LACE RATCHET FASTENING DEVICE

Information

  • Patent Application
  • 20170127763
  • Publication Number
    20170127763
  • Date Filed
    July 12, 2016
    8 years ago
  • Date Published
    May 11, 2017
    7 years ago
Abstract
Lace Ratchet Fastening Device (LRFD) enables easy lace fastening and release. The LRFD has two positions: “locked” and “unlocked”. In the locked position the device works as a lace ratchet i.e. allowing the lace to be pulled forwards but blocking any lace motion backwards. After fastening the lace remain fastened until the LRFD is switched into unlocked position by pressing a lever and lace releasing. Each LRFD has a turning gate with sharp front end rotatably installed in a channel. The turning gate has a preloaded helical torque spring with bias which keeps the LRFD in locked position when the lever is not pressed. Unlike prevalent lace fasteners with serrated surfaces, which cause accelerated lace wear, LRFD's smooth gate and channel surfaces minimize lace wear. Parallel and triangular LRFD configurations enable footwear lace fastening serving as “Ratchet Buckles”. Single LRFDs can be used for fastening of garments and other objects.
Description
FEDERALLY SPONSORED RESEARCH

Not Applicable


SEQUENCE LISTING OR PROGRAM

Not Applicable


FIELD OF THE INVENTION

The invention is related to devices for fastening and keeping fastened laces, chords, ropes, strings and alike.


BACKGROUND OF THE INVENTION—PRIOR ART

Many devices were invented for shoe lace tightening. The most commercially successful is U.S. Pat. No. 6,339,867 by Azam which is widely used in fastening laces of skiing and skates boots. The tightening principle is a spring loaded gear wheel which can move in wedge shaped passage which widens forwards and narrows backwards. The laces pass through that passage and can be fastened by pulling the laces forwards which in turn pulls forwards the gear wheel towards the wider part of the passage where the laces are free to move. When the pulling stops the laces pull the gear wheel backwards, which narrow the passage and blocks the laces' backwards motion. The laces can be released by pulling the gearwheel forwards with a knob. There are few noticeable disadvantages to this popular invention. The device must be installed on heavy-solid footwear which eliminates its use with regular shoes and the user must constantly pull the knob to keep the releasing. In addition, the teeth of gearwheel and opposite teeth cause severe wear. Similar approach is taken in U.S. Pat. No. 7,360,282 by Borsoi and in U.S. Pat. No. 8,141,273 by Stramare. The lace buckle device described in U.S. Pat. No. 6,334,240 by Li is used widely in coat laces. It has a lace passage controlled by a spring loaded piston that blocks lace motion when the spring is released. Except for the similar name there is no similarity to our invention. This buckle controls only one lace and does not have a ratchet operation at all. When the user wants to release or fasten the lace the user has to press the spring loaded piston, release the lace and pull at the same time. When the spring is released, the buckle returns to blocking the lace. Similar devices are sold as “shoe buckles” for fastening shoe laces. The main disadvantage of such shoe buckles is that they do not have a ratcheting operation, which enables one to fasten the laces just by pulling. The shoe buckles require one to fasten the laces with one hand while keeping the buckle in unlocked position with the other hand and then switching the buckle into locked position. This results in cumbersome and inefficient fastening.


In U.S. Pat. No. 6,729,000 Liu uses for lace tightening a teethed rotating bar. In U.S. Pat. No. 6,076,241 by Borel and in several others such as in U.S. Pat. No. 6,622,358 to Christy and in U.S. Pat. No. 6,192,241 by Yu et al. use fastening devices which are based on pipes or channels which have diagonal teeth to block reverse motion of the lace. The pipes are installed on the shoes in different locations.


In U.S. Pat. No. 8,371,004 Huber teaches a lace locking mechanism. Huber's locking mechanism employs a pair of spring loaded pivoted arms which have sets of sharp teeth that when pressed against the laces block their motion in both directions. Thus, Huber's locking mechanism is not a lace ratchet mechanism because it does not allow further lace tightening once it is locked. In its unlocked state, the laces are released in both directions simply by pressing the arms of Huber's locking mechanism. Huber's locking mechanism is impractical because the sharp teeth tend to cause a lot of lace wear when the laces are fastened before locking. Huber's mechanism structure is complex and expensive to manufacture. In addition, similar to the lace buckle, the user needs to fasten both laces with one hand while pressing the arms with the second hand to keep the mechanism in unlocked position. In U.S. Pat. No. 8,332,994 Jih-Liang Lin teaches a shoe lace fastener which fasten the lace using jagged arm on top and jagged base on bottom. The device structure includes many complex parts and is expensive to manufacture. Such a structure also is impractical because it will wear the lace very quickly. In U.S. Pat. No. 8,381,362 to Hammerslag et al. teaches Real based closure system. U.S. Pat. No. 8,332,994 to Lin teaches Shoelace with shoelace fastener. U.S. Pat. No. 8,141,273 to Stramare et al. describes Shoes with directional conditioning device for laces. U.S. Pat. No. 8,231,074 to Hu et al. describes Lace winding device for shoes. U.S. Pat. No. 8,230,560 to Luzlbauer teaches Fastening system for shoes.


U.S. Pat. No. 9,185,948 to Ben-Arie describes a Buckle Lace Fastening Device (BLFD) which also enables lace ratcheting. However, the BLFD is using resilient gates which do not rotate but bend, whereas the current invention is employing solid, pivoted rotating gates with helical torque springs. In addition, the locking mechanism of the BLFD, which is based on rotating the gripping wall is entirely different from the locking mechanism of the current invention, which is activated by a lever which causes gate's rotation.


U.S. Pat. No. 8,046,937 to Beers et al. describes an Automatic lacing system. U.S. Pat. No. 7,681,289 to Liu describes a Fastener for fasting together two lace systems. U.S. Pat. No. 7,591,050 to Hammerslag describes a Footwear lacing system. U.S. Pat. No. 7,320,161 to Taylor describes a Lace tying device. U.S. Pat. No. 7,313,849 to Liu describes a Fastener for lace. U.S. Pat. No. 7,152,285 to Liao describes a Shoe lace fastening device. U.S. Pat. No. 7,082,701 to Dalgaard describes Footwear variable tension lacing systems. U.S. Pat. No. 6,938,308 Funk describes a lace securing and adjusting device. U.S. Pat. No. 6,735,829 Hsu describes a U shaped lace buckle. In U.S. Pat. No. 6,588,079 to Manzano describes a Shoelace fastening assembly. U.S. Pat. No. 6,438,871 to Culverwell describes Footwear fastening. U.S. Pat. No. 6,192,559 to Munsell Jr. describes a Shoelace fastening apparatus. U.S. Pat. No. 6,094,787 to Chang describes a Fastening device. U.S. Pat. No. 5,572,777 to Shelton describes a Shoelace tightening device. U.S. Pat. No. 5,572,774 to Duren teaches a Shoe fastening attached device. U.S. Pat. No. 5,467,511 to Kubo describes a Shoelace fastening device. U.S. Pat. No. 5,335,401 to Hanson teaches a Shoelace tightening and locking device. U.S. Pat. No. 5,295,315 to Osawa et al. describes a Shoe fastening device and plate shaped member thereof. U.S. Pat. No. 5,293,675 to Shai describes a Fastener for shoelace. U.S. Pat. No. 5,293,669 to Sampson teaches a Multiuse fastener system. U.S. Pat. No. 5,230,171 to Cardaropoli teaches a Shoe fastener. U.S. Pat. No. 5,203,053 to Rudd teaches a Shoe fastening device. U.S. Pat. No. 5,177,882 to Berger teaches a Shoe with central fastener. U.S. Pat. No. 5,119,539 to Curry teaches a Lace fastener. U.S. Pat. No. 5,109,581 to Gould teaches a Device and method for securing a shoe. U.S. Pat. No. 4,991,273 to Huttle teaches Shoe lace fastening. U.S. Pat. No. 4,648,159 to Dougherty teaches a Fastener for lace or rope or the like. U.S. Pat. No. 4,616,432 to Bunch et al. teaches a Shoe upper with lateral fastening arrangement. U.S. Pat. No. 4,507,878 to Semouha teaches a Fastener mechanism. U.S. Pat. No. 4,458,373 to Maslow teaches Laced shoe and method for tying shoelaces. U.S. Pat. No. 4,261,081 to Lott teaches a Shoelace tightener. U.S. Pat. No. 4,130,949 to Seidel teaches Fastening means for sports shoes. U.S. Pat. No. 4,125,918 to Baumann teaches a Fastener for lace shoes. U.S. Pat. No. 4,071,964 to Vogiatzis teaches a Footwear fastening system. U.S. Pat. No. 5,097,573 to Gimeno teaches Fastening Device for Lace Up Shoes. U.S. Pat. No. 5,001,847 to Waters teaches a Lace Fastener. U.S. Pat. No. 5,477,593 to Leick teaches a Lace Locking Device. U.S. Pat. No. 6,282,817 to Curet teaches an Apparatus and Method for Lacing.


