citations (200)
Number Name Date Kind
3273727 Rogers et al. Sep 1966 A
3653485 Donlon Apr 1972 A
3901656 Durkos et al. Aug 1975 A
4150666 Brush Apr 1979 A
4395164 Beltrop et al. Jul 1983 A
4544068 Cohen Oct 1985 A
4595562 Liston et al. Jun 1986 A
4771237 Daley Sep 1988 A
5120506 Saito et al. Jun 1992 A
5295570 Grecksch et al. Mar 1994 A
5309049 Kawada et al. May 1994 A
5457368 Jacobsen et al. Oct 1995 A
5523131 Isaacs et al. Jun 1996 A
5530345 Murari et al. Jun 1996 A
5636548 Dunn et al. Jun 1997 A
5641054 Mori et al. Jun 1997 A
5651941 Stark et al. Jul 1997 A
5720377 Lapeus et al. Feb 1998 A
5735387 Polaniec et al. Apr 1998 A
5788929 Nesti Aug 1998 A
6045319 Uchida et al. Apr 2000 A
6062398 Thalmayr May 2000 A
6141602 Igarashi et al. Oct 2000 A
6151535 Ehlers Nov 2000 A
6184596 Ohzeki Feb 2001 B1
6191507 Peltier et al. Feb 2001 B1
6206176 Blonigan et al. Mar 2001 B1
6255614 Yamakawa et al. Jul 2001 B1
6260360 Wheeler Jul 2001 B1
6279728 Jung et al. Aug 2001 B1
6293750 Cohen et al. Sep 2001 B1
6343690 Britton et al. Feb 2002 B1
6429016 McNeil Aug 2002 B1
6444171 Sakazume et al. Sep 2002 B1
6456944 Burkhardt et al. Sep 2002 B1
6571934 Thompson et al. Jun 2003 B1
7028831 Veiner Apr 2006 B2
7078082 Adams Jul 2006 B2
7122158 Itoh Oct 2006 B2
7278532 Martin Oct 2007 B2
7326565 Kokoi et al. Feb 2008 B2
7425305 Itoh Sep 2008 B2
7428957 Schaefer Sep 2008 B2
7578383 Itoh Aug 2009 B2
7597187 Bausenwein et al. Oct 2009 B2
7850914 Veiner et al. Dec 2010 B2
7858033 Itoh Dec 2010 B2
7875254 Garton et al. Jan 2011 B2
7939484 Loeffler et al. May 2011 B1
8240460 Bleau et al. Aug 2012 B1
8281888 Bergmann Oct 2012 B2
8383421 Yanagida et al. Feb 2013 B2
8502422 Lykkegaard Aug 2013 B2
8796186 Shirazi Aug 2014 B2
8833544 Stoeckle et al. Sep 2014 B2
8864030 Ohmae Oct 2014 B2
8973736 Johns et al. Mar 2015 B2
9056720 Van De Loecht et al. Jun 2015 B2
9097691 Onizawa et al. Aug 2015 B2
9187268 Denninger et al. Nov 2015 B2
9211543 Ohga et al. Dec 2015 B2
9239335 Heise et al. Jan 2016 B2
9289770 Lavi Mar 2016 B2
9309062 Hecht Apr 2016 B2
9423410 Buehr Aug 2016 B2
9423411 Riether Aug 2016 B2
9567167 Sinz Feb 2017 B2
9575086 Heise et al. Feb 2017 B2
9593970 Sinz Mar 2017 B2
9598243 Denninger et al. Mar 2017 B2
9618525 Malinowski et al. Apr 2017 B2
9658241 Riether et al. May 2017 B2
9664703 Heise et al. May 2017 B2
9772342 Riether Sep 2017 B2
9791468 Riether et al. Oct 2017 B2
9810706 Riether et al. Nov 2017 B2
9902572 Mahmudimanesh et al. Feb 2018 B2
9939455 Schneider et al. Apr 2018 B2
9969570 Heise et al. May 2018 B2
9989547 Pedain Jun 2018 B2
10006927 Sinz et al. Jun 2018 B2
10031150 Heise et al. Jul 2018 B2
10094843 Malinowski et al. Oct 2018 B2
10119982 Baer Nov 2018 B2
10126317 Heise et al. Nov 2018 B2
10160609 Malinowski Dec 2018 B2
10175259 Riether Jan 2019 B2
10288634 Kaeppeli May 2019 B2
10352953 Huber et al. Jul 2019 B2
20020009391 Marquiss et al. Jan 2002 A1
20030092185 Qureshi et al. May 2003 A1
20040050836 Nesbitt et al. Mar 2004 A1
20040084531 Itoh May 2004 A1
