Lace fixation assembly and system

Information

  • Patent Grant
  • 9439477
  • Patent Number
    9,439,477
  • Date Filed
    Tuesday, January 28, 2014
    10 years ago
  • Date Issued
    Tuesday, September 13, 2016
    8 years ago
Abstract
A lace closure system may include a low friction guide that defines the turning radius and direction of a lace which, though tension, pulls two or more panels toward each other. The lace closure system may include a fixator that defines a slot into which the lace is led, containing multiple engagement surfaces that, when the lace is wrapped into the slot, serve to engage the lace preventing unwanted loosening. The lace closure system may include a ring onto which the lace is attached, to assist in applying manual tension to the lace. The ring may be shaped and sized to removably attach to an outer perimeter of the fixator after excess lace has been wrapped into the slot.
Description
SUMMARY

Various lace fixation assemblies and systems beneficial to both manufacturers and users. In particular, the lace fixation assemblies and systems of the present disclosure may provide an easy to understand and easy to use means of adjusting and securing the closure of an article of footwear or other item. The lace fixation assemblies and systems of the present disclosure may further allow the use of small-diameter, low-friction lace material that does not require gripping by hand to secure or tighten. The lace fixation assemblies and systems of the present disclosure may further provide a convenient means to store excess lace after tightening while allowing quick and easy release and refastening of the fixation for secondary tension adjustment. The lace fixation assemblies and systems of the present disclosure may further be of a design and material such as plastic or other synthetic material that is economical to produce and to incorporate into existing manufacturing methods.


For example, in a first aspect, a lacing system for tightening an article is disclosed. The lacing system may include or comprise a fixation member coupled to the article, the fixation member having at least one entry aperture and an exit aperture with a lumen extending therebetween, the fixation member also having a spool with a fixation post. In this example, the fixation member may be rigidly fastened to the article. The lumen may include or comprise of a passage, a cavity, a tube structure, or the like. Further, the spool may include or comprise of a flanged cylinder whereby an element may be wound around or to the post. Other embodiments are possible.


The lacing system may further include or comprise a tension member having an intermediate portion slidably disposed within the lumen of the fixation member such that a proximal portion of the tension member is positioned on a proximal side of the fixation member and a distal portion of the tension member is positioned on a distal side of the fixation member and such that a length of the proximal portion and a length of the distal portion is adjustable via sliding of the tension member within the lumen. In this example, the tension member may include or comprise a lace or lacing that has a particular diameter. The tension member may generally be laced to the fixation member, and a length of the tension member protruding or exiting from the fixation member may be adjusted as desired. Other embodiments are possible.


The lacing system may further include or comprise a plurality of guide members coupled to the article on the proximal side of the fixation member to guide the proximal portion of the tension member along the article to the fixation member. In this example, the tension member may generally be laced to each of the plurality of guide members. Other embodiments are possible. The lacing system may further include or comprise a tensioning component coupled to the distal portion of the tension member to effect sliding of the tension member within the lumen and thereby tighten the article by adjusting the length of the proximal portion of the tension member, and to maintain a tightness of the article by winding of the tension member about the fixation post, wherein the tensioning component is securable to the spool of the fixation member. In this example, the tension member together with other elements or features of the example lacing system may be used to tighten the article whereby the tension may be stored to the spool. Other embodiments are possible.


Additionally, or alternatively, the fixation member of the lacing system may include a flange shaped complementary to the panel. Additionally, or alternatively, the lumen of the lacing system may extend between the entry aperture and the exit apertures in an arcuate configuration, so that the lumen may be guided through the fixation member in a gentle manner with minimized frictional resistance. Additionally, or alternatively, the plurality of guide members the lacing system may be configured to direct lacing along the panel of the article with or without overlap to the at least one lacing entry aperture and through the lacing exit aperture. Such a feature may be selected as desired and may be implementation-specific. Additionally, or alternatively, the tensioning component of the lacing system may be a ring-shaped element that may be snap-fit coupleable to the spool protrusion. Additionally, or alternatively, the spool protrusion and the tensioning component of the lacing system may each comprise a plurality of traction members that when engaged inhibit rotation of the tensioning component when the tensioning component is secured to the spool protrusion. Such a feature may prevent unwanted or undesired loosening of the tension member when the tensioning component is positioned to the spool protrusion. Other embodiments are possible.


In another aspect, a lacing system for tightening an article is disclosed. The lacing system may include or comprise first plate coupleable to a first panel of the article and defining at least one lacing entry aperture, a lacing exit aperture, and a keyed protrusion that is positioned to a complementary recess of a second plate of the lacing system to form a groove with a lacing fixation post. In this example, the keyed protrusion and complementary recess may facilitate secure coupling of the first plate with the second plate. Other embodiments are possible. The lacing system may further include or comprise a lacing tensioner coupleable to lacing protruding from the lacing exit aperture and to a periphery of the groove so that the lacing tensioner is securable to the groove when lacing protruding from the lacing exit aperture is wound to the lacing fixation post for tightening the article by pulling together a second panel and a third panel of the article. Other embodiments are possible.


Additionally, or alternatively, the first plate of the lacing system may further define a first plurality of ridged flutes extending radially from the keyed protrusion in a spoke pattern, and the second plate further defining a second plurality of ridged flutes extending radially from the recess in the spoke pattern and offset the first plurality of ridged flutes. Such a feature may maintain lacing tension when lacing protruding from the lacing exit aperture is wound to the lacing fixation post for tightening the article. Additionally, or alternatively, the lacing system may include a plurality of lacing guide members coupleable to the first panel to direct lacing along the first panel to the at least one lacing entry aperture and through the lacing exit aperture. Additionally, or alternatively, the lacing system may include a fastener positioned through an aperture of the keyed protrusion and an aperture of the recess to rigidly secure the keyed protrusion to the recess. Other embodiments are possible.


In another aspect, a method for tightening an article using a lacing system is disclosed. The lacing system may include one or more of the features: a fixation member coupled to the article, the fixation member having at least one entry aperture and an exit aperture with a lumen extending therebetween, and also having a spool with a fixation post; a tension member having an intermediate portion slidably disposed within the lumen of the fixation member so that a proximal portion of the tension member is positioned on a proximal side of the fixation member and a distal portion of the tension member is positioned on a distal side of the fixation member; a plurality of guide members coupled to the article on the proximal side of the fixation member to guide the proximal portion of the tension member along/about the article to the fixation member; and a tensioning component coupled to the distal portion of the tension member. Further, the method may include or comprise tensioning the tension member via the tensioning component to effect sliding of the tension member within the lumen and thereby tighten the article by shortening the length of the proximal portion of the tension member. The method may further include or comprise winding the tension member about the fixation post via the tensioning component to maintain a tightness of the article, wherein the tensioning component is securable to the spool of the fixation member.


Additionally, or alternatively, the method may include or comprise securing the tensioning component to the spool of the fixation member. Such a feature may allow for storage of the tensioning component when not in use. Additionally, or alternatively, the method may include or comprise positioning the tension member to the lumen of the fixation member to lace the tension member to the fixation member. Additionally, or alternatively, the method may include or comprise positioning the tension member to the plurality of guide members to lace the tension member to the plurality of guide members with or without overlap of the tension member. Additionally, or alternatively, the method may include or comprise positioning the tension member to the tensioning component to couple the tension member to the tensioning component. Additionally, or alternatively, the method may include or comprise winding the tension member within a gap about the fixation post that includes a plurality of radially offset ridged flutes to engage and maintain tension to the tension member. Additionally, or alternatively, the method may include or comprise winding excess length of the tension member within a gap about the fixation post to store the excess length of tension member about the fixation post. Other embodiments are possible.


Although not so limited, an appreciation of the various aspects of the present disclosure along with associated benefits and/or advantages may be gained from the following discussion in connection with the drawings.





DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a first lace fixation assembly.



FIG. 2 shows a first plate of the assembly of FIG. 1.



FIG. 3 show a first view of a first and second plate of the assembly of FIG. 1.



FIG. 4 shows a second plate of the assembly of FIG. 1.



FIG. 5 show a second view of a first and second plate of the assembly of FIG. 1.



FIG. 6 shows a tensioning component of the assembly of FIG. 1.



FIGS. 7A-C show various views of a guide member of a first lace fixation system.



FIGS. 8A-C show various views of a first lace fixation system.



FIG. 9 shows a view of another lace fixation system.



FIGS. 10A-D show various views of a second lace fixation assembly.



FIGS. 11A-C show various exploded views of the assembly of FIG. 9.



FIGS. 12A-C show multiple embodiments of the assembly of FIG. 9.



FIG. 13 shows a first cross-section A-A of the assembly of FIG. 9.



FIG. 14 shows a second cross-section B-B of the assembly of FIG. 9.



FIG. 15 shows a view of still another lace fixation system.



FIGS. 16A-B show various views of still another lace fixation system.



FIG. 17 shows a view of still another lace fixation system.



FIG. 18 shows a view of still another lace fixation system.



FIGS. 19A-E show various views of still another lace fixation system.



FIG. 20 shows a view of still another lace fixation system.



FIG. 21 shows a view of still another lace fixation system.



FIG. 22 shows a view of still another lace fixation system.



FIGS. 23A-C show various views of a third lace fixation assembly.



FIGS. 24A-B show various views of a fourth lace fixation assembly.



FIG. 25 shows various views of a fifth lace fixation assembly.





In the appended figures, similar components and/or features may have the same numerical reference label. Further, various components of the same type may be distinguished by following the reference label by a letter that distinguishes among the similar components and/or features. If only the first numerical reference label is used in the specification, the description is applicable to any one of the similar components and/or features having the same first numerical reference label irrespective of the letter suffix.


DETAILED DESCRIPTION

Different methods for closing or tightening shoes or boots and other flexible or semi-rigid panels have evolved over the years. Conventional laces whether led through metal eyelets, webbing loops, or low friction guides, have stood the test of time and remain popular. Mechanical systems using rotary dials, serrated grip surfaces and other designs may provide alternatives to knot-secured laces. Hook and loop engagements as well as elastic straps may also serve well in some applications. Currently available designs though present certain drawbacks. For example, conventional laces require the tying of a knot to secure the tightened adjustment, which obligates the user to untie the knot before any secondary adjustment can be made, unless or until the knot loosens of its own accord, requiring retying. Conventional lace systems are also limited to the use of relatively large diameter laces that are comfortable to grip by hand, the opposite desired characteristics for low-profile, efficient and effective closure. Rotary dials and other mechanical systems eliminate the knot problem and can make use of small diameter laces, but tend to be expensive to manufacture, to the point that they can represent up to 50% of the cost of a given pair of footwear. Some knotless fixation systems self-store excess lace while others require excess lace to be gathered and placed into a pocket on the boot, which is an inconvenient and inelegant solution.


Given the harsh environment of daily use, often in climate extremes, mechanical system latching performance may also be problematic, often when a secure closure is needed most. Hook and loop and elastic systems also suffer performance loss in wet and/or freezing conditions, while being limited in the adjustment range and security of their closure. In addition to fixation issues, many lace systems suffer from excessive friction which can prevent the lace from exerting sufficient closure force in the area farthest from the point where tension is applied. This friction can have many causes including the lace material characteristic, the lace turning guides, the sliding of the lace over high friction surfaces, and also the points at which opposing laces cross over one another. In this aspect of lace function, the dilemma becomes one in which the more tension applied to tighten the closure, the more frictional force is created and the more difficult it becomes to obtain the desired closure. The present disclosure addresses these and other issues by providing a non-complex, inexpensive, non-mechanical, low-friction, knotless closure system with self-storage of excess lace.


For instance, referring now collectively to FIGS. 1-8, first lace fixation assembly 100 and first lace fixation system 102 are shown in accordance with the present disclosure. In general, first assembly 100 includes first plate 104, second plate 106, tensioning component 108, and fastener 110. FIG. 1 for example illustrates these respective components of first assembly 100 in an assembled configuration. First system 102 includes first assembly 100, guide members 112, and tension member 114. FIG. 8A for example shows these respective components of first system 102 in an assembled configuration. In the example embodiment, tension member 114 is laced through first plate 104 of first assembly 100 via arcuate slots 116 that guide ends of tension member 114 from entry apertures 118 to exit aperture 120. FIG. 2 for example illustrates entry apertures 118 and exit aperture 120, and FIG. 3 for example illustrates arcuate slots 116. Tension member 114 is further laced through guide members 112 via opposing grooves 122 so that tension member 114 does not overlap onto itself when laced thereto. Both first assembly 100, at least in part, and guide members 112 are coupled to front panel 124 of boot 126, and tensioning end 128 of tension member 114 is coupled to tensioning component 108 at notch 130 of tensioning component 108. FIGS. 8A-B for example illustrate coupling of first assembly 100 and guide members 112 to boot 126 as well as tension member 114 to tensioning component 108.


In practice, tightening of boot 126 is performed or perfected by application of pulling force to tensioning component 108, forcing first side panel 132 and second side panel 134 of boot 126 together. While maintaining pulling force, tensioning component 108 is used to wrap tension member 114 into channel or groove 136 that is formed between first plate 104 and second plate 106. FIG. 5 for example illustrates groove 136 formed between first plate 104 and second plate 106. Here, initial wrapping of tension member 114 into groove 136 forces tension member 114 into friction gap 138 that has surfaces along the length of which imparts force on tension member 114 when positioned thereto so that tension is generally maintained on tension member 114 when pulling force is removed, as discussed further below. Further wrapping of tension member 114 into groove 136 forces portions of tension member 114 into storage gap 140. Storage gap 140 within groove 136 is therefore generally wider than friction gap 138 as storage gap 140 serves a different purpose than friction gap 138 in that it is used to store excess length of tension member 114. Tension member 114 as wrapped onto itself though within both friction gap 138 and storage gap 140 imparts force on itself when positioned thereto, so that tension is generally maintained on tension member 114 when pulling force is removed.


Wrapping of tension member 114 into groove 136 proceeds until length of tension member 114 protruding from exit aperture 120 is substantially wound into groove 136. Tensioning component 108 is then generally snap-coupled onto first assembly 100 at groove 136. Tensioning component 108 may be decoupled from first assembly 100 by application of leverage similar to that applied when opening a bottle having a cap, and may be used to unwind tension member 114 thereby loosening first side panel 132 and second side panel 134 of boot 126. First side panel 132 and/or second side panel 134 may then be opened to allow exit, or tension reapplied to tension member 114 as desired. Such an implementation may be beneficial or advantageous in many respects. For example, knotting of tension member 114 is not required, excess length of tension member 114 is stored to first assembly 100 without additional steps, and through the use of tensioning component 108, there is no need for a user to physically touch tension member 114. Still other benefits and/or advantages are possible as well.


Referring now specifically to FIGS. 1-6, first lace fixation assembly 100 is shown in accordance with the present disclosure. As mentioned above, first assembly 100 includes first plate 104, second plate 106, tensioning component 108, and fastener 110. When assembled, axle- or post-like keyed portion 142 formed on protrusion 144 of first plate 104, as shown for example in FIG. 2, is positioned to complementary recess 146 of second plate 106, as shown for example in FIG. 4. Additionally, fastener 110 is positioned to both second plate aperture 148 that is adjacent to recess 146 and first plate aperture 150 that is formed within keyed portion 142 to secure first plate 104 with second plate 106. In the example embodiment, keyed portion 142 and recess 146 are star-shaped in cross-section. Other embodiments are however possible, and shape of keyed portion 142 and recess 146 may be implementation-specific. Further, as mentioned above, tensioning component 108 is generally snap-fit coupleable to groove 136 that is formed between first plate 104 and second plate 106. Rotational movement of tensioning component 108 is limited or restricted when positioned to groove 136 by interlock of bumps or ridges 152 formed on both second plate 106 and tensioning component 108, illustrated for example at FIG. 4 and at FIG. 6.


Friction gap 138 within groove 136 is defined by first ridged flutes 154 that extend in a spoke pattern from keyed portion 142 of first plate 104, and second ridged flutes 156 that extend in the spoke pattern from recess 146 of second plate 106. FIG. 2 for example illustrates first ridged flutes 154, and FIG. 4 for example illustrates second ridged flutes 156. It is contemplated that more or fewer ridged flutes may be utilized in any pattern as desired, and further number and shape of first ridged flutes 154 and second ridged flutes 156 may be implementation-specific. In the example embodiment, when first plate 104 is coupled with second plate 106, first ridged flutes 154 and second ridged flutes 156 are rotationally offset from each other so as to form a path for tension member 114 similar to that formed by an interdigitated comb structure. In this instance, however, fingers of the comb structure are interdigitally arranged along a circle. In this manner, first ridged flutes 154 and second ridged flutes 156 are configured and arranged to impart force on tension member 114 when tension member 114 is positioned to friction gap 138 within groove 136, so that tension is generally maintained on tension member 114 when pulling force is removed.


Referring now specifically to FIGS. 7A-C, a particular one of guide members 112 is shown in accordance with the present disclosure. As mentioned above, tension member 114 is laced through guide members 112 via opposing grooves 122 so that tension member 114 does not overlap onto itself. In general, grooves 122 positioned on each side of mounting aperture 158 provide a curved low-friction pathway for tension member 114 as it interfaces with panels 124, 132, and 134 of boot 126, similar to arcuate slots 116 of first plate 104 that provide a low-friction pathway for tension member 114 from entry apertures 118 to exit aperture 120. Whereas a typical lacing pattern may route laces back and forth between opposing panels, with laces crossing each other at various points along the center line of a particular panel, guide members 112 eliminate lace crossing and resulting friction that which may impede closure. It is contemplated that any number of guide members 112 may be employed to realize desired closure characteristics while maintaining the lowest possible lace system friction.


In the present example, with guide members 112 attached to center portion of front panel 124, tension member 114 is guided from first side panel 132 through a particular one of guide members 112, and back to first side panel 132. Similarly, tension member 114 is guided from second side panel 134 through a particular one of guide members 112, and back to second side panel 134. Tension member 114 thus does not overlap onto itself and does not bind, chafe, or create excess friction. It is contemplated that body 160 of guide members 112 may be curved to generally match the shape of front panel 124 or other intermediate panel onto which they are coupled. Further, profile or thickness 162 of guide members 112 may be defined such that tension member 114 is raised above a surface of an intermediate panel to further reduce friction. Various methods may be employed to attach guide members 112 to front panel 124, such as in a manner that allows guide members 112 to self-align under loads presented by tension member 114. Further, in order to facilitate injection molding with minimal tooling complexity, in one embodiment the bearing surface of the guide members 112 may be formed by alternating grooves in top and bottom surfaces. This arrangement may sufficiently capture tension member 114, keeping tension member 114 bearing upon the desired radius surface, while not requiring any sliding elements in the injection mold.


Referring now to FIG. 9, another lace fixation system 902 is shown in accordance with the present disclosure. System 902 is similar to first lace fixation system 102 as described above in many respects. For example, system 902 includes first lace fixation assembly 100 of at least FIG. 1 coupled to front panel 904 of boot 906. In the example embodiment, however, tension member 908 is laced through guide members 910 so as to overlap or cross itself. Guide members 910 in FIG. 9 are webbing or fabric strips that are sewn or otherwise coupled to panels of the article. The webbing or fabric strips 910 include loops through which the tension member 908 is inserted. The webbing or fabric strips 910 may be angled or directed to guide the tension member 908 about the article as desired. In practice though, tightening of boot 906 using first assembly 100 may be performed in a manner similar to that described above. Further, FIG. 9 demonstrates flexibility of first assembly 100 in that tensioning component 108 may be coupled to groove 136 (e.g., see FIG. 5) that is formed between first plate 104 and second plate 106 without orientation-specific keying. In other words, tensioning component 108 may be coupled to groove 136 in any particular orientation. For example, FIG. 8C illustrates tensioning component 108 positioned to groove 136 so that notch 130 is orientated towards guide members 112. In contrast, FIG. 9 illustrates tensioning component 108 positioned to groove 136 so that notch 130 is orientated away from guide members 910.


Referring now to FIGS. 10A-16B, second lace fixation assembly 1000 and second lace fixation system 1002 are shown in accordance with the present disclosure. In general, second assembly 1000 includes plate 1004 and tensioning component 1006. FIG. 10B for example illustrates these respective components of second assembly 1000 in an assembled configuration. Second system 1002 includes second assembly 1000, guide members 1008, and tension member 1010. FIG. 15 for example illustrates these respective components of second system 1002 in an assembled configuration. In the example embodiment, tension member 1010 is laced through plate 1004 of second assembly 1000 via plate apertures 1011 that guide tension member 1010 through plate 1004, and further is laced through guide members 1008 so that tension member 1010 overlaps onto itself. FIG. 12C for example illustrates plate apertures 1011, and FIG. 15 and FIG. 16A for example illustrate lacing of tension member 1010 through guide members 1008 that are coupled to boot 1014, and lacing of tension member 1010 through plate 1004, respectively. Other embodiments though are possible. For example, it is contemplated that guide members 112 as discussed above may be used in place of guide members 1008.


Both second assembly 1000, at least in part, and guide members 1008 are coupled to front panel 1012 of boot 1014, and tensioning end 1016 of tension member 1010 is coupled to tensioning component 1006 at component apertures 1018. FIGS. 11A-B for example illustrate component apertures 1018 of tensioning component 1006, and FIG. 16A for example illustrates tensioning end 1016 of tension member 1010 coupled to tensioning component 1006. In the example embodiment, component apertures 1018 flare open into elongated slots on bottom side 1005 of tensioning component 1006 to gently guide tension member 1010 therethrough, and plate 1004 includes primary surface 1007 that may be curved to at least partially conform to shape of panel 1012 of boot 1014, similar to first plate 104 of first assembly 100 shown at least in FIG. 1.


In practice, tightening of boot 1014 is performed or perfected by application of pulling force to tensioning component 1006, forcing first side panel 1020 and second side panel 1022 of boot 1014 together. While maintaining pulling force, tensioning component 1006 is used to wrap tension member 1010 into channel or groove 1024 formed by plate 1004. FIG. 10B for example illustrates groove 1024 formed by plate 1004. Wrapping of tension member 1010 tightly onto itself within groove 1024 fixes tension member 1010 in place, so that tension is generally maintained on tension member 1010 when pulling force is removed. Wrapping of tension member 1010 into groove 1024 proceeds until length of tension member 1010 protruding from component apertures 1018 is substantially wrapped into groove 1024. Tensioning component 1006 is then snap-coupled onto flange 1026 of plate 1004 so that locking surface 1028 of at least one flexible tab 1030 of tensioning component 1006 engages with locking surface 1032 of flange 1026 adjacent to groove 1024. FIG. 14 in a particular instance illustrates tensioning component 1006 snap-coupled onto flange 1026 of plate 1004. In the example embodiment, tensioning component 1006 may subsequently be decoupled from plate 1004 by application of leverage to tensioning component 1006 similar to that of opening certain types of aspirin containers for example, and may be used to unwind tension member 1010, thereby releasing force imparted on first side panel 1020 and second side panel 1022 of boot 1014. First side panels 1020 and/or second side panel 1022 may then be opened to allow exit, or tension reapplied to tension member 1010 as desired. Such an implementation may be beneficial or advantageous in many respects, including at least those discusses above in connection with first assembly 100.


Further, referring now specifically to FIGS. 16A-B, flexibility of second assembly 1000 is demonstrated in that tension member 1010 may be laced through plate 1004 of second assembly 1000 in a particular direction as desired. For example, FIG. 16A illustrates tension member 1010 laced through plate 1004 of second assembly 1000 in a direction extending away from front end of shoe 1014, so that tightening of shoe 1014 is perfected by application of pulling force generally in direction A. In contrast, FIG. 16B illustrates tension member 1010 laced through plate 1004 of second assembly 1000 in a direction extending towards front end of boot 1014, so that tightening of boot is perfected by application of pulling force generally in direction B.


Referring now specifically to FIGS. 11-14, second lace fixation assembly 1000 is shown in accordance with the present disclosure. FIGS. 12A-C in particular show second assembly 1000 in varying dimension, generally increasing in size from FIG. 12A proceeding in order to FIG. 12C. As mentioned above, second assembly 1000 includes plate 1004 and tensioning component 1006. When assembled, keyed aperture 1034 formed within flange 1026 of plate 1004 is positioned to complementary post 1036 of tensioning component 1006. FIG. 11A and FIG. 11B for example illustrate keyed aperture 1034 formed within flange 1026 of plate 1004, and post 1036 of tensioning component 1006. In the example embodiment, keyed aperture 1034 and post 1036 are peripherally notched. Other embodiments are however possible. Tensioning component 1006 is snap-fit coupleable to keyed aperture 1034 formed within flange 1026 of plate 1004 by at least one flexible tab 1030 of tensioning component 1006 that has locking surface 1028 that engages with locking surface 1032 of flange 1026 adjacent groove 1024. FIG. 14 for example illustrates flexible tab 1030 of tensioning component 1006 that has locking surface 1028 that engages with locking surface 1032 of flange 1026 adjacent to groove 1024. In the example embodiment, rotational movement of tensioning component 1006 when coupled to plate 1004 is limited or restricted because post 1036 is rigidly fixed to plate 1004 at mounting surface 1038.


Referring now to FIG. 17, still another lace fixation system 1702 is shown in accordance with the present disclosure. System 1702 is similar to second lace fixation system 1002 as described above in many aspects. For example, system 1702 includes second lace fixation assembly 1000 of at least FIG. 10 coupled to panel 1704 of item 1706. In this example, however, second assembly 1000 is not coupled to a central panel of item 1706, and further tension member 1708 is alternately laced through guide members 1710 terminating at end 1712. In practice though, tightening of item 1706 using second assembly 1000 may be performed in a manner similar to that described above. Further, FIG. 17 demonstrates flexibility of second assembly 1000 in that second assembly 1000 may generally be coupled to a particular item at any location as desired, such as to an eyestay of a shoe as illustrated in FIG. 17. Termination at end 1712 as shown in FIG. 17 may increase the tension imparted to tension member 1708 as the system is used to close item 1706. Still other lace fixation systems embodiments are possible.


For example, referring now to FIG. 18, still another lace fixation system 1802 is shown in accordance with the present disclosure. System 1802 is similar to second lace fixation system 1002 as described above in many aspects. For example, system 1802 includes first instance 1000a of second lace fixation assembly 1000 of at least FIG. 10 coupled to first panel 1804 of item 1806. In this example, however, system 1802 further includes second instance 1000b of second lace fixation assembly 1000 coupled to second panel 1808 of item 1804, and tension member 1810 is coupled to fixed guide 1812 positioned to central panel 1814 of item 1806. In some embodiments, first instance 1000a of second assembly 1000 and second instance 1000b of second assembly 1000 may be sized differently, for example as illustrated in FIG. 12. Such an implementation as shown in FIG. 18 may be an example of a zone or zonal tightening system, whereby tension imparted on first length 1816 of tension member 1808 may be controlled by first instance 1000a of second assembly 1000, and tension imparted on second length 1818 of tension member 1808 may be controlled by second instance 1000b of second assembly 1000. Tension member 1810 may be fixedly coupled with fixed guide 1812 (i.e., the tension member 1810 may be prevented from sliding through guide 1812) to allow zonal tensioning of a proximal and distal portion of item 1806. Still other lace fixation system embodiments are possible.


For example, referring now to FIGS. 19A-E, still another lace fixation system 1902 is shown in accordance with the present disclosure. System 1902 is similar to second lace fixation system 1002 as described above in many aspects. For example, system 1902 includes embodiment 1000a of second lace fixation assembly 1000 of at least FIG. 10 coupled to panel 1904 of item 1906. In this example, however, system 1902 includes tension member 1908 coupled to fixed guide 1910 positioned to central panel 1912 of item 1906. As shown in the sequence of FIGS. 19A-E, tension member 1908 may be positioned to guide members 1914 and fixed guide 1910 so that tension member 1908 may be wrapped and coupled to embodiment 1000a of second assembly 1000 in a manner such as described above. In particular, tension member 1908 may be initially laced to guide member 1914a and guide member 1914b positioned in a lower portion of the item, and then laced through fixed guide 1910 as shown in FIG. 19C, such as by inserting tension member 1908 through a lumen of fixed guide 1910. Tensioning component 1006 may then be pulled in direction X to apply tension to first length 1916 of tension member 1908, thereby pulling the lower portion of side panel 1918 and side panel 1920 together. Tension member 1908 may then be wrapped around a post of fixed guide 1910 to lock or maintain a tension of first length 1916 of tension member 1908 and thereby secure the lower portion in a tightened arrangement. Tension member 1908 may then be laced to guide member 1914c and guide member 1914d in an upper portion of the item. Tensioning component 1006 may then be pulled in direction Y to apply tension to second length 1922 of tension member 1908, thereby pulling the upper portion of side panel 1918 and side panel 1920 together. Tension member 1908 may then be wrapped into channel or groove 1024 formed by plate 1004 to lock or maintain a tension of second length 1922 of tension member 1908 and thereby secure the upper portion in a tightened arrangement. Such an implementation as shown in FIGS. 19A-E may be an example of a zone or zonal tightening system, whereby tension imparted on first length 1916 of tension member 1908 may be controlled or maintained due to coupling of tension member 1908 to fixed guide 1910, and tension imparted on second length 1922 of tension member 1908 may be controlled or maintained due to coupling of tension member 1908 to plate 1004. Still many other lace fixation system embodiments are possible.


Referring now to FIG. 20, still another lace fixation system 2002 is shown in accordance with the present disclosure. System 2002 is similar to both first lace fixation system 102 and second lace fixation system 1002 as described above in many respects. For example, system 2002 includes first lace fixation assembly 100 of at least FIG. 1 coupled to first panel 2004 of item 2006, and also includes second lace fixation assembly 1000 of at least FIG. 10 coupled to second panel 2008 of item 2006. In this example, however, system 2002 includes first tension member 2010 coupled to first assembly 100 in a manner similar to that described above, and also includes second tension member 2012 coupled to second assembly 1000 in a manner similar to that described above. Here, second tension member 2012 is shown partially in phantom line as a portion of second tension member 2012 is routed generally underneath outer shell 2014 of item 2006, such as through tubing positioned under the upper of a boot. Such an implementation may be another example of a zone or zonal tightening system, whereby tension imparted on first tension member 2010 may be controlled by first assembly 100, and tension imparted on second tension member 2012 may be controlled by second assembly 1000. In the illustrated embodiment, first tension member 2010 and first assembly 100 is used to tighten an upper portion of a boot while second tension member 2012 and second lace fixation assembly 1000 is used to tighten a lower portion of a boot. Still other lace fixation system embodiments are possible.


Referring now to FIG. 21, still another lace fixation system 2102 is shown in accordance with the present disclosure. System 2102 is similar to second lace fixation system 1002 as described above in many respects. For example, system 2102 includes second lace fixation assembly 1000 of at least FIG. 10 coupled to panel 2104 of item 2006. In this example, however, second assembly 1000 is not coupled to a central or offset panel of item 2106, and instead is coupled to rear portion 2108 of item 2106, such as heel portion of a shoe. Further, tension member 2110 is laced to second assembly 1000 at a point furthest possible from guide members 2112 of item 2106, such as by being routed through tubing coupled with and/or positioned under an upper material layer of the shoe. In practice though, tightening of item 2106 using second assembly 1000 may be performed in a manner similar to that described above. Further, FIG. 21 demonstrates flexibility of second assembly 1000 in that second assembly 1000 may generally be coupled to a particular item at any location as desired. Still other lace fixation system embodiments are possible.


Referring now to FIG. 22, still another lace fixation system 2202 is shown in accordance with the present disclosure. System 2202 is similar to lace fixation system 2002 of FIG. 20 as described above in many respects. In this example, however, system 2202 exhibits an alternate embodiment of first lace fixation assembly 100. In particular, lace fixation assembly 2204 coupled to first panel 2206 of item 2208 includes reel assembly mechanism 2210 having a knob or dial component 2212 that is rotatable in a first direction (e.g., clockwise) to wind the tension member 2216 about a channel or groove of a spool (not shown) positioned under the knob 2212 and within a housing 2214 of the reel assembly mechanism 2210. The tension member 2216 is laced and/or positioned around one or more guides of an upper portion of item 2208 (i.e., boot). The reel assembly mechanism 2210 is used to tighten the upper portion of item 2208 by tensioning the tension member 2216 via reel assembly mechanism 2210. In some embodiments, the reel assembly mechanism 2210 may be rotated in a second direction (i.e., counter-clockwise) to loosen the tension in tension member 2216 and thereby loosen the upper portion of item 2208. In other embodiments, the knob 2212 may be grasped and moved axially upward to disengage internal components of reel assembly mechanism 2210 and thereby release the tension on tension member 2216. Second assembly 1000 may be used to tension a lower portion of item 2208 as described in the embodiment of FIG. 20. Still other lace fixation assembly embodiments are possible.


For example, referring now to FIGS. 23A-C, third lace fixation assembly 2300 is shown in accordance with the present disclosure. In the example embodiment, tension member 2302 is laced through plate 2304 of third assembly 2300 via lumen or passage 2306 that guides tension member 2302 through plate 2304, and tensioning end 2308 of tension member 2302 is coupled to tensioning component 2310 at component apertures 2312. As shown in particular by the sequence of FIG. 23C, tensioning component 2310 may initially be pulled in direction C so that tension member 2302 in turn is pulled through passage 2306. Tensioning component 2310 may then be flipped or positioned back over plate 2304 whereby portions of tension member 2302 are engaged with ridged friction surfaces 2314 within channel 2316 of plate 2304. The ridged friction surfaces 2314 engage with tension member 2302 to lock or otherwise maintain the tension member 2302 in a tensioned stated.



FIG. 23A and FIG. 23B too for example illustrates portions of tension member 2302 engaged with ridged friction surfaces 2314 within channel 2316 of plate 2304. Tensioning component 2310 may then be pulled in direction D that is generally opposite direction C so that slack of tension member 2302 is taken up and portions of tension member 2302 are fully engaged with ridged friction surfaces 2314 within channel 2316 to lock or otherwise maintain the tension member 2302 in the tensioned stated. Tensioning component 2310 may then be used to wrap tension member 2302 within second channel 2318 of plate 2304 in rotational direction E and then snap-coupled to flange 2138 of plate 2304 in a manner similar to that described above in connection with tensioning component 1006. Second channel 2318 may be separated from channel 2316 via a flange or other partition member. In the example embodiment, plate 2304 and tensioning component 2310 of at least FIG. 23 are configured in a manner substantially similar to plate 1004 tensioning component 1006 of at least FIG. 10A-D, with at least the exception of ridged friction surfaces 2314. Still other lace fixation assembly embodiments are possible.


Referring now to FIGS. 24A-B, fourth lace fixation assembly 2400 is shown in accordance with the present disclosure. In the example embodiment, fourth assembly 2400 is substantially similar to second lace fixation assembly 1002 as described above. Fourth assembly 2400 though is configured to exhibit coiler functionality. As shown in particular by the sequence of FIG. 24B, tensioning component 1006 may initially be pulled in direction F so that tension member 1010 in turn is pulled through plate 1004. Post 2402 of plate 1004 may then be rotated in direction G to pull and wind tension member 1010 to groove 1024 formed by plate 1004 (e.g., see FIG. 10). Tensioning component 1006 may then be snap-coupled onto flange 1026 of plate 1004 in manner as described above. In the example embodiment, post 2402 of plate 1004 may be configured and arranged as a rotary dial having a clock spring or spiral-wound torsion spring so that tension member 1010 may be automatically wound to groove 1024 formed by plate 1004 without a user having to use tensioning component 1006 to wrap tension member 1010 to groove 1024 as describe above. In this manner, the user may simply pull tensioning component 1006 in direction F and then release tensioning component 1006 or gently guide tensioning component 1006 as post 2402 automatically rotates in direction G to wind tension member 1010 about groove 1024. In other embodiments, the user may rotate post 2402 in direction G to wind the tension member 1010 about groove 1024. In some embodiments, post 2402 may further be configured and arranged to exhibit push-to-lock/pull-to-unlock functionality whereby when tension member 1010 is fully wrapped to groove 1024 tensioning component 1006 may be pressed to lock second assembly 1002. A reverse operation may be performed to unlock second assembly 1002 so that tension member 1010 may be unwound from groove 1024. Still other lace fixation assembly embodiments are possible.


Referring now to FIG. 25, fifth lace fixation assembly 2500 is shown in accordance with the present disclosure. In the example embodiment, fifth lace fixation assembly 2500 is substantially similar to second lace fixation assembly 1002 as described above. Fifth assembly 2500 though is configured to exhibit incremental tightening/loosening functionality. For example, as shown in particular by the sequence of FIG. 25, tensioning component 1006 may initially be pulled in direction H so that tension member 1010 in turn is pulled through plate 1004. Tensioning component 1006 may then be used to wrap tension member 1010 to groove 1024 and then snap-coupled onto flange 1026 of plate 1004 in manner as described above. Subsequently, a fine tuning operation may be performed to increase or release tension on tension member 1010. In particular, tensioning component 1006 may be incrementally rotated in a clockwise direction in a fixed ratcheting motion to increase tension on tension member 1010, or incrementally rotated in a counterclockwise direction in the fixed ratcheting motion to release tension on tension member 1010. In the example embodiment, post 2402 of plate 1004 (e.g., see FIG. 24) may be configured and arranged as a ratcheted rotary dial so that tension on tension member 1010 may be increased or decreased as desired, without having to decouple tensioning component 1006 from plate 1004.


Although the various disclosed lace fixation assemblies and systems are described in the context of a closure system for footwear or other panels desired to be closed toward one another, it will be appreciated that the designs may be optimized for a variety of other uses in which a lace or cord is desired to be removably secured at various tension levels or adjustment lengths. Examples include: a) fixation of high tensile rigging aboard ships, allowing for easy adjustment of a given line with secure fixation, b) orthopedic bracing products, c) garment closures, d) equestrian accessories, e) wakeboard boots, f) kitesurfing line adjustments, g) backpack and luggage closures.


Having described several embodiments, it will be recognized by those of skill in the art that various modifications, alternative constructions, and equivalents may be used without departing from the spirit of the invention. Additionally, a number of well-known processes and elements have not been described in order to avoid unnecessarily obscuring the present invention. Accordingly, the above description should not be taken as limiting the scope of the invention.


As used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a process” includes a plurality of such processes and reference to “the device” includes reference to one or more devices and equivalents thereof known to those skilled in the art, and so forth. Also, the words “comprise,” “comprising,” “include,” “including,” and “includes” when used in this specification and in the following claims are intended to specify the presence of stated features, integers, components, or steps, but they do not preclude the presence or addition of one or more other features, integers, components, steps, acts, or groups.

Claims
  • 1. A lacing system for tightening an article, comprising: a fixation member coupled to the article, the fixation member having at least one entry aperture and an exit aperture with a lumen extending therebetween, the fixation member also having a spool with a fixation post;a tension member having an intermediate portion slidably disposed within the lumen of the fixation member such that a proximal portion of the tension member is positioned on a proximal side of the fixation member and a distal portion of the tension member is positioned on a distal side of the fixation member and such that a length of the proximal portion and a length of the distal portion is adjustable via sliding of the tension member within the lumen;a plurality of guide members coupled to the article on the proximal side of the fixation member to guide the proximal portion of the tension member along the article to the fixation member;a tensioning portion of the tension member to effect sliding of the tension member within the lumen and thereby tighten the article by adjusting the length of the proximal portion of the tension member, and to maintain a tightness of the article by winding of the tension member about the fixation post, wherein the tensioning portion is securable to the spool of the fixation member, wherein the plurality of guide members direct the tension member along a panel of the article to the at least one entry aperture, and wherein the tension members overlaps itself along the panel; andwherein the tensioning portion is a tensioning component that is snap-fit coupleable about the spool.
  • 2. The system of claim 1, wherein the fixation member further includes a flange shaped complementary to the article.
  • 3. The system of claim 1, wherein the lumen extending between the entry aperture and the exit apertures includes an arcuate configuration.
  • 4. The system of claim 1, wherein the tensioning portion is ring-shaped.
  • 5. The system of claim 1, wherein the spool and the tensioning component each comprise a plurality of traction members that when engaged inhibit rotation of the tensioning component when the tensioning component is secured about the spool.
  • 6. A lacing system for tightening an article, comprising: a fixation member coupled to the article, the fixation member having an entry aperture, an exit aperture, and a fixation post that is accessible from an exterior of the fixation member;a tension member having a proximal portion positioned on a proximal side of the fixation member, a distal portion positioned on a distal side of the fixation member, and an intermediate portion slidably disposed within the fixation member, wherein a length of the proximal portion and a length of the distal portion is adjustable via sliding of the tension member within the fixation member;a plurality of guide members coupled to the article on the proximal side of the fixation member to guide the proximal portion of the tension member along the article;a tensioning portion of the tension member that effects sliding of the tension member within the fixation member and thereby tightens the article by adjusting the length of the proximal portion of the tension member, and that maintains a tightness of the article by winding of the tension member about the fixation post from the exterior of the fixation member; andwherein the tensioning portion comprises a component that is snap-fit coupleable about the fixation member.
  • 7. The system of claim 6, wherein the tensioning portion is securable to the fixation member.
  • 8. The system of claim 6, wherein the tensioning portion is a component that is coupled to the distal portion of the tension member.
  • 9. A lacing system for tightening an article, comprising: a fixation member coupled to the article, the fixation member having at least one entry aperture and an exit aperture with a lumen extending therebetween, the fixation member also having a spool with a fixation post, the fixation post being accessible from an exterior of the fixation member;a tension member having an intermediate portion slidably disposed within the lumen of the fixation member such that a proximal portion of the tension member is positioned on a proximal side of the fixation member and a distal portion of the tension member is positioned on a distal side of the fixation member and such that a length of the proximal portion and a length of the distal portion is adjustable via sliding of the tension member within the lumen;a plurality of guide members coupled to the article on the proximal side of the fixation member to guide the proximal portion of the tension member along the article to the fixation member;a tensioning portion of the tension member to effect sliding of the tension member within the lumen and thereby tighten the article by adjusting the length of the proximal portion of the tension member, and to maintain a tightness of the article by winding of the tension member about the fixation post from the exterior of the fixation member, wherein the tensioning portion is securable to the spool of the fixation member; andwherein the tensioning portion is a tensioning component that is snap-fit coupleable about the spool.
  • 10. The system of claim 9, wherein the fixation member further includes a flange shaped complementary to the article.
  • 11. The system of claim 9, wherein the lumen extending between the entry aperture and the exit apertures includes an arcuate configuration.
  • 12. The system of claim 9, wherein the plurality of guide members direct the tension member along a panel of the article without overlap to the at least one entry aperture.
  • 13. The system of claim 9, wherein the plurality of guide members direct the tension member along a panel of the article to the at least one entry aperture, and wherein the tension members overlaps itself along the panel.
  • 14. The system of claim 9, wherein the tensioning portion is ring-shaped.
  • 15. The system of claim 9, wherein the spool and the tensioning component each comprise a plurality of traction members that when engaged inhibit rotation of the tensioning component when the tensioning component is secured about the spool.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application No. 61/757,692, filed Jan. 28, 2013, entitled LACE FIXATION SYSTEM WITH LOW FRICTION GUIDES, the entirety of which is incorporated by reference for all purposes.

US Referenced Citations (449)
Number Name Date Kind
59332 White et al. Oct 1866 A
80834 Prussia Aug 1868 A
117530 Foote Aug 1871 A
228946 Schulz Jun 1880 A
230759 Drummond Aug 1880 A
379113 Hibberd Mar 1888 A
746563 McMahon Dec 1903 A
819993 Haws et al. May 1906 A
908704 Sprinkle Jan 1909 A
1170472 Barber Feb 1916 A
1288859 Feller et al. Dec 1918 A
1390991 Fotchuk Sep 1921 A
1393188 Whiteman Oct 1921 A
1412486 Paine Apr 1922 A
1416203 Hobson May 1922 A
1429657 Trawinski Sep 1922 A
1466673 Solomon et al. Sep 1923 A
1469661 Tosuke Oct 1923 A
1481903 Hart Jan 1924 A
1502919 Seib Jul 1924 A
1530713 Clark Mar 1925 A
1862047 Boulet et al. Jun 1932 A
1995243 Clarke Mar 1935 A
2088851 Gantenbein Aug 1937 A
2109751 Matthias et al. Mar 1938 A
2124310 Murr, Jr. Jul 1938 A
2316102 Preston Apr 1943 A
2539026 Mangold Jan 1951 A
2611940 Cairns Sep 1952 A
2673381 Dueker Mar 1954 A
2907086 Ord Oct 1959 A
2991523 Del Conte Jul 1961 A
3028602 Miller Apr 1962 A
3035319 Wolff May 1962 A
3106003 Herdman Oct 1963 A
3112545 Williams Dec 1963 A
3122810 Lawrence et al. Mar 1964 A
3163900 Martin Jan 1965 A
D200394 Hakim Feb 1965 S
3169325 Fesl Feb 1965 A
3193950 Liou Jul 1965 A
3197155 Chow Jul 1965 A
3221384 Aufenacker Dec 1965 A
3276090 Nigon Oct 1966 A
D206146 Hendershot Nov 1966 S
3345707 Rita Oct 1967 A
D210649 Getgay Apr 1968 S
3401437 Christpohersen Sep 1968 A
3430303 Perrin et al. Mar 1969 A
3491465 Martin Jan 1970 A
3545106 Martin Dec 1970 A
3618232 Shnuriwsky Nov 1971 A
3668791 Salzman et al. Jun 1972 A
3678539 Graup Jul 1972 A
3703775 Gatti Nov 1972 A
3729779 Porth May 1973 A
3738027 Schoch Jun 1973 A
3793749 Gertsch et al. Feb 1974 A
3808644 Schoch May 1974 A
3934346 Sasaki et al. Jan 1976 A
3975838 Martin Aug 1976 A
4084267 Zadina Apr 1978 A
4130949 Seidel Dec 1978 A
4142307 Martin Mar 1979 A
4227322 Annovi Oct 1980 A
4261081 Lott Apr 1981 A
4267622 Burnett-Johnston May 1981 A
4408403 Martin Oct 1983 A
4417703 Weinhold Nov 1983 A
4433456 Baggio Feb 1984 A
4463761 Pols et al. Aug 1984 A
4480395 Schoch Nov 1984 A
4507878 Semouha Apr 1985 A
4516576 Kirchner May 1985 A
4551932 Schoch Nov 1985 A
4555830 Petrini et al. Dec 1985 A
4574500 Aldinio et al. Mar 1986 A
4616432 Bunch et al. Oct 1986 A
4616524 Bidoia Oct 1986 A
4619057 Sartor et al. Oct 1986 A
4620378 Sartor Nov 1986 A
4631839 Bonetti et al. Dec 1986 A
4631840 Gamm Dec 1986 A
4633599 Morell et al. Jan 1987 A
4644938 Yates et al. Feb 1987 A
4654985 Chalmers Apr 1987 A
4660300 Morell et al. Apr 1987 A
4660302 Arieh et al. Apr 1987 A
4680878 Pozzobon et al. Jul 1987 A
4719670 Kurt Jan 1988 A
4719709 Vaccari Jan 1988 A
4719710 Pozzobon Jan 1988 A
4722477 Floyd Feb 1988 A
4741115 Pozzobon May 1988 A
4748726 Schoch Jun 1988 A
4760653 Baggio Aug 1988 A
4780969 White, Jr. Nov 1988 A
4787124 Pozzobon et al. Nov 1988 A
4790081 Benoit et al. Dec 1988 A
4796829 Pozzobon et al. Jan 1989 A
4799297 Baggio et al. Jan 1989 A
4802291 Sartor Feb 1989 A
4811503 Iwama Mar 1989 A
4826098 Pozzobon et al. May 1989 A
4841649 Baggio et al. Jun 1989 A
4856207 Datson Aug 1989 A
4862878 Davison Sep 1989 A
4870723 Pozzobon et al. Oct 1989 A
4870761 Tracy Oct 1989 A
4884760 Baggio et al. Dec 1989 A
4901938 Cantley et al. Feb 1990 A
4924605 Spademan May 1990 A
D308282 Bergman et al. Jun 1990 S
4937953 Walkhoff Jul 1990 A
4961544 Bidoia Oct 1990 A
4979953 Spence Dec 1990 A
4989805 Burke Feb 1991 A
5001817 De Bortoli et al. Mar 1991 A
5016327 Klausner May 1991 A
5042177 Schoch Aug 1991 A
5062225 Gorza Nov 1991 A
5065480 DeBortoli Nov 1991 A
5065481 Walkhoff Nov 1991 A
5108216 Geyer et al. Apr 1992 A
5117567 Berger Jun 1992 A
5152038 Schoch Oct 1992 A
5157813 Carroll Oct 1992 A
5158428 Gessner et al. Oct 1992 A
5177882 Berger Jan 1993 A
5181331 Berger Jan 1993 A
5184378 Batra Feb 1993 A
D333552 Berger et al. Mar 1993 S
5205055 Harrell Apr 1993 A
5233767 Kramer Aug 1993 A
5249377 Walkhoff Oct 1993 A
5259094 Zepeda Nov 1993 A
5315741 Dubberke May 1994 A
5319868 Hallenbeck Jun 1994 A
5319869 McDonald et al. Jun 1994 A
5325613 Sussmann Jul 1994 A
5327662 Hallenbeck Jul 1994 A
5335401 Hanson Aug 1994 A
5341583 Hallenbeck Aug 1994 A
5345697 Quellais Sep 1994 A
5355596 Sussmann Oct 1994 A
5357654 Hsing-Chi Oct 1994 A
5371957 Gaudio Dec 1994 A
5381609 Hieblinger Jan 1995 A
5392535 Van Noy et al. Feb 1995 A
D357576 Steinweis Apr 1995 S
5425161 Schoch Jun 1995 A
5425185 Gansler Jun 1995 A
5430960 Richardson Jul 1995 A
5433648 Frydman Jul 1995 A
5463822 Miller Nov 1995 A
5477593 Leick Dec 1995 A
D367755 Jones Mar 1996 S
D367954 Dion Mar 1996 S
5502902 Sussmann Apr 1996 A
5511325 Hieblinger Apr 1996 A
5526585 Brown et al. Jun 1996 A
5535531 Karabed et al. Jul 1996 A
5537763 Donnadieu et al. Jul 1996 A
5557864 Marks Sep 1996 A
5566474 Leick et al. Oct 1996 A
D375831 Perry Nov 1996 S
5596820 Edauw et al. Jan 1997 A
5599000 Bennett Feb 1997 A
5599288 Shirley et al. Feb 1997 A
5600874 Jungkind Feb 1997 A
5606778 Jungkind Mar 1997 A
5607448 Stahl et al. Mar 1997 A
D379113 McDonald et al. May 1997 S
5638588 Jungkind Jun 1997 A
5640785 Egelja Jun 1997 A
5647104 James Jul 1997 A
5651198 Sussmann Jul 1997 A
5669116 Jungkind Sep 1997 A
5692319 Parker et al. Dec 1997 A
5718021 Tatum Feb 1998 A
5718065 Locker Feb 1998 A
5720084 Chen Feb 1998 A
5732483 Cagliari Mar 1998 A
5732648 Aragon Mar 1998 A
5736696 Del Rosso Apr 1998 A
5737854 Sussmann Apr 1998 A
5755044 Veylupek May 1998 A
5756298 Burczak May 1998 A
5761777 Leick Jun 1998 A
5772146 Kawamoto et al. Jun 1998 A
5784809 McDonald Jul 1998 A
5791068 Bernier et al. Aug 1998 A
5819378 Doyle Oct 1998 A
5833640 Vazquez, Jr. et al. Nov 1998 A
5839210 Bernier et al. Nov 1998 A
5845371 Chen Dec 1998 A
5909946 Okajima Jun 1999 A
D413197 Faye Aug 1999 S
5934599 Hammerslag Aug 1999 A
5937542 Bourdeau Aug 1999 A
5956823 Borel Sep 1999 A
5971946 Quinn et al. Oct 1999 A
6015110 Lai Jan 2000 A
6038791 Cornelius et al. Mar 2000 A
6052921 Oreck Apr 2000 A
6070886 Cornelius et al. Jun 2000 A
6070887 Cornelius et al. Jun 2000 A
6083857 Bottger et al. Jul 2000 A
6088936 Bahl Jul 2000 A
6102412 Staffaroni Aug 2000 A
D430724 Matis et al. Sep 2000 S
6119318 Maurer Sep 2000 A
6119372 Okajima Sep 2000 A
6128835 Ritter et al. Oct 2000 A
6128836 Barret Oct 2000 A
6148489 Dickie et al. Nov 2000 A
6202953 Hammerslag Mar 2001 B1
6219891 Maurer et al. Apr 2001 B1
6240657 Weber et al. Jun 2001 B1
6256798 Egolf et al. Jul 2001 B1
6267390 Maravetz et al. Jul 2001 B1
6286233 Gaither Sep 2001 B1
6289558 Hammerslag Sep 2001 B1
6311633 Keire Nov 2001 B1
D456130 Towns Apr 2002 S
6370743 Choe Apr 2002 B2
6401364 Burt Jun 2002 B1
6416074 Maravetz et al. Jul 2002 B1
6467195 Pierre et al. Oct 2002 B2
6477793 Pruitt et al. Nov 2002 B1
6502286 Dubberke Jan 2003 B1
6543159 Carpenter et al. Apr 2003 B1
6568103 Durocher May 2003 B2
6606804 Kaneko et al. Aug 2003 B2
6694643 Hsu Feb 2004 B1
6708376 Landry Mar 2004 B1
6711787 Jungkind et al. Mar 2004 B2
6735829 Hsu May 2004 B2
6757991 Sussmann Jul 2004 B2
6775928 Grande et al. Aug 2004 B2
6792702 Borsoi et al. Sep 2004 B2
6802439 Azam et al. Oct 2004 B2
6823610 Ashley Nov 2004 B1
6871812 Chang Mar 2005 B1
6877256 Martin et al. Apr 2005 B2
6899720 McMillan May 2005 B1
6922917 Kerns et al. Aug 2005 B2
6938913 Elkington Sep 2005 B2
6945543 De Bertoli et al. Sep 2005 B2
D510183 Tresser Oct 2005 S
6976972 Bradshaw Dec 2005 B2
6993859 Martin et al. Feb 2006 B2
D521226 Douglas et al. May 2006 S
7073279 Min Jul 2006 B2
7076843 Sakabayashi Jul 2006 B2
7082701 Dalgaard et al. Aug 2006 B2
7096559 Johnson et al. Aug 2006 B2
7134224 Elkington et al. Nov 2006 B2
7266911 Holzer et al. Sep 2007 B2
7281341 Reagan et al. Oct 2007 B2
7293373 Reagan et al. Nov 2007 B2
7331126 Johnson Feb 2008 B2
7343701 Pare et al. Mar 2008 B2
7367522 Chen May 2008 B2
7386947 Martin et al. Jun 2008 B2
7392602 Reagan et al. Jul 2008 B2
7401423 Reagan et al. Jul 2008 B2
7490458 Ford Feb 2009 B2
7568298 Kerns Aug 2009 B2
7582102 Heinz et al. Sep 2009 B2
7584528 Hu Sep 2009 B2
7591050 Hammerslag Sep 2009 B2
7597675 Ingimundarson et al. Oct 2009 B2
7600660 Kasper et al. Oct 2009 B2
7617573 Chen Nov 2009 B2
7624517 Smith Dec 2009 B2
7648404 Martin Jan 2010 B1
7650705 Donnadieu et al. Jan 2010 B2
7694354 Philpott et al. Apr 2010 B2
7752774 Ussher Jul 2010 B2
7757412 Farys Jul 2010 B2
7774956 Dua et al. Aug 2010 B2
D626322 Servettaz Nov 2010 S
7841106 Farys Nov 2010 B2
7871334 Young et al. Jan 2011 B2
7877845 Signori Feb 2011 B2
7900378 Busse Mar 2011 B1
7908769 Pellegrini Mar 2011 B2
7947061 Reis May 2011 B1
7950112 Hammerslag et al. May 2011 B2
7954204 Hammerslag et al. Jun 2011 B2
7963049 Messmer Jun 2011 B2
7992261 Hammerslag et al. Aug 2011 B2
D646790 Castillo et al. Oct 2011 S
8056150 Stokes et al. Nov 2011 B2
8074379 Robinson, Jr. et al. Dec 2011 B2
8091182 Hammerslag et al. Jan 2012 B2
8109015 Signori Feb 2012 B2
D663850 Joseph Jul 2012 S
D663851 Joseph Jul 2012 S
8215033 Carboy et al. Jul 2012 B2
8231074 Hu et al. Jul 2012 B2
D665088 Joseph Aug 2012 S
8235321 Chen Aug 2012 B2
8245371 Chen Aug 2012 B2
8257293 Ingimundarson et al. Sep 2012 B2
8266827 Dojan et al. Sep 2012 B2
8277401 Hammerslag et al. Oct 2012 B2
8302329 Hurd et al. Nov 2012 B2
8303527 Joseph Nov 2012 B2
8308098 Chen Nov 2012 B2
8353087 Chen Jan 2013 B2
8353088 Ha Jan 2013 B2
D677045 Voskuil Mar 2013 S
D679019 Siddle et al. Mar 2013 S
1060422 Bowdish Apr 2013 A1
1062511 Short May 2013 A1
8434200 Chen May 2013 B2
8490299 Dua et al. Jul 2013 B2
8516662 Goodman et al. Aug 2013 B2
8578632 Bell et al. Nov 2013 B2
1083775 Thomas Jan 2014 A1
8652164 Aston Feb 2014 B1
1090438 Worth et al. Mar 2014 A1
8713820 Kerns et al. May 2014 B2
8984719 Soderberg et al. Mar 2015 B2
9072341 Jungkind Jul 2015 B2
D735987 Hsu Aug 2015 S
9101181 Soderberg et al. Aug 2015 B2
9125455 Kerns et al. Sep 2015 B2
9138030 Soderberg et al. Sep 2015 B2
20020050076 Borsoi et al. May 2002 A1
20020062579 Caeran May 2002 A1
20020095750 Hammerslag Jul 2002 A1
20020129518 Borsoi et al. Sep 2002 A1
20020148142 Oorei et al. Oct 2002 A1
20020166260 Borsoi Nov 2002 A1
20020178548 Freed Dec 2002 A1
20030079376 Oorei et al. May 2003 A1
20030144620 Sieller Jul 2003 A1
20030150135 Liu Aug 2003 A1
20030177662 Elkington et al. Sep 2003 A1
20030204938 Hammerslag Nov 2003 A1
20040041452 Williams Mar 2004 A1
20040211039 Livingston Oct 2004 A1
20050054962 Bradshaw Mar 2005 A1
20050060912 Holzer et al. Mar 2005 A1
20050081339 Sakabayashi Apr 2005 A1
20050081403 Mathieu Apr 2005 A1
20050087115 Martin Apr 2005 A1
20050098673 Huang May 2005 A1
20050102861 Martin May 2005 A1
20050126043 Reagan et al. Jun 2005 A1
20050172463 Rolla Aug 2005 A1
20050184186 Tsoi et al. Aug 2005 A1
20050198866 Wiper et al. Sep 2005 A1
20060135901 Ingimundarson et al. Jun 2006 A1
20060156517 Hammerslag et al. Jul 2006 A1
20060179685 Borel et al. Aug 2006 A1
20060185193 Pellegrini Aug 2006 A1
20060287627 Johnson Dec 2006 A1
20070006489 Case, Jr. et al. Jan 2007 A1
20070063459 Kavarsky Mar 2007 A1
20070068040 Farys Mar 2007 A1
20070084956 Chen Apr 2007 A1
20070113524 Lander May 2007 A1
20070128959 Cooke Jun 2007 A1
20070169378 Sodeberg et al. Jul 2007 A1
20080016717 Ruban Jan 2008 A1
20080060167 Hammerslag et al. Mar 2008 A1
20080060168 Hammerslag et al. Mar 2008 A1
20080066272 Hammerslag et al. Mar 2008 A1
20080066345 Hammerslag et al. Mar 2008 A1
20080066346 Hammerslag et al. Mar 2008 A1
20080068204 Carmen et al. Mar 2008 A1
20080083135 Hammerslag et al. Apr 2008 A1
20080092279 Chiang Apr 2008 A1
20080172848 Chen Jul 2008 A1
20080196224 Hu Aug 2008 A1
20090019734 Reagan Jan 2009 A1
20090071041 Hooper Mar 2009 A1
20090090029 Kishino Apr 2009 A1
20090172928 Messmer et al. Jul 2009 A1
20090184189 Soderberg et al. Jul 2009 A1
20090272007 Beers et al. Nov 2009 A1
20090277043 Graser et al. Nov 2009 A1
20100064547 Kaplan Mar 2010 A1
20100101061 Ha Apr 2010 A1
20100139057 Soderberg et al. Jun 2010 A1
20100154254 Fletcher Jun 2010 A1
20100175163 Litke Jul 2010 A1
20100251524 Chen Oct 2010 A1
20100299959 Hammerslag Dec 2010 A1
20100319216 Grenzke et al. Dec 2010 A1
20110000173 Lander Jan 2011 A1
20110071647 Mahon Mar 2011 A1
20110162236 Voskuil et al. Jul 2011 A1
20110167543 Kovacevich et al. Jul 2011 A1
20110191992 Chen Aug 2011 A1
20110197362 Chella et al. Aug 2011 A1
20110225843 Kerns et al. Sep 2011 A1
20110258876 Baker et al. Oct 2011 A1
20110266384 Goodman et al. Nov 2011 A1
20120000091 Cotterman et al. Jan 2012 A1
20120004587 Nickel et al. Jan 2012 A1
20120005995 Emery Jan 2012 A1
20120023717 Chen Feb 2012 A1
20120101417 Joseph Apr 2012 A1
20120102783 Swigart et al. May 2012 A1
20120138882 Moore et al. Jun 2012 A1
20120157902 Castillo et al. Jun 2012 A1
20120167290 Kovacevich et al. Jul 2012 A1
20120174437 Heard Jul 2012 A1
20120228419 Chen Sep 2012 A1
20120246974 Hammerslag et al. Oct 2012 A1
20120310273 Thorpe Dec 2012 A1
20130012856 Hammerslag et al. Jan 2013 A1
20130014359 Chen Jan 2013 A1
20130019501 Gerber Jan 2013 A1
20130091667 Zerfas et al. Apr 2013 A1
20130092780 Soderberg et al. Apr 2013 A1
20130269219 Burns et al. Oct 2013 A1
20130277485 Soderberg et al. Oct 2013 A1
20130340283 Bell et al. Dec 2013 A1
20130345612 Bannister et al. Dec 2013 A1
20140082963 Beers Mar 2014 A1
20140094728 Soderberg et al. Apr 2014 A1
20140117140 Goodman et al. May 2014 A1
20140123440 Capra et al. May 2014 A1
20140123449 Soderberg et al. May 2014 A1
20140208550 Neiley Jul 2014 A1
20140221889 Burns et al. Aug 2014 A1
20140290016 Lovett et al. Oct 2014 A1
20140359981 Cotterman et al. Dec 2014 A1
20150007422 Cavanagh et al. Jan 2015 A1
20150014463 Converse et al. Jan 2015 A1
20150026936 Kerns et al. Jan 2015 A1
20150033519 Hammerslag et al. Feb 2015 A1
20150059206 Lovett et al. Mar 2015 A1
20150076272 Trudel et al. Mar 2015 A1
20150089779 Lawrence et al. Apr 2015 A1
20150089835 Hammerslag et al. Apr 2015 A1
20150101160 Soderberg et al. Apr 2015 A1
20150150705 Capra et al. Jun 2015 A1
20150151070 Capra et al. Jun 2015 A1
20150190262 Capra et al. Jul 2015 A1
20150223608 Capra et al. Aug 2015 A1
20150237962 Soderberg et al. Aug 2015 A1
20150335458 Romo Nov 2015 A1
Foreign Referenced Citations (130)
Number Date Country
127075 Feb 1932 AT
244804 Jan 1966 AT
361808 Apr 1981 AT
2114387 Jan 1994 CA
2112789 Aug 1994 CA
41765 Sep 1907 CH
111341 Nov 1925 CH
199766 Nov 1938 CH
204 834 Aug 1939 CH
523 669 Jul 1972 CH
562 015 May 1975 CH
577 282 Jul 1976 CH
612 076 Jul 1979 CH
624 001 Jul 1981 CH
2613167 Apr 2004 CN
201015448 Feb 2008 CN
555211 Jul 1932 DE
641976 Feb 1937 DE
7043154 Nov 1970 DE
1 785 220 May 1971 DE
2 062 795 Jun 1972 DE
23 41 658 Mar 1974 DE
24 14 439 Oct 1975 DE
29 00 077 Jul 1980 DE
2914280 Oct 1980 DE
31 01 952 Sep 1982 DE
36 26 837 Feb 1988 DE
38 13 470 Nov 1989 DE
3822113 Jan 1990 DE
9413147 Jun 1994 DE
43 02 401 Aug 1994 DE
43 05 671 Sep 1994 DE
9308037 Oct 1994 DE
43 24 049 Feb 1995 DE
9315776 Feb 1995 DE
196 24 553 Jan 1998 DE
19945045 Mar 2001 DE
201 16 755 Jan 2002 DE
20 2010 000 354 Jun 2010 DE
11 2013 005 273 Sep 2015 DE
0 056 953 Aug 1982 EP
0 099 504 Feb 1984 EP
0 123 050 Feb 1984 EP
0 155 596 Sep 1985 EP
0 201 051 Nov 1986 EP
0 255 869 Jul 1987 EP
0 393 380 Mar 1990 EP
0 589 232 Mar 1994 EP
0 589 233 Mar 1994 EP
0 614 625 Sep 1994 EP
0 651 954 May 1995 EP
0 679 346 Nov 1995 EP
0 693 260 Jan 1996 EP
0 717 942 Jun 1996 EP
0 734 662 Oct 1996 EP
0 848 917 Jun 1998 EP
0 923 965 Jun 1999 EP
0 937 467 Aug 1999 EP
1163860 Dec 2001 EP
1 219 195 Jul 2002 EP
1 236 412 Sep 2002 EP
2298107 Mar 2011 EP
2359708 Aug 2011 EP
1 349 832 Mar 1963 FR
1 404 799 Jul 1965 FR
2 019 991 Jul 1970 FR
2 108 428 Sep 1971 FR
2 175 684 Mar 1972 FR
2.108.429 May 1972 FR
2 565 795 Jun 1984 FR
2 598 292 Nov 1987 FR
2 726 440 May 1996 FR
2 770 379 May 1999 FR
2 814 919 Apr 2002 FR
189911673 Jan 1899 GB
216400 Aug 1923 GB
2 449 722 Dec 2008 GB
1220811 Jun 1990 IT
PD 2003 A 000197 Apr 2003 IT
PD 2003 A 000198 Apr 2003 IT
49-28618 Mar 1974 JP
51-2776 Jan 1976 JP
51-121375 Oct 1976 JP
51-131978 Oct 1976 JP
53-124987 Mar 1977 JP
54-108125 Feb 1978 JP
62-57346 Apr 1987 JP
63-80736 May 1988 JP
H02-236025 Sep 1990 JP
7-000208 Jun 1995 JP
6-284906 Feb 1996 JP
3031760 Sep 1996 JP
3030988 Nov 1996 JP
8308608 Nov 1996 JP
10-199366 Jul 1998 JP
2004-016732 Jan 2004 JP
2004-041666 Feb 2004 JP
2009-504210 Feb 2009 JP
20-0367882 Nov 2004 KR
20-0400568 Aug 2005 KR
10-0598627 Jul 2006 KR
10-0953398 Apr 2010 KR
10-1025134 Mar 2011 KR
10-1028468 Apr 2011 KR
10-1053551 Jul 2011 KR
WO 9427456 Dec 1994 WO
WO 9503720 Feb 1995 WO
WO 9511602 May 1995 WO
WO 9833408 Aug 1998 WO
WO 9837782 Sep 1998 WO
WO 9909850 Mar 1999 WO
WO 9915043 Apr 1999 WO
WO 9943231 Sep 1999 WO
WO0053045 Sep 2000 WO
WO 0053045 Sep 2000 WO
WO 0076337 Dec 2000 WO
WO 0108525 Feb 2001 WO
WO 0115559 Mar 2001 WO
WO02051511 Jul 2002 WO
WO 2004093569 Nov 2004 WO
WO 2005013748 Feb 2005 WO
WO2007016983 Feb 2007 WO
WO 2008015214 Feb 2008 WO
WO2008033963 Mar 2008 WO
WO2009134858 Nov 2009 WO
WO 2010059989 May 2010 WO
WO 2012165803 Dec 2012 WO
WO2015035885 Mar 2015 WO
WO 2015179332 Nov 2015 WO
WO 2015181928 Dec 2015 WO
Non-Patent Literature Citations (35)
Entry
International Search Report and Written Opinion mailed May 19, 2014 for International Patent Application No. PCT/US2014/013458 filed Jan. 28, 2014, all pages.
U.S. Appl. No. 09/956,987, filed Sep. 18, 2001, Hammerslag, Including its prosecution history.
“Strength of materials used to make my Safety Harnesses,” Elaine, Inc. Jul. 9, 2012. Retrieved from <https://web.archive.org/web/20120709002720/http://www.childharness.ca/strength—data.html> on Mar. 17, 2014, 2 pages.
International Search Report and Written Opinion for PCT/US2013/032326 mailed Jun. 14, 2013, 27 pages.
International Preliminary Report on Patentability for PCT/US2013/032326 issued Sep. 16, 2014, 6 pages.
International Search Report and Written Opinion for PCT/US2013/057637 mailed Apr. 7, 2014, 34 pages.
International Preliminary Report on Patentability for PCT/US2013/057637 issued Mar. 3, 2015, 9 pages.
International Search Report and Written Opinion for PCT/US2013/068342 mailed Apr. 7, 2014, 29 pages.
International Preliminary Report on Patentability for PCT/US2013/068342 issued May 5, 2015, 9 pages.
International Search Report and Written Opinion for PCT/US2014/014952 mailed Apr. 25, 2014, 17 pages.
International Preliminary Report on Patentability for PCT/US2014/014952 issued Aug. 11, 2015, 9 pages.
International Search Report and Written Opinion for PCT/US2014/066212 mailed Apr. 22, 2015, 16 pages.
International Search Report and Written Opinion for PCT/US2014/032574 mailed Oct. 31, 2014, 19 pages.
International Search Report and Written Opinion for PCT/US2014/045291 mailed Nov. 6, 2014, 12 pages.
International Search Report and Written Opinion for PCT/US2014/013458 mailed May 19, 2014, 12 pages.
International Preliminary Report on Patentability for PCT/US2014/013458 issued Jul. 28, 2015, 7 pages.
International Search Report and Written Opinion for PCT/US2013/068814 mailed Jun. 9, 2014, 18 pages.
International Preliminary Report on Patentability for PCT/US2013/068814 issued May 12, 2015, 12 pages.
Notice of Reasons for Rejection from the Japanese Patent Office dated Feb. 26, 2015 for design application No. 2014-015570, 4 pages.
Receipt of Certificate of Design Registration No. 1529678 from the Japanese Patent Office for design application No. 2014-015570 dated Jun. 26, 2015, 1 page.
International Search Report and Written Opinion for PCT/US2014/055710 mailed Jul. 6, 2015, 19 pages.
International Search Report and Written Opinion for PCT/US2014/054420 mailed Jul. 6, 2015, 21 pages.
The Preliminary Rejections from the Korean Intellectual Property Office for Application No. 30-2014-34959 received Aug. 7, 2015, is not translated into English. The document requests a renaming of the application to be in accordance with Korean patent law, 5 pages total.
The Preliminary Rejections from the Korean Intellectual Property Office for Application No. 30-2014-34959 received Apr. 7, 2015, is not translated into English. The document requests a revision of the drawings to be in accordance with Korean patent law, 6 pages total.
Office Action received Oct. 8, 2015 from the German Patent and Trademark Office for Appln No. 402015100191.2, regarding the title of the invention, 2 pages.
Notice of Reasons for Rejection from the Japanese Patent Office dated Oct. 5, 2015 for design application No. 2015-004923, 4 pages.
International Search Report and Written Opinion for PCT/US2014/046238 mailed Nov. 21, 2014, 17 pages.
International Search Report and Written Opinion for PCT/US2014/020894 mailed Jun. 20, 2014, 12 pages.
International Search Report and Written Opinion for PCT/US2014/041144 mailed Dec. 10, 2014, 13 pages.
“Save Tourniquet,” 3 pages. Copyright 2015. Accessed on Dec. 11, 2015. Retrieved from http://www.savetourniquet.com/.
Certificate of Design Registration No. 30-809409 on Aug. 3, 2015 from the Korean Intellectual Property Office for Appln No. 30-2015-11475, 2 pages.
Certificate of Design Registration No. 30-809410 on Aug. 3, 2015 from the Korean Intellectual Property Office for Appln No. 30-2015-11476, 2 pages.
European Search Report for EP 14168875 mailed Oct. 29, 2014, 9 pages.
Anonymous, “Shore durometer,” Wikipedia, the free encyclopedia, Mar. 10, 2012, XP002747470, Retrieved from the Internet: URL: https://en.wikipedia.org/w/index.php?title=Shore—durometer&oldid=481128180 [retrieved on Oct. 20, 2015] * shore A, shore D, durometer, polymer, rubber, gel; the whole document *, 6 pages.
Asolo® Boot Brochure Catalog upon information and belief date is as early as Aug. 22, 1997, 12 pages.
Related Publications (1)
Number Date Country
20140208550 A1 Jul 2014 US
Provisional Applications (1)
Number Date Country
61757692 Jan 2013 US