US PATENT APPLICATIONS

In US 2011/0094072 to Lin describes a Shoelace with Shoelace Fastener. In US 2010/0115744 to Fong describes a Lace Fastener. In US 2009/0172929 to Huang describes a Device for tying Shoelaces. In US 2008/0250618 to Stramare describes a Shoe with Directional Conditioning Device for lace or the like. In US 2007/0169380 to Borsoi teaches a Device for Blocking Flexible Strands. In US 2006/0213085 to Azam teaches an Article for Footware with Linkage Tightening Device. In US 2005/0005477 to Borsoi teaches a Lace Blocking Device. In US 2003/0226284 to Grande teaches a Lacing System For Skates. In US 2002/0002781 to Bourier teaches a Lace Tightening Device Having a Pocket for Storing A Blocking Element.


In conclusion, all the above inventions do not propose a Lace Fastening Device which combines all of the following properties:

    • 1. The device enables users to fasten regular laces by a ratchet operation, i.e. the user has just to pull the lace and the lace remains fully fastened after the pulling stops.
    • 2. The lace can be released easily and quickly by the user.
    • 3. The device has a simple structure, which is suited for low cost manufacturing.
    • 4. Repeated use of the device causes minimal lace wear.
    • 5. The device can fasten any standard lace and can be easily installed on footwear, garments or other objects.


BRIEF SUMMARY OF THE INVENTION

The invention is a device called Lace Ratchet Fastening Device (LRFD) which enables easy fastening and keeping fastened of: laces, ropes, strings and alike. The device is small in dimensions and can be installed on shoes or on other items which need fastening of laces, ropes, strings and alike. The LRFD can be used to fasten laces simply by inserting the laces into LRFDs and pulling them. The LRFD has a locking mechanism with two positions: “locked” and “unlocked”. In the locked position the device works as a lace ratchet i.e. allowing the lace to be pulled forwards but blocking any lace motion backwards. After the user has fastened the laces they remain fastened until the locking mechanism is switched into an unlocked position. Each LRFD has a channel for fastening one lace. A turning gate is rotatably installed on an axle in the channel. The axle is centered at the turning gate's axis of rotation. The turning gate has a lever attached to its rear side and also a preloaded helical torque spring with a bias which tends to turn the gate in backwards direction i.e. towards a locked position. Thus, when the regular position of the turning gate is in locked position and it is switched into unlocked position only when the user applies manual pressure on the lever, which exceeds the bias. The turning gate has a front end which has a single sharp edge with a smooth side. The lace passes through a gap between the front end of the turning gate and the channel's gripping wall situated opposite to the front end of the turning gate. The gap width is controlled by a locking mechanism operated by the lever.


When the locking mechanism is in locked position, the gap is narrowed such that the turning gate is squeezing the lace in the channel with its sharp edge and acts as a lace ratchet. It means that the turning gate allows forwards fastening motion of the lace but blocks any lace motion in backwards direction. In order to have a ratchet operation, the turning gate is installed in a forwards leaning diagonal position in the channel such that its front end is closer to the gripping wall then its axis of rotation. Also, in a forwards leaning diagonal position, the turning gate's front end is closer to the channel's exit than the turning gate's axis of rotation. The ratchet operation of the gate stems from the forward leaning diagonal position of the turning gate, which allows forwards lace motion when the lace is moved forwards. Moving the lace which is squeezed in the gap forwards, drags the turning gate's front end forwards because of the friction force between the lace and the front end squeezing it. Due to the diagonal position of the turning gate, when its front end is moved forwards it also moves laterally inwards i.e. away from its gripping wall, thus increasing the width of the gap between the front end and its gripping wall and enabling even easier forwards motion of the lace.


On the other hand, if the lace moves backwards it also drags the turning gate's front end backwards since the front end is squeezing the lace and has a mutual friction force with the lace. Due to the diagonal position of the gate, the motion backwards of the front end has also a lateral outwards component which moves the front end towards the gripping wall thus further narrowing the gap and blocking further backwards lace motion. Thus, in a locked position the gate acts as a lace ratchet i.e. allows lace forwards motion but blocks lace's backwards motion. When the locking mechanism is switched into unlocked position the gap is widened more than the lace's width and the lace is entirely released because it can move freely forwards or backwards in the channel. The user can easily switch the locking mechanism from locked to unlocked position simply by manually pressing the lever, which is attached to the rear end of the turning gate. If the manual pressure is greater than the torque spring's bias, the gate turns forwards and increases the gap's width, thus unlocking the LRFD. When the manual pressure ceases the preloaded torque spring rotates the gate backwards into a locked position. The LRFD can be manufactured at low cost because it has a simple structure with only few parts.


The LRFD's structure is different from other lace fastening devices in few important aspects. Primarily, the LRFD enables a lace ratcheting operation which causes only minimal wear of the lace since it employs in the channel a novel structure with a diagonally forwards leaning rotating gate with a single sharp front end which has a smooth side. When the lace is moved forwards, the sharp front end of the turning gate rotates forwards and the lace is sliding on the smooth side of the front end which does not wear the lace. At the same time, the forwards rotation also widens the gap and reduces lace friction and wear while the lace is moved forwards. Since the lace is blocked from moving backwards, there is no lace wear in the backwards motion as well. In addition, the LRFD's gripping wall is made with smooth surface to minimize lace wear when it moves in the gap as well. In contrast, other lace fastening devices employ serrated surfaces with sharp teeth structures to block lace movement in their locked position. However, sharp teeth structures cause significant lace wear even when they are in unlocked state since their teeth remain pointed at the lace and the lace still touches them as it moves even in a wider gap.