20050036907 Shoji Feb 2005 A1
20050061622 Martin Mar 2005 A1
20050109580 Thompson May 2005 A1
20050194333 Veiner et al. Sep 2005 A1
20050196320 Veiner et al. Sep 2005 A1
20050226770 Allen et al. Oct 2005 A1
20050242963 Oldham et al. Nov 2005 A1
20050247790 Itoh Nov 2005 A1
20050260101 Nauck et al. Nov 2005 A1
20050271555 Itoh Dec 2005 A1
20060000296 Salter Jan 2006 A1
20060047303 Ortiz et al. Mar 2006 A1
20060219524 Kelly et al. Oct 2006 A1
20070116611 DeMarco May 2007 A1
20070210090 Sixt et al. Sep 2007 A1
20070248496 Bondioli et al. Oct 2007 A1
20070276558 Kim Nov 2007 A1
20080012511 Ono Jan 2008 A1
20080029368 Komori Feb 2008 A1
20080042839 Grater Feb 2008 A1
20080056328 Rund et al. Mar 2008 A1
20080131961 Crees et al. Jun 2008 A1
20090004732 LaBarre et al. Jan 2009 A1
20090022625 Lee et al. Jan 2009 A1
20090081771 Breidford et al. Mar 2009 A1
20090128139 Drenth et al. May 2009 A1
20090142844 Le Comte Jun 2009 A1
20090180931 Silbert et al. Jul 2009 A1
20090322486 Gerstel Dec 2009 A1
20100000250 Sixt Jan 2010 A1
20100123551 Fritchie May 2010 A1
20100152895 Dai Jun 2010 A1
20100175943 Bergmann Jul 2010 A1
20100186618 King et al. Jul 2010 A1
20100255529 Cocola et al. Oct 2010 A1
20100300831 Pedrazzini Dec 2010 A1
20100312379 Pedrazzini Dec 2010 A1
20110050213 Furukawa Mar 2011 A1
20110124038 Bishop et al. May 2011 A1
20110172128 Davies et al. Jul 2011 A1
20110186406 Kraus et al. Aug 2011 A1
20110287447 Norderhaug et al. Nov 2011 A1
20120037696 Lavi Feb 2012 A1
20120129673 Fukugaki et al. May 2012 A1
20120178170 Van Praet Jul 2012 A1
20120211645 Tullo et al. Aug 2012 A1
20120275885 Furrer et al. Nov 2012 A1
20120282683 Mototsu Nov 2012 A1
20120295358 Ariff et al. Nov 2012 A1
20120310401 Shah Dec 2012 A1
20130153677 Leen et al. Jun 2013 A1
20130180824 Kleinikkink et al. Jul 2013 A1
20130263622 Mullen et al. Oct 2013 A1
20130322992 Pedrazzini Dec 2013 A1
20140134607 Lin May 2014 A1
20140170023 Saito et al. Jun 2014 A1
20140202829 Eberhardt et al. Jul 2014 A1
20140234949 Wasson et al. Aug 2014 A1
20140277695 Iqbal Sep 2014 A1
20140295562 Wakamiya Oct 2014 A1
20150014125 Hecht Jan 2015 A1
20150166265 Pollack et al. Jun 2015 A1
20150241457 Miller Aug 2015 A1
20150273468 Croquette et al. Oct 2015 A1
20150273691 Pollack Oct 2015 A1
20150276774 Pollack Oct 2015 A1
20150276775 Mellars et al. Oct 2015 A1
20150276782 Riether Oct 2015 A1
20160003859 Wenczel et al. Jan 2016 A1
20160025756 Pollack et al. Jan 2016 A1
20160054341 Edelmann Feb 2016 A1
20160054344 Heise Feb 2016 A1
20160077120 Riether Mar 2016 A1
20160132661 Dixit et al. May 2016 A1
20160229565 Margner Aug 2016 A1
20170108522 Baer Apr 2017 A1
20170131307 Pedain May 2017 A1
20170131310 Volz et al. May 2017 A1
20170138971 Heise et al. May 2017 A1
20170168079 Sinz Jun 2017 A1
20170174448 Sinz Jun 2017 A1
20170184622 Sinz et al. Jun 2017 A1
20170248623 Kaeppeli et al. Aug 2017 A1
20170248624 Kaeppeli et al. Aug 2017 A1
20170363608 Sinz Dec 2017 A1
20180067141 Mahmudimanesh et al. Mar 2018 A1
20180106821 Vollenweider et al. Apr 2018 A1
20180128848 Schneider et al. May 2018 A1
20180156835 Hassan Jun 2018 A1
20180188280 Malinowski Jul 2018 A1
20180210000 van Mierlo Jul 2018 A1
20180210001 Reza Jul 2018 A1
20180217174 Malinowski Aug 2018 A1
20180217176 Sinz et al. Aug 2018 A1
20180224476 Birrer et al. Aug 2018 A1
20180340951 Kaeppell Nov 2018 A1
20180340952 Kaeppeli et al. Nov 2018 A1
20180348244 Ren Dec 2018 A1
20180348245 Schneider et al. Dec 2018 A1
20190018027 Hoehnel Jan 2019 A1
20190076845 Huber et al. Mar 2019 A1
20190076846 Durco et al. Mar 2019 A1
20190086433 Hermann et al. Mar 2019 A1
20190094251 Malinowski Mar 2019 A1
20190094252 Waser et al. Mar 2019 A1
20190101468 Haldar Apr 2019 A1
20190285660 Kopp et al. Sep 2019 A1
Foreign Referenced Citations (97)
Number Date Country
201045617 Apr 2008 CN
102109530 Jun 2011 CN
105095927 Nov 2015 CN
3909786 Sep 1990 DE
102012000665 Aug 2012 DE
102011090044 Jul 2013 DE
0601213 Oct 1992 EP
0775650 May 1997 EP
0916406 May 1999 EP
1122194 Aug 2001 EP
1524525 Apr 2005 EP
2119643 Nov 2009 EP
2148117 Jan 2010 EP
2327646 Jun 2011 EP
2447701 May 2012 EP
2458389 May 2012 EP
2500871 Sep 2012 EP
2589968 May 2013 EP
2502675 Feb 2014 EP
2887071 Jun 2015 EP
3095739 Nov 2016 EP
2165515 Apr 1986 GB
S56-147209 Nov 1981 JP
60-223481 Nov 1985 JP
61-081323 Apr 1986 JP
S61-069604 Apr 1986 JP
S61-094925 May 1986 JP
S61-174031 Aug 1986 JP
S61-217434 Sep 1986 JP
S62-100161 May 1987 JP
S63-31918 Feb 1988 JP
S63-48169 Feb 1988 JP
S63-82433 May 1988 JP
S63-290101 Nov 1988 JP
1148966 Jun 1989 JP
H01-266860 Oct 1989 JP
H02-87903 Mar 1990 JP
03-112393 May 1991 JP
03-192013 Aug 1991 JP
H03-38704 Aug 1991 JP
H04-127063 Apr 1992 JP
H05-69350 Mar 1993 JP
H05-142232 Jun 1993 JP
H05-180847 Jul 1993 JP
06-26808 Feb 1994 JP
H06-148198 May 1994 JP
06-156730 Jun 1994 JP
06-211306 Aug 1994 JP
07-228345 Aug 1995 JP
07-236838 Sep 1995 JP
H07-301637 Nov 1995 JP
H08-304409 Nov 1996 JP
H09-17848 Jan 1997 JP
H11-083865 Mar 1999 JP
H11-264828 Sep 1999 JP
H11-304812 Nov 1999 JP
H11-326336 Nov 1999 JP
2000-105243 Apr 2000 JP
2000-105246 Apr 2000 JP
2001-124786 May 2001 JP
2001-240245 Sep 2001 JP
2004-028595 Jan 2004 JP
2005-001055 Jan 2005 JP
2005-249740 Sep 2005 JP
2006-106008 Apr 2006 JP
2007-309675 Nov 2007 JP
2007-314262 Dec 2007 JP
2007-322289 Dec 2007 JP
2008032652 Feb 2008 JP
2009-036643 Feb 2009 JP
2009-062188 Mar 2009 JP
2009-145188 Jul 2009 JP
2009-300402 Dec 2009 JP
2010-243310 Oct 2010 JP
2010-271204 Dec 2010 JP
2013-172009 Feb 2013 JP
2013-190400 Sep 2013 JP
685591 Sep 1979 SU
1996036437 Nov 1996 WO
2003042048 May 2003 WO
2007024540 Mar 2007 WO
2008133708 Nov 2008 WO
2009002358 Dec 2008 WO
2010042722 Apr 2010 WO
2012170636 Jul 2010 WO
2010087303 Aug 2010 WO
2010129715 Nov 2010 WO
2011013324 Feb 2011 WO
2012064940 May 2012 WO
2012158520 Nov 2012 WO
2012158541 Nov 2012 WO
2013152089 Oct 2013 WO
2013169778 Nov 2013 WO
2013177163 Nov 2013 WO
2014059134 Apr 2014 WO
2014071214 May 2014 WO
2015104263 Jul 2015 WO
Related Publications (1)
Number Date Country
20190285660 A1 Sep 2019 US