This disclosure relates in general to electrical submersible well pump assemblies and in particular to a labyrinth chamber between the motor and pump for equalizing a pressure difference between motor lubricant and well fluid that is configured for horizontal wells.
Submersible well pump assemblies (ESP) are frequently used to pump well fluid from hydrocarbon wells. A typical ESP has a pump driven by a motor. A seal section or pressure equalizer, normally located between the motor and the pump, has components to equalize pressure of lubricant contained in the motor with the hydrostatic pressure of the well fluid on the exterior of the ESP. Those components may be a flexible diaphragm, a bellows, or a labyrinth chamber.
A labyrinth chamber has a labyrinth tube extending downward from a connector or adapter on the upper end of the labyrinth chamber. The upper end of the labyrinth tube is open as well as the lower end, which is spaced a short distance above the lower end of the labyrinth chamber. A guide tube surrounds the drive shaft extending from the motor. The guide tube has a port near the upper end of the chamber. Lubricant from the motor flows up an annular clearance between the shaft and the guide tube and out the guide tube port into the labyrinth chamber. Well fluid flows down the labyrinth tube into the labyrinth chamber into contact with the lubricant. The well fluid applies the hydrostatic pressure on the exterior of the ESP to the lubricant in the labyrinth chamber, which communicates that pressure to lubricant in the motor. The well fluid has a higher specific gravity than the lubricant, thus is inhibited from flowing upward in the labyrinth chamber into the guide tube port to reach the guide tube port. It is important to keep the corrosive well fluid from flowing down the guide tube into the motor.
A labyrinth chamber works well in vertical wells and provides pressure compensation without any additional moving parts. However, if the pump is installed in a horizontal section of the well, the path from the outlet of the labyrinth tube to the guide tube port is approximately horizontal rather than being vertical. The well fluid entering the labyrinth chamber could more easily flow along the horizontal flow path than the labyrinth flow path that exists while the ESP is oriented vertically.
A submersible well pump assembly comprises a pump, a motor, and a pressure equalizer housing between the pump and the motor. The housing has an axis, a motor end connector and a pump end connector. A rotatable drive shaft extends within the housing on the axis through the motor end connector and the pump end connector. A hub assembly within the housing is pivotal about the axis relative to the housing. A well fluid inlet path admits well fluid into the housing. A communication passage in the hub assembly has a first opening in communication with lubricant in the motor and a second opening that is spaced laterally from the axis. A counterweight mounted to the hub assembly pivots the second opening of the communication passage above the axis while the axis is horizontal.
A non rotating guide tube through which the shaft extends may be located in the housing. In one embodiment, the hub assembly is pivotally mounted to the guide tube.
The communication passage may have an axially extending portion leading to the second opening of the communication passage, the axially extending portion being offset from the axis. A center point of the counterweight is located 180 degrees from the second opening of the communication passage.
In one embodiment, the guide tube has ends connected between the pump connector and the motor connector, The guide tube defines an inner annulus between the shaft and the guide tube and an outer annulus between the guide tube and the housing. In one embodiment, the inner annulus is in fluid communication with the lubricant in the motor, and the well fluid inlet path leads to the outer annulus. A guide tube port is within in the guide tube, The hub assembly is pivotally mounted to the guide tube in this embodiment, and the first opening of the communication passage registers with the guide tube port.
The hub assembly has a hub collar pivotally mounted to the guide tube in one embodiment. The hub collar contains a portion of the communication passage. A hub tube protrudes laterally from the hub collar and is in fluid communication with the communication passage in the hub collar. The hub tube may have a free end that points downward while the axis is horizontal. The second opening of the communication passage is at the free end of the hub tube.
In another embodiment, the hub assembly comprises a motor end ring having a motor end wall adjacent a shaft bore in the motor connector. The shaft bore is in fluid communication with the lubricant in the motor. An annular seal seals between the motor connector and the motor end wall radially outward from the shaft bore. A motor end ring first port extends through the motor end wall closer to the axis than the annular seal. A motor end ring second port is adjacent a periphery of the end ring. The communication passage extends within the motor end ring from the motor end ring first port to the motor end ring second port.
In one embodiment, a non rotating guide tube has a pump end secured to the pump connector and a motor end spaced axially from the motor connector. The guide tube defines an inner annulus between the shaft and the guide tube and an outer annulus between the guide tube and the housing. The hub assembly has a pump end ring pivotally mounted to the guide tube. A communication tube extends from the motor end ring outlet second port to the pump end ring, causing the pump end ring to pivot in unison with the motor end ring. The second opening of the communication passage is at a pump end ring end of the communication tube and leads to the outer annulus. A seal may be located between the shaft and the motor end ring. The well fluid inlet path leads to the inner annulus and from the inner annulus to the outer annulus.
While the invention will be described in connection with the preferred embodiments, it will be understood that it is not intended to limit the invention to that embodiment. On the contrary, it is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and scope of the invention as defined by the appended claims.
The method and system of the present disclosure will now be described more fully hereinafter with reference to the accompanying drawings in which embodiments are shown. The method and system of the present disclosure may be in many different forms and should not be construed as limited to the illustrated embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey its scope to those skilled in the art. Like numbers refer to like elements throughout. In an embodiment, usage of the term “about” includes +/−5% of the cited magnitude. In an embodiment, usage of the term “substantially” includes +/−5% of the cited magnitude.
It is to be further understood that the scope of the present disclosure is not limited to the exact details of construction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. In the drawings and specification, there have been disclosed illustrative embodiments and, although specific terms are employed, they are used in a generic and descriptive sense only and not for the purpose of limitation.
Referring to
ESP 11 includes several modules, one of which is a pump 15 that is illustrated as being a centrifugal pump. Pump 15 has an intake 16 for drawing in well fluid. Alternately, pump 15 could be other types, such as a progressing cavity pump. Another module comprises an electrical motor 17, which drives pump 15 and is normally a three-phase AC motor.
A third module comprises a pressure equalizing or seal section 19 coupled between pump 15 and motor 17. Seal section 19 has features to reduce a pressure differential between dielectric lubricant contained in motor 17 and the pressure of the well fluid on the exterior of ESP 11. Seal section 19 also accommodates thermal expansion of the motor lubricant. Intake 16 may be located in an upper portion of seal section 19 or on a lower end of pump 15. The terms “upper” and “lower” are used herein for convenience. While installed in a horizontal well section 12 as shown, “lower” refers to the upstream direction of well fluid flow, and “upper” refers to the downstream direction of well fluid flow. A thrust bearing unit 21 for motor 17 may be in a separate module or located in seal section 19 or motor 17.
ESP 11 may also include other modules, such as a gas separator for separating gas from the well fluid prior to the well fluid flowing into pump 15. The various modules may be shipped to a well site apart from each other, then assembled with bolts or other types of fasteners.
Referring to
A guide tube 29 has one end sealed and secured to a bore within pump end connector 25. In the first embodiment, guide tube 29 has an opposite end sealed and secured to a bore within motor end connector 27. A drive shaft 31 rotated by motor 17 (
A hub assembly 39 mounts around guide tube 29 and can pivotally rotate relative to guide tube 29. Referring to
Hub assembly 39 has a hub tube 55 that extends laterally outward from hub collar 41 relative to axis 32. Hub tube 55 is generally J-shaped in this embodiment, with a leg or first lateral portion 57 that may be located on a radial line of axis 32. Hub tube 55 has an axial portion 59 that extends generally parallel with axis 32, but may be curved rather than straight as shown. Hub tube axial portion 59 extends from the outer end of first lateral portion 57. Hub tube axial portion 59 could be curved to provide a more J-shaped appearance for hub tube 55. Hub tube 55 has a second lateral portion or free end 61 that extends from axial portion 59 back toward axis 32, parallel with leg 57. Free end 61 has an open end 62, which defines a second opening for a communication passage extending from inner annulus 33. Open end 62 communicates fluid in hub annulus 53 with fluid in outer annulus 35.
Hub assembly 39 includes an eccentric counterweight 63 mounted on an opposite side of hub collar 41 from hub tube 55. A center point of counterweight 63 may be 180 degrees from hub tube 55. Counterweight 63 has a circumferential extent much less than 360 degrees so that it's entirely will pivot due to gravity to be below guide tube 29 when axis 32 is horizontal. Fasteners 65 secure counterweight 63 to hub collar 41. Counterweight 63 causes hub collar 41 to rotationally pivot and orient to a position with hub tube 55 extending upward from hub collar 41 while seal section 19 is horizontal. If desired, a bearing sleeve (not shown) or journal could be positioned between hub collar 41 and guide tube 29 to facilitate pivotal rotation of hub assembly 39. When seal section 19 is horizontal, open end 62 of hub tube free end 61 will be spaced above hub collar 41 and pointing downward.
During the deployment of ESP 11, as ESP 11 enters horizontal section 12, counterweight 63 will swing hub 39 to a position with hub tube 55 extending vertically upward. Well fluid flows into outer annulus 35 through well fluid inlet port 26 (
Lighter well fluid components, such as water, normally makes up a large portion of the well fluid, with oil normally being the remaining portion. Being heavier, water tends to migrate into lower portions of outer annulus 35, and the oil migrates into the upper portions of outer annulus 35. For water to flow into inner annulus 33, it must first migrate up to opening 62 in free end portion 61 of hub tube 55, then through the axial portion 59 and down first lateral portion 57 to hub annulus 53. Being heavier than the lubricant, water has difficulty migrating upward in free end portion 61. Hub tube 55 thus serves as a labyrinth flow path, retarding entry of water into inner annulus 33 and from there into motor 17.
Guide tube 83 surrounds shaft 75, defining an inner annulus 85 between guide tube 83 and shaft 75. The space between guide tube 83 and housing 69 comprises an outer annulus 87. Guide tube 83 has one or more guide tube ports 89 that communicate well fluid in inner annulus 85 with outer annulus 87. In this example, guide tube port 89 is near an end of guide tube 83 opposite pump end connector 71, but the location can vary.
A hub assembly 90 pivotally mounts around guide tube 83 for rotation relative to guide tube 83. Hub assembly 90 includes a first or pump end ring 91 rotatably mounted on guide tube 83. Pump end ring 91 may have one or more openings 93 from one side to the other to facilitate well fluid flow in outer annulus 87 from one side to the other of pump end ring 91. Hub assembly 90 also has a second or motor end ring 95 axially spaced from pump end ring 91. Motor end ring 95 mounts to shaft 75 instead of guide tube 83. A bearing sleeve (not shown) may be located between motor end ring 95 and shaft 75 to facilitate rotation of shaft 75 relative to motor end ring 95. Motor end ring 95 has an internal passage or communication cavity 97 extending from an outer to an inner portion of motor end ring 95.
A rigid communication tube 99 extends axially between outer peripheral portions of pump end ring 91 and motor end ring 95. Communication tube 99 is parallel with and offset from axis 77. Communication tube 99 has an open end 101 at pump end ring 91 to communicate fluid in the interior of communication tube 99 with well fluid in outer annulus 87. The opposite end of communication tube 99 joins and is in fluid communication with motor end ring cavity 97.
A counterweight 103 mounts eccentrically to one of the rings 91, 95, which in this example is pump end ring 91, but it could be the other. Counterweight 103 is located 180 degrees from communication tube 99 so that it will pivot communication tube 99 to a position above and parallel with guide tube 83 when seal section 67 is oriented horizontally. Communication tube 99 causes pump end ring 91 and motor end ring 95 to rotationally pivot in unison relative to guide tube 83.
A seal 105 mounts to shaft 75 between the motor end of guide tube 83 and motor end ring 95. Seal 105, which may be a mechanical face seal, rotates with shaft 75. A spring 107 urges seal 105 in sliding and sealing engagement with a pump side portion of motor end ring 95. Seal 105 reduces the entry of well fluid in outer annulus 87 from flowing into motor end connector 73.
Another seal assembly 109 locates on the opposite side of motor end ring 95 from seal 105. Seal assembly 109 may have multiple components, including a portion that rotates with shaft 75 and is in sliding engagement with a motor side portion of motor end ring 95. A cavity port 111 in motor end ring 95 communicates cavity 97 with a bore 113 of motor end connector 73. Cavity port 111 is located radially inward from the portion where seal assembly 109 slides against motor end ring 95. A bearing 115 in motor end connector 73 supports shaft 75 but does not seal. Motor lubricant from motor 17 (
In the operation of the
The well fluid and lubricant interface with each other at some point, which may be within communication tube 99, applying the hydrostatic pressure of the well fluid to the motor lubricant. In order for water in the well fluid to migrate into motor end connector bore 113, the water would have to flow along a labyrinth flow path. The flow path requires upward flow in outer annulus 87 to communication tube open end 101, then along the axial portion of hub assembly 90, which is communication tube 99, then downward in cavity 97, which serves as a lateral portion of hub assembly 90.
The present invention described herein, therefore, is well adapted to carry out the objects and attain the ends and advantages mentioned, as well as others inherent therein. While two presently preferred embodiments of the invention have been given for purposes of disclosure, numerous changes exist in the details of procedures for accomplishing the desired results. These and other similar modifications will readily suggest themselves to those skilled in the art, and are intended to be encompassed within the spirit of the present invention disclosed herein and the scope of the appended claims.
This application claims priority to provisional application Ser. No. 62/305,855, filed Mar. 9, 2016.
Number | Date | Country | |
---|---|---|---|
62305855 | Mar 2016 | US |