A pair of LRFDs in a parallel configuration can be used as a shoe “Ratchet Buckle”, which is not attached to the shoe but enables fastening two laces' ends of each shoe. The LRFDs are attached to one another in a parallel configuration of their channels by connecting the LRFDs at their gripping walls. Such a shoe buckle, which is not attached to the shoe, enables easy fastening and releasing of the shoe laces. The two gate levers of the turning gates protrude from the channels' top walls, on the two sides of LRFDs parallel configuration. This enables the user to unlock both LRFDs easily by pressing the levers with two fingers of one hand. To eliminate the protruding gate levers, two LRFDs can be used as a “Ratchet Buckle” also in a triangular configuration. In the triangular configuration, the two gripping walls form the two sides of a triangle and the two levers, which protrude from the top walls are facing one another at the triangle's center. The two channels are hinged to a small connecting plate and can turn one LRFD with respect to the other LRFD. The user can unlock both LRFDs easily by pressing on the gripping walls on both sides of the triangular configuration. This causes the channels to rotate one towards the other and at the same time to press the gate levers which are facing one another. The triangular configuration has the advantage that it has more elegant look since it does not have protruding gate levers.


Both of the “Ratchet Buckle” structures of the parallel configuration and triangular configuration of two LRFDs is designed to lie flat on top of the shoe when the laces are fastened. Each of the channels at the entry opening have a recess at the lower side wall. Each of the channels at entry opening also has a rear segment of the lower side wall next to and behind the recess. The laces are inserted into the channel via the recesses. When the lace is fastened on the shoe, the lace applies a downwards force on the recess. The downwards force is countered by a reaction upwards force applied on the rear segment by the shoe. The downwards force and the reaction upwards force create a moment of force which tends to rotate the LRFD towards the shoe. Hence, the moment of force keeps the LRFD flat on the shoe.


In another lacing configuration, two single LRFDs can be attached to the two sides of each shoe for two lace fastening. A single LRFD can also be used to fasten laces of trousers or coats simply by tying one lace end to the LRFD and using the LRFD to fasten the other lace's end. All the LRFD configurations described above can be implemented by LRFDs with helical torque springs which have rear supports of one of their ends. All the LRFD configurations described above can be implemented by LRFDs with helical torque springs which have front supports of one of their ends.


The LRFD has many advantages over previous devices primarily due to its efficient and easy fastening operation by a ratchet mechanism which requires the user just to pull the lace. Once the lace is pulled, it remains fastened until the locking mechanism is switched from locked position into unlocked position whereby it disables the ratchet mechanism and releases the lace. Another advantage of the LRFD is the ability to switch the locking mechanisms of two LRFDs in parallel configuration and also in triangular configuration from locked position into unlocked position simply by squeezing the two opposite gate levers using just two fingers of one hand. Additional advantage over all the other lace ratchets is that is does not block the lace using jagged surfaces. Handling laces with jagged surfaces, which have sharp teeth, as all other lace fasteners do, results is fast wear of the laces. The diagonal orientation of the sharp front ends of the turning gates in the LRFDs, cause very little lace wear because each front end has a smooth side on which the lace can slide when it is fastened. The LRFD was worn and tested for a long time on various shoes without any noticeable lace wear.





4. BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1 and 2 illustrate projections of cross sections of an embodiment of a LRFD with its locking mechanism in locked and unlocked positions respectively. FIGS. 1 and 2 describe a LRFD embodiment with torque spring which has a rear support.



FIG. 3 shows a blow up 3D isometric drawing of the parts of a rear spring support embodiment of a disassembled LRFD. The parts' orientations correspond to their actual orientations in the assembled LRFD.



FIG. 4 describes two rear spring support embodiments of a LRFD, which are installed on two sides of a shoe for lace fastening.



FIG. 5 shows a cross section projection drawing of a pair of rear spring support LRFDs which are attached to one another in a parallel configuration as a “Ratchet Buckle”. The locking mechanisms of the LRFDs in FIG. 5 are in locked position.



FIG. 6 shows a cross section projection drawing of a pair of rear spring support LRFDs which are attached to one another in a parallel configuration as a “Ratchet Buckle”. The locking mechanisms of the LRFDs in FIG. 6 are in unlocked position.



FIG. 7 shows a blow up 3D isometric drawing the parts of an embodiment of a disassembled pair of rear spring support LRFDs which can be attached to one another in a parallel configuration as a “Ratchet Buckle”. The parts' orientations correspond to their actual orientations in the assembled LRFDs.



FIG. 8 illustrates a parallel configuration of two rear spring support embodiments of two LRFDs, which are used to fasten two shoe laces serving as a shoe ratchet buckle.



FIGS. 9 and 10 illustrate projections of cross sections of a front spring support embodiment of a LRFD with its locking mechanism in locked and unlocked positions respectively.



FIG. 11 shows a blow up 3D isometric drawing the parts of a front spring support embodiment of a disassembled LRFD. The parts' orientations correspond to their actual orientations in the assembled LRFD.



FIG. 12 describes two front spring support embodiments of the LRFD, which are installed on two sides of a shoe for lace fastening arrangement as a “Ratchet Buckle”.



FIG. 13 shows a cross section projection drawing of a pair of front spring support LRFDs which are attached to one another in a parallel configuration as a “Ratchet Buckle”. The locking mechanisms of the LRFDs in FIG. 13 are in locked position.



FIG. 14 shows a cross section projection drawing of a pair of front spring support LRFDs which are attached to one another in a parallel configuration as a “Ratchet Buckle”. The locking mechanisms of the LRFDs in FIG. 14 are in unlocked position.



FIG. 15 shows a blow up 3D isometric drawing the parts of an embodiment of a disassembled pair of front spring support LRFDs which can be attached to one another in a parallel configuration as a “Ratchet Buckle”. The parts' orientations correspond to their actual orientations in the assembled LRFDs.



FIG. 16 illustrates a parallel configuration of two front spring support embodiments of two LRFDs which are used to fasten two shoe laces serving as a shoe ratchet buckle.



FIG. 17 shows a cross section projection drawing of a pair of front spring support LRFDs which are attached to one another in a triangular configuration as a “Ratchet Buckle”. The locking mechanisms of the LRFDs in FIG. 17 are in locked position.



FIG. 18 shows a cross section projection drawing of a pair of front spring support LRFDs which are attached to one another in a triangular configuration as a “Ratchet Buckle”. The locking mechanisms of the LRFDs in FIG. 18 are in unlocked position.



FIG. 19 shows a blow up 3D isometric drawing the parts of an embodiment of a disassembled pair of front spring support LRFDs which can be attached to one another in a triangular configuration as a “Ratchet Buckle”. The parts' orientations correspond to their actual orientations in the assembled LRFDs.



FIG. 20 illustrates a triangular configuration of two front spring support embodiments of LRFDs, which are used to fasten two shoe laces serving as a shoe ratchet buckle.



FIGS. 21 and 22 illustrate projections of cross sections of a front spring support embodiments of a LRFD for a single lace fastening with their locking mechanisms in locked and unlocked positions respectively. Such LRFDs could be used to fasten laces in clothing articles, etc.



FIGS. 23 and 24 depict the lace sliding operation on the smooth sides of the front ends of gates of the LRFDs while fastened. FIGS. 23 and 24 show the lace sliding on the smooth sides of the front ends of gates of LRFDs with rear and front spring support respectively.



FIG. 25 shows a cross section projection drawing of a pair of rear spring support LRFDs which are attached to one another in a triangular configuration as a “Ratchet Buckle”. The locking mechanisms of the LRFDs in FIG. 25 are in locked position.



FIG. 26 shows a cross section projection drawing of a pair of rear spring support LRFDs which are attached to one another in a triangular configuration as a “Ratchet Buckle”. The locking mechanisms of the LRFDs in FIG. 26 are in unlocked position.



FIG. 27 shows a blow up 3D isometric drawing the parts of an embodiment of a disassembled pair of rear spring support LRFDs which can be attached to one another in a triangular configuration as a “Ratchet Buckle”. The parts' orientations correspond to their actual orientations in the assembled LRFDs.



FIG. 30 illustrates a triangular configuration of two rear spring support embodiments of LRFDs, which are used to fasten two shoe laces serving as a shoe ratchet buckle.



FIGS. 28 and 29 illustrate projections of cross sections of a rear spring support embodiments of a LRFD for a single lace fastening with their locking mechanisms in locked and unlocked positions respectively. Such LRFDs could be used to fasten laces in clothing articles, etc.





DETAILED DESCRIPTION OF THE DRAWINGS


FIGS. 1 and 2 illustrate projections of cross sections of an embodiment of a rear supported spring LRFD with locking mechanisms in locked and unlocked positions respectively. The LRFD's housing 1A provides the walls for the channel 1C which houses the turning Gate 2C which is installed on an axle 5. The channel 1C also houses the lace 6. The turning gate 2C is mounted on and axle 5. Also mounted on the axle a helical torque spring 3 which has a bias that tends to rotate the turning gate 1C in backwards turning direction (clockwise direction). Backwards turning moves the turning gate 2C into a locked position of the locking mechanism. The turning Gate 2C in FIG. 1 which is in a locked position squeezes the lace 6 in the Gap between the Gate's sharp front end 2B and the channel's gripping wall 1B. In FIG. 2 the turning Gate 2C is in unlocked position because the Gate 2C is turned in counterclockwise direction (also called forwards turning) and the Gap between the Gate's sharp front end 2B and its gripping wall 1B is wider than the width of lace 6. As shown in FIG. 2, the user has been switching the locking mechanism into an unlocked position. This is being done by turning forwards the turning Gate 2C into an unlocked position by pressing downwards on the lever 2A with the user's finger 10. To enable the unlocking operation, the lever 1A protrudes from the channel's 2C top wall 1A. As can be observed in FIGS. 1, 2 the turning Gate 2C is in a forwards leaning diagonal orientation in the channel 1C such that its front end 2B is closer to the gripping wall 1B then its axis of rotation centered at axle 5. Also, in a forward leaning diagonal position, the turning gate's sharp front end 2B is closer to the channel's exit than the turning gate's axis of rotation centered at axle 5. The arrow 9 is pointed towards the channel's exit. The ratchet operation of the turning gate 2C stems from the forward leaning diagonal position of the turning gate, which allows forward lace 6 motion (to the right) when the lace is moved forwards and at the same time, drags the gate's front end 2B forwards. Because of the diagonal position of the gate 2C, when its front end 2B moves forwards (i.e. in the arrow 9 direction) it also moves laterally inwards i.e. away from its gripping wall 1B, thus increasing the width of the gap between the front end 2B and its gripping wall 1B and enabling even easier forward motion of the lace. The LRFD structure is designed to minimize lace wear. For this reason the gripping wall 1B surface and the side of the front end 2F are smoothed. When the lace 6 is being fastened i.e. moved in forwards direction and causing the turning gate to turn forwards, the turning gate turns the sharp front end 1B away from the lace and the lace slides on the smooth side 2F of the front end 2B and on the smoothed gripping wall 1B with minimal wear.


On the other hand, if the lace moves backwards (i.e. opposite to the arrow 9 direction) it also drags the gate's front end 2B backwards. Due to the diagonal position of the gate, the motion backwards has also a lateral outwards component which moves the front end 2B towards the gripping wall 1B thus further narrowing the gap and blocking further backwards lace motion. Thus, in a locked position the gate acts as a lace ratchet i.e. allows lace forwards motion but blocks backwards motion. When the locking mechanism is switched into unlocked position the gap is widened enough such that the lace is entirely released because it can move freely forwards or backwards in the channel. The locking mechanism can be switched from locked to unlocked position by manually pressing at lever 2A attached to each gate and rotating the gate forwards (i.e. in counterclockwise direction in FIGS. 1 and 2). The manual pressure in FIG. 2 is applied by the user's finger 10. When the manual pressure ceases the preloaded spring 3 rotates the gate 2C backwards (i.e. in clockwise direction in FIGS. 1 and 2) into a locked position.


In the Gate's 2C forward leaning diagonal orientation, pulling the lace 6 in forwards direction (to the right) which is denoted by the arrow 9, causes the Gate's front end 2B to move in a combined forwards and laterally inwards motion (i.e. moving upwards and away from the gripping wall 1B) motion. The lateral inwards movement increases the width of the Gap and also turns the sharp front end 2B away from the lace 6, thus allowing the lace to move forwards more easily with less friction and wear because it slides on the smooth side 2F and on the smoothed gripping wall 1B. On the other hand, pulling the lace 6 in backwards direction (to the left) which is opposite to the arrow 9, causes the turning Gate's front end 2B to move in a combined backwards and laterally outwards motion (i.e. moving towards the gripping wall 1B). The laterally outwards movement reduces the width of the Gap, thus squeezing the lace even harder therefore preventing the lace to move further backwards. The bulge 7 which is installed on the gripping wall 1B, increases the blocking force of the turning Gate 2C even further by forcing the lace to bend when the front end 2B squeezes it. Both the gripping wall 1B and the bulge 7 have smooth surfaces to minimize the wear of the lace passing in the gap.


The helical torque spring 3 which is installed on the axle 5 is preloaded and has a bias which constantly pushes the turning Gate 1C to turn backwards (i.e. in clockwise direction in FIG. 1). Thus, the spring 3 keeps the LRFD in a locked position when the user is not pressing on the lever 2A. To switch the Gate's locking mechanism into an unlocked position, the user's finger 10 has to press the Gate's lever 2A downwards overcoming the spring's 3 bias. The helical torque spring 3 has two wire ends one wire end exits the turning gate via opening 2D and is supported by pin 4. The pin 4 was attached to the channel 1C to support the spring's 3 wire end, i.e. to provide rear support to the spring. The other wire end of the spring is supported by the turning gate's wall. In FIG. 1 the lace 6 exits the shoe's eyelet 8 and enters the channel 1C. The lace 6 in FIG. 1 is fastened and enters the channel 1C via the recess 1D in the lower side wall. The downwards pressure of the fastened lace 6 on the recess 1D and the upwards reaction pressure of the shoe on the channel's rear segment 1E create a moment force which forces the LRFD to rotate downwards, thus keeping the LRFD flat on the shoe. The lever 2A protrudes from an opening in the top wall 1A.



FIG. 3 shows a blow up 3D isometric drawing of the parts of an embodiment of a disassembled LRFD with rear spring support. The parts' orientations correspond to their actual orientations in the assembled LRFD. Pin 5 serves as an axle to the turning Gate 2C. The turning gate 2C is shown with its front end 2B and its lever 2A. Hole 2E which serves as a bearing for axle 5 is not denoted in FIGS. 1 and 2 to prevent overcrowding. Opening 2D which serves as a passage for the spring's 3 arm in the rotating gate, is shown only in FIGS. 1, 2, 7 due to its rear side location, which is not shown in FIG. 3. Pin 4, which is riveted to the housing 1A in holes 1G serves as a rear support for the spring 3. The axle 5 is riveted to the LRFD housing 1A at holes 1F.



FIG. 4 describes two LRFDs 1A which are installed on a shoe's top 12 next to eyelets 8. The laces 6 which exit the eyelets 8, enter the LRFDs 1A and are fastened backwards. The hooks 21 serve as lace end holders to prevent lace dangling.



FIG. 5 depicts a cross section drawing of a pair of rear support LRFDs which are attached to one another in a parallel configuration. The locking mechanisms of these LRFDs are in locked positions and the laces 6 are fastened. The LRFDs' housing 1A provides the walls for the channels 1C which house the turning Gates 2C which are installed on axles 5. Each of the channels 1C also house a lace 6. The turning Gates 2C in FIG. 5 which are in locked positions squeeze the laces 6 in the Gaps between the Gates' front ends 2B and the channels' gripping walls 1B. In FIG. 6 the turning Gates 2C are in unlocked positions because the Gates 2C are rotated in forwards turning direction and the Gap between the Gates' sharp front ends 2B and their gripping walls 1B is wider than the widths of laces 6. As shown in FIG. 6, the user has been switching the locking mechanism into unlocked positions by applying manual pressure on the levers 1A by fingers 10. This is being done by rotating forwards the turning Gates 2C into unlocked positions by pressing on the levers 2A with the users' fingers 10. As can be observed in FIG. 5, the turning Gates 2C are in a forward leaning diagonal orientations. In these orientations pulling the laces 6 in forwards direction (to the right) which is denoted by the arrows 9, causes the Gates' front end to move in a combined forwards and laterally inwards motion (i.e. moving away from their gripping walls 1B) motion. The lateral inwards movements increase the widths of the Gaps and also turns the sharp front ends 2B away from the laces 6, thus allowing the laces to move forwards more easily with less friction and wear. On the other hand, pulling the laces 6 in backwards directions (to the left) which is opposite to the arrows 9, causes the turning Gates' front ends to move in a combined backwards and laterally outwards motions (i.e. moving towards the gripping walls 1B). The laterally outwards movements reduce the widths of the Gaps, thus squeezing the laces even harder therefore preventing the laces to move further backwards. The bulges 7 which are installed on the gripping walls 1B, increase the blocking force of the turning Gates 2C even further by forcing the laces to bend when the front ends 2B squeezes them. Both the gripping walls 1B and the bulges 7 have smooth surfaces to minimize the wear of the lace passing in the gap.


In FIGS. 5 and 6 the helical torque springs 3 which are installed on the axles 5 are preloaded and have a bias which constantly pushes the turning Gates 1C to turn backwards. Thus, the springs 3 keep the LRFDs in a locked position when the user is not pressing on the gate levers 2A. To switch the Gates' locking mechanisms into unlocked positions, the user 10 has to press the levers 2A (which protrude from the channels' top walls on both sides of the parallel configuration) overcoming the springs' 3 biases—as shown in FIG. 6. The pins 4 were placed to retain the springs' 3 first wire ends and provide rear spring supports. The second wire ends of the springs is supported by the turning gates' walls. In FIG. 5 the laces 6 exit the shoe's eyelets 8 and enter the channels 1C. The laces 6 in FIG. 5 are fastened and enter the channels 1C via the recesses 1D in the lower side walls which are situated at the lower sides walls of the entrances of the channels 1C. The downwards pressure of the fastened laces 6 on the recesses 1D create as a reaction an equal counter upwards pressure of the shoe on the channels' entrance rear segment 1E of the lower side wall next to and behind the recesses 1D. The downwards pressure coupled with the upwards pressure generate a rotating moment of force which tends to press the lower side walls of the LRFDs parallel configuration against the top part of the shoe. Whereby, keeping the LRFDs parallel configuration pressed flat on top of the shoe.



FIG. 7 shows a blow up 3D isometric drawing of the parts of an embodiment of a disassembled pair of rear spring support LRFDs which can be attached to one another in a parallel configuration. The parts' orientations correspond to their actual orientations in the assembled LRFD. Pins 5, which are riveted to the LRFD housing 1A at holes 1F serve as axles for the turning Gates 2C. The turning gates 2C are shown with their front ends 2B and their levers 2A. Holes 2E which serve as turning gates' 2C bearings for axles 5 is not denoted in FIGS. 5 and 6 to avoid overcrowding. Openings 2D which serve as passages for the springs' 3 first wire ends in the rotating gates, are shown in FIGS. 5, 6, 7. Rear support for the spring 3 is provided by pins 4 which are riveted to the LRFD housings 1A through holes 1G.



FIG. 8 illustrates how a parallel configuration of two LRFDs 1A can be used to fasten two shoe laces serving as a shoe ratchet buckle. Laces 6 which exit from eyelets 8 of the shoe's top 22, enter the parallel configuration of two LRFDs 1A and can be fastened simply by pulling forwards at the laces' ends. The fastened laces 6 can be released by pressing simultaneously on opposite levers 2A.



FIGS. 9 and 10 illustrate projections of cross sections of an embodiment of a front spring support LRFD with locking mechanisms in locked and unlocked positions respectively. The LRFD's housing 11A provides the walls for the channel 11C which houses the turning Gate 12C which is installed on an axle 15. The channel 11C also houses the lace 16. The turning Gate 12C in FIG. 9 which is in a locked position squeezes the lace 16 in the Gap between the Gate's front end 12B and the channel's gripping wall 11B. In FIG. 10 the turning Gate 12C is in unlocked position because the Gate 12C is rotated in counterclockwise direction (also called turning forwards direction) and the Gap between the Gate's sharp front end 12B and its gripping wall 11B is wider than the width of lace 16. As shown in FIG. 10, the user has been switching the locking mechanism into an unlocked position. This is being done by rotating forwards the turning Gate 12C into an unlocked position by pressing downwards on the lever 12A with the user's finger 10. As can be observed in FIG. 9, the turning Gate 12C is in a forward leaning diagonal orientation. In this orientation pulling the lace 16 in forwards direction (to the right) which is denoted by the arrow 19, causes the Gate's front end 12B to move in a combined forwards and laterally inwards motion (i.e. moving upwards and away from the gripping wall 11B) motion. The lateral inwards movement increases the width of the Gap and also turns the sharp front end 12B away from the lace 16, thus allowing the lace to move forwards more easily with less friction and wear because the lace 6 slides on the gate's smooth side 2F and on the smoothed gripping wall 12B. On the other hand, pulling the lace 16 in backwards direction (to the left) which is opposite to the arrow 19, causes the turning Gate's front end 12B to move in a combined backwards and laterally outwards motion (i.e. moving towards the gripping wall 11B). The laterally outwards movement reduces the width of the Gap, thus squeezing the lace even harder therefore preventing the lace to move further backwards. The bulge 17 which is installed on the gripping wall 11B, increases the blocking force of the turning Gate 12C even further by forcing the lace to bend when the front end 12B squeezes it. Both the gripping wall 11B and the bulge 17 have smooth surfaces to minimize the wear of the lace passing in the gap.


The spring 13 which is installed on the axle 15 is preloaded and has a bias which constantly pushes the turning Gate 11C to turn backwards (i.e. in clockwise direction in FIG. 9). Thus, the spring 13 keeps the LRFD in a locked position when the user is not pressing on the lever 12A. To switch the Gate's locking mechanism into an unlocked position, the user 10 has to press the Gate's lever 12A downwards overcoming the spring's 13 bias. In FIG. 9 the lace 16 exits the shoe's eyelet 18 and enters the channel 11C. The lace 16 in FIG. 9 is fastened and enters the channel 11C via the recess 11D. The downwards pressure of the fastened lace 16 on the recess 11D and the upwards counter pressure of the shoe on the channel's rear segment 11E create a moment of force which forces the LRFD to rotate downwards, thus keeping the LRFD flat on the shoe.



FIG. 11 shows a blow up 3D isometric drawing of the parts of an embodiment of a disassembled front support LRFD. The parts' orientations correspond to their actual orientations in the assembled LRFD. Pin 15 serves as an axle to the Gate 12C is riveted to holes 11F in the LRFD cannel's housing 11A. The turning gate 12C is shown with its front end 12B and its lever 12A. Hole 12E which serve as a bearing for axle 15 is illustrated in FIG. 11 but is not explicitly denoted in FIGS. 9 and 10 to prevent overcrowding. Opening 12D which serves as a passage for the helical torque spring's 13 first wire end in the rotating gate, is shown in FIGS. 9, 10, 11.



FIG. 12 describes two LRFDs 11A which are installed on a shoe's top 32 next to eyelets 18. The laces 16 which exit the eyelets 18, enter the LRFDs 11A and are fastened backwards. The hooks 31 serve as lace end holders to prevent lace dangling.



FIG. 13 depicts a cross section drawing of a pair of front spring support LRFDs which are attached to one another in a parallel configuration. The locking mechanisms of these LRFDs are in locked positions and the laces 16 are fastened. The LRFDs' housing 11A provides the walls for the channels 11C which house the turning Gates 12C that are installed on axles 15. Each of the channels 11C also house a lace 16. The turning Gates 12C in FIG. 13 which are in locked positions squeeze the laces 16 in the Gaps between the turning Gates' sharp front ends 12B and the channels' gripping walls 11B. In FIG. 14 the turning Gates 12C are in unlocked positions because the turning Gates 12C are rotated in forwards direction and the Gap between the Gates' sharp front ends 12B and their gripping walls 11B is wider than the widths of laces 16. As shown in FIG. 14, the user has been switching the locking mechanism into unlocked positions. This is being done by rotating forwards the turning Gates 12C into unlocked positions by pressing on the levers 12A (which protrude from the top LRFD walls) with two of the users' fingers 10. As can be observed in FIG. 13, the turning Gates 12C are in a forward leaning diagonal orientations. In these orientations pulling the laces 16 in forwards direction (to the right) which is denoted by the arrows 19, causes the Gates' front end to move in a combined forwards and laterally inwards motion (i.e. moving away from their gripping walls 11B). The lateral inwards movements increase the widths of the Gaps and also turns the sharp front ends 12B away from the laces 16, thus allowing the laces to move forwards more easily with less friction and the lace slides on the smooth side 2F of the front end 2B and on the smoothed gripping wall 1B with minimal wear. On the other hand, pulling the laces 16 in backwards directions (to the left) which is opposite to the arrows 19, causes the turning Gates' front ends to move in a combined backwards and laterally outwards motions (i.e. moving towards the gripping walls 11B). The laterally outwards movements reduce the widths of the Gaps, thus squeezing the laces even harder therefore preventing the laces to move further backwards. The bulges 17 which are installed on the gripping walls 11B, increase the blocking force of the turning Gates 12C even further by forcing the laces to bend when the front ends 12B squeezes them. Both the gripping walls 11B and the bulges 17 have smooth surfaces to minimize the wear of the lace passing in the gap.


In FIGS. 13 and 14 the springs 13 which are installed on the axles 15 are preloaded and have a bias which constantly pushes the turning Gates 11C to turn backwards. Thus, the springs 13 keep the LRFDs in a locked position when the user is not pressing on the gate levers 12A. To switch the Gates' locking mechanisms into unlocked positions, the user 10 has to press the levers 12A overcoming the springs' 13 biases—as shown in FIG. 14. In FIG. 13 the laces 16 exit the shoe's eyelets 18 and enter the channels 11C. The laces 16 in FIG. 13 are fastened and enter the channels 11C via the recesses 11D in the gripping walls 11B which are situated at the lower side walls of the entrances of the channels 11C. The downwards pressure of the fastened laces 16 on the recesses 11D create as a reaction an equal counter upwards pressure of the shoe on the channels' entrance rear segment 11E. The downwards pressure coupled with the upwards pressure generate a rotating moment force which tends to press the bottom part of the LRFDs parallel configuration against the top part of the shoe. Whereby, keeping the LRFDs parallel configuration pressed flat on top of the shoe.



FIG. 15 shows a blow up 3D isometric drawing of the parts of an embodiment of a disassembled pair of front spring support LRFDs which can be attached to one another in a parallel configuration. The parts' orientations correspond to their actual orientations in the assembled LRFD. Pins 15 serve as axles to the turning Gates 12C. The turning gates 12C are shown with their sharp front ends 12B and their levers 12A. Holes 12E which serve as a bearings for axles 15 are illustrated in FIG. 15 but are not explicitly denoted in FIGS. 13 and 14 to avoid overcrowding. The pins 15 are riveted into holes 11F in the LRFD housings 11A. Openings 12D which serve as passages for the springs' 13 first wire ends in the rotating gates, are shown in FIGS. 13, 14, 15.



FIG. 16 illustrates how a parallel configuration of two LRFDs 11A can be used to fasten two shoe laces serving as a shoe ratchet buckle. Laces 16 which exit from eyelets 18 of the shoe's top 32, enter the parallel configuration of two LRFDs 11A and can be fastened simply by pulling forwards at the laces' ends. The fastened laces 16 can be released by pressing simultaneously on opposite protruding levers 12A.


To eliminate the protruding gate levers, two LRFDs can be installed in a triangular configuration. The triangular configuration of front spring support LRFDs is illustrated in FIGS. 17-20. The two channel's gripping walls 11B form the two sides of a narrow triangle while the two levers 12A are facing one another between the channels at the triangle's center. The two channels' 12C housings 12A are hinged by two hinges 20B to a connecting plate 20A and can turn one with respect to the other. A cross section drawing of the triangular configuration LRFD in locked position is presented in FIG. 17. The triangular configuration LRFDs in FIGS. 17-20 have springs 13 with front supports, i.e. the first wire ends of the helical torque springs 13 are supported by the top wall. In the locked position the triangular configuration LRFDs have a triangle base which is wider than the base in unlocked position since the two gate levers 12A, which are facing one another are protruding more from the channels 11C because the LRFDs are in locked position. The gate levers 12A in FIG. 18 are compressed, which is described by a cross section of the triangular configuration LRFD in unlocked position. The user can unlock both LRFDs easily by pressing on both sides of the triangular configuration i.e. on the channels' gripping walls 11B with two fingers 10 of one hand. The pressure causes the channels 11C to rotate one towards the other and at the same time to press the gate levers 12A which are facing one another. When the gate levers 12A are pressed the turning gates 12C turn forwards on their axles 15 and cause their sharp front ends 12B to move laterally inwards (i.e. away from their gripping walls 11B) in their respective channels. The front ends 12B motion increases the gaps between the gates' front ends 12B and their gripping walls 11B, which unlocks the LRFDs and allows the laces 16 to move freely in their respective channels.



FIG. 19 illustrates a blow up 3D isometric drawing of the parts of an embodiment of a disassembled pair of front spring support LRFDs which can be attached to one another in a triangular configuration. The parts' orientations correspond to their actual orientations in the assembled LRFD. Pins 15 serve as axles to the turning Gates 12C. The turning gates 12C are shown with their sharp front ends 12B and their levers 12A. Holes 12E which serve as a bearings for axles 15 are illustrated in FIG. 19 but are not denoted explicitly in FIGS. 17 and 18 to avoid overcrowding. The pins 15 are riveted into holes 11F in the LRFD housings 11A. Openings 12D which serve as passages for the springs' 13 first wire ends in the rotating gates 12C, are shown in FIGS. 17, 18, 19. The two channels' housings 11A are hinged to one another by the two hinges 20B which are riveted to the connecting plate 20A.


The triangular configuration has the advantage that it has better outlined shape since it does not have protruding gate levers on both sides. Both the structures of the parallel configuration and triangular configuration of two LRFDs is designed to lie flat on top of the shoe when the laces are fastened. This is achieved by entering the laces via recesses 11D in the lower side walls of the LRFD channels. The downwards pressure of the laces when fastened on the recesses 11D and the equal upwards pressure which is generated as an equal reaction to the downwards pressure, is applied on the channels rear segments 11E, and create a rotation moment force which forces the bottom side of the LRFDs to lie flat on the top side of the shoe.



FIG. 20 illustrates how a triangular configuration of two front spring support LRFDs 11A can be used to fasten two shoe laces serving as a shoe ratchet buckle. Laces 16 which exit from eyelets 18 of the shoe's top 32, enter the triangular configuration of two LRFDs 11A and can be fastened simply by pulling forwards at the laces' ends. The fastened laces 16 can be released by pressing simultaneously on opposite channel sides 11A.



FIGS. 21 and 22 depict a single front spring support LRFD which can be used to fasten laces of trousers, coats or other objects simply by tying one lace end to the LRFD and using the LRFD to fasten the other lace's end. Such a LRFD is illustrated in FIGS. 21 and 22 by cross sections of an embodiment of a front spring support LRFD with locking mechanisms in locked and unlocked positions respectively. The LRFD's housing 11A provides the walls for the channel 11C which houses the turning Gate 12C which is installed on an axle 15. The channel 11C also houses the lace 16. The turning Gate 12C in FIG. 21 which is in a locked position squeezes the lace 16 in the Gap between the Gate's front end 12B and the channel's gripping wall 11B. In FIG. 22 the turning Gate 12C is in unlocked position because the Gate 12C is rotated in counterclockwise direction (also called forwards direction) and the Gap between the Gate's sharp front end 12B and its gripping wall 11B is wider than the width of lace 16. As shown in FIG. 22, the user has been switching the locking mechanism into an unlocked position. This is being done by rotating forwards the turning Gate 12C into an unlocked position by pressing downwards on the lever 12A with the user's finger 10.


As can be observed in FIG. 21, the turning Gate 12C is in a forward leaning diagonal orientation. In this orientation pulling the lace 16 in forwards direction (to the right) which is denoted by the arrow 19, drags the Gate's front end 12B due to front end—lace mutual friction and forces it to move in a combined forwards and laterally inwards motion (i.e. moving upwards and away from the gripping wall 11B) motion. The lateral inwards movement increases the width of the Gap and also turns the sharp front end 12B away from the lace 16, thus allowing the lace to move forwards more easily with less friction and wear. On the other hand, pulling the lace 16 in backwards direction (to the left) which is opposite to the arrow 19, drags the turning Gate's front end 12B and forces it to move in a combined backwards and laterally outwards motion (i.e. moving towards the gripping wall 11B). The laterally outwards movement reduces the width of the Gap, thus squeezing the lace even harder therefore preventing the lace to move further backwards. The bulge 17 which is installed on the gripping wall 11B, increases the blocking force of the turning Gate 12C even further by forcing the lace to bend when the front end 12B squeezes it. Both the gripping wall 11B and the bulge 17 have smooth surfaces to minimize the wear of the lace passing in the gap.


The helical torque spring 13 which is installed on the axle 15 is preloaded and has a bias which constantly pushes the turning Gate 11C to turn backwards (i.e. in clockwise direction in FIG. 21). Thus, the spring 13 keeps the LRFD in a locked position when the user is not pressing on the lever 12A. To switch the Gate's locking mechanism into an unlocked position, the user 10 has to press the Gate's lever 12A downwards overcoming the spring's 13 bias. In FIG. 21 the lace 16 exits the garment's eyelet 18 and enters the channel 11C. The lace 16 in FIG. 21 is fastened and enters the channel 11C via the recess 11D in the lower side wall. The downwards pressure of the fastened lace 16 on the recess 11D and the upwards counter pressure of the garment on the lower side wall's rear segment 11E create a moment force which forces the LRFD to rotate downwards, thus keeping the LRFD flat on the garment. The garment LRFD is tied to the second end of the lace 16 by the pressing ring 23. Thus, fastening force of the lace 16 end on the LRFD towards the left is countered by the force towards the right exerted by the other lace's end, which is attached to the LRFD by the ring 23.



FIGS. 23 and 24 depict the lace sliding operation on the smooth sides of the front ends of gates of rear and front spring support LRFDs respectively, while fastened. FIGS. 23 and 24 show the sliding on the smooth sides of the front ends of gates of LRFDs with rear and front spring support respectively. Referring to FIG. 23, when lace 6 is fastened it drags the front end 2B of the turning gate 2C forwards (i.e. towards the right—arrow 9). This turns the gate 2C forwards and the lace which was squeezed in the gap by the sharp end of the front end 2B is now in touch with the front end's smooth side 2F. This enables it to slide on the smooth side 2F with minimal wear. The other side of the lace 6 is touching the smooth surface of the gripping wall 1B which also does not wear the lace 6.


Referring to FIG. 24, (which depicts front spring support LRFD) when lace 16 is fastened it drags the front end 12B of the turning gate 12C forwards (i.e. towards the right—arrow 19). This turns the gate 12C forwards and the lace which was squeezed in the gap by the sharp end of the front end 12B is now in touch with the front end's smooth side 12F. This enables it to slide on the smooth side 12F with minimal wear. The other side of the lace 16 is touching the smooth surface of the gripping wall 11B which also does not wear the lace 16.


To eliminate the protruding gate levers, two LRFDs can be installed in a triangular configuration. The triangular configuration of rear spring support LRFDs is illustrated in FIGS. 25-27. The two channel's gripping walls 1B form the two sides of a narrow triangle while the two levers 2A are facing one another between the channels at the triangle's center. The two channels' 2C housings 2A are hinged by two hinges 20B to a connecting plate 20A and can turn one with respect to the other. A cross section drawing of the triangular configuration LRFD in locked position is presented in FIG. 25. The triangular configuration LRFDs in FIGS. 25-27 have springs 3 with rear supports, i.e. the first wire ends of the helical torque springs 3 are supported by the pin 4. In the locked position the triangular configuration LRFDs have a triangle base which is wider than the base in unlocked position since the two gate levers 2A, which are facing one another are protruding more from the channels 1C because the LRFDs are in locked position. The gate levers 2A in FIG. 26 are compressed, which is described by a cross section of the triangular configuration LRFD in unlocked position. The user can unlock both LRFDs easily by pressing on both sides of the triangular configuration i.e. on the channels' gripping walls 1B with two fingers 10 of one hand. The pressure causes the channels 1C to rotate one towards the other and at the same time to press the gate levers 2A which are facing one another. When the gate levers 2A are pressed the turning gates 2C turn forwards on their axles 5 and cause their sharp front ends 2B to move laterally inwards (i.e. away from their gripping walls 1B) in their respective channels. The front ends 2B motion increases the gaps between the gates' front ends 2B and their gripping walls 1B, which unlocks the LRFDs and allows the laces 6 to move freely in their respective channels.



FIG. 27 illustrates a blow up 3D isometric drawing of the parts of an embodiment of a disassembled pair of rear spring support LRFDs which can be attached to one another in a triangular configuration. The parts' orientations correspond to their actual orientations in the assembled LRFD. Pins 5 serve as axles to the turning Gates 2C. The turning gates 2C are shown with their sharp front ends 2B and their levers 2A. Holes 2E which serve as a bearings for axles 5 are illustrated in FIG. 27 but are not denoted explicitly in FIGS. 25 and 26 to avoid overcrowding. The pins 5 are riveted into holes 1F in the LRFD housings 1A. Openings 2D which serve as passages for the springs' 3 first wire ends in the rotating gates 2C, are shown in FIGS. 25, 26, 27. The two channels' housings 11A are hinged to one another by the two hinges 20B which are riveted to the connecting plate 20A.


The triangular configuration has the advantage that it has better outlined shape since it does not have protruding gate levers on both sides. Both the structures of the parallel configuration and triangular configuration of two LRFDs is designed to lie flat on top of the shoe when the laces are fastened. This is achieved by entering the laces via recesses 1D in the lower side walls of the LRFD channels. The downwards pressure of the laces when fastened on the recesses 1D and the equal upwards pressure which is generated as an equal reaction to the downwards pressure, is applied on the channels rear segments 1E, and create a rotation moment force which forces the bottom side of the LRFDs to lie flat on the top side of the shoe.



FIGS. 28 and 29 depict a single rear spring support LRFD which can be used to fasten laces of trousers, coats or other objects simply by tying one lace end to the LRFD and using the LRFD to fasten the other lace's end. Such a LRFD is illustrated in FIGS. 28 and 29 by cross sections of an embodiment of a front spring support LRFD with locking mechanisms in locked and unlocked positions respectively. The LRFD's housing 1A provides the walls for the channel 1C which houses the turning Gate 2C which is installed on an axle 5. The channel 1C also houses the lace 6. The turning Gate 2C in FIG. 28 which is in a locked position squeezes the lace 6 in the Gap between the Gate's front end 2B and the channel's gripping wall 1B. In FIG. 29 the turning Gate 2C is in unlocked position because the Gate 2C is rotated in counterclockwise direction (also called forwards direction) and the Gap between the Gate's sharp front end 2B and its gripping wall 1B is wider than the width of lace 6. As shown in FIG. 29, the user has been switching the locking mechanism into an unlocked position. This is being done by rotating forwards the turning Gate 2C into an unlocked position by pressing downwards on the lever 2A with the user's finger 10.


As can be observed in FIG. 28, the turning Gate 2C is in a forward leaning diagonal orientation. In this orientation pulling the lace 6 in forwards direction (to the right) which is denoted by the arrow 9, drags the Gate's front end 2B due to front end—lace mutual friction and forces it to move in a combined forwards and laterally inwards motion (i.e. moving upwards and away from the gripping wall 1B) motion. The lateral inwards movement increases the width of the Gap and also turns the sharp front end 2B away from the lace 6, thus allowing the lace to move forwards more easily with less friction and wear. On the other hand, pulling the lace 6 in backwards direction (to the left) which is opposite to the arrow 9, drags the turning Gate's front end 2B and forces it to move in a combined backwards and laterally outwards motion (i.e. moving towards the gripping wall 1B). The laterally outwards movement reduces the width of the Gap, thus squeezing the lace even harder therefore preventing the lace to move further backwards. The bulge 7 which is installed on the gripping wall 1B, increases the blocking force of the turning Gate 2C even further by forcing the lace to bend when the front end 2B squeezes it. Both the gripping wall 1B and the bulge 7 have smooth surfaces to minimize the wear of the lace passing in the gap.


The first wire end of the helical torque spring 3 is supported by the rear pin 4. The helical torque spring 3 which is installed on the axle 15 is preloaded and has a bias which constantly pushes the turning Gate 1C to turn backwards (i.e. in clockwise direction in FIG. 28). Thus, the spring 3 keeps the LRFD in a locked position when the user is not pressing on the lever 2A. To switch the Gate's locking mechanism into an unlocked position, the user 10 has to press the Gate's lever 2A downwards overcoming the spring's 3 bias. In FIG. 28 the lace 6 exits the garment's eyelet 8 and enters the channel 1C. The lace 6 in FIG. 28 is fastened and enters the channel 1C via the recess 1D in the lower side wall. The downwards pressure of the fastened lace 6 on the recess 1D and the upwards counter pressure of the garment on the lower side wall's rear segment 1E create a moment force which forces the LRFD to rotate downwards, thus keeping the LRFD flat on the garment. The garment LRFD is tied to the second end of the lace 6 by the pressing ring 23. Thus, fastening force of the lace 6 end on the LRFD towards the left is countered by the force towards the right exerted by the other lace's end, which is attached to the LRFD by the ring 23.



FIG. 30 illustrates how a triangular configuration of two rear spring support LRFDs 1A can be used to fasten two shoe laces serving as a shoe ratchet buckle. Laces 6 which exit from eyelets 8 of the shoe's top 32, enter the triangular configuration of two LRFDs 1A and can be fastened simply by pulling forwards at the laces' ends. The fastened laces 6 can be released by pressing simultaneously on opposite channel sides 1A.

Claims
  • 1. A lace fastening device for fastening a lace by said lace ratcheting, comprising a channel; wherein said channel comprising: a gripping wall, a top wall, a lower side wall and an upper side wall; wherein said channel also comprising: an entry opening and an exit opening; wherein a forwards direction in said channel is defined as direction from said entry opening to said exit opening; wherein a backwards direction in said channel is defined as direction from said exit opening to said entry opening; wherein a turning gate is rotatably installed inside said channel; wherein said turning gate is made of solid material; wherein said turning gate comprising a front end and a rear end; wherein said turning gate has an axis of rotation, which is located between said front end and said rear end; wherein said turning gate is rotatably installed inside said channel using an axle which is fitted into a bearing; wherein axis of said axle coincides with said axis of rotation; wherein said gripping wall is positioned opposite to said front end; wherein said top wall is parallel to said gripping wall; wherein a gap exists between said front end and said gripping wall; wherein said gap has a gap width; wherein said turning gate is installed at a predetermined diagonal direction with respect to said forwards direction; wherein at said diagonal direction said front end is closer to said exit opening than said axis of rotation; wherein at said diagonal direction said front end is closer to said gripping wall than said axis of rotation; wherein a forwards turning is defined as turning of said turning gate in which said front end is moved in a combined said forwards direction plus laterally inwards direction; wherein said laterally inwards direction is direction away from said gripping wall; wherein motion in said laterally inwards direction increases said gap width; thereby, said forwards turning increases said gap width; wherein a backwards turning is defined as turning of said turning gate in which said front end is moved in a combined said backwards direction plus laterally outwards direction; wherein said laterally outwards direction is direction towards said gripping wall; wherein motion in said laterally outwards direction decreases said gap width; thereby, said backwards turning decreases said gap width; wherein a forwards motion is defined as motion in said forwards direction; wherein a backwards motion is defined as motion in said backwards direction; wherein a forwards force is a force in said forwards direction; wherein said forwards force applied to said front end can cause said forwards turning; wherein a backwards force is a force in said backwards direction; wherein said backwards force applied to said front end can cause said backwards turning; wherein said lace fastening device has a locking mechanism which controls said gap width; wherein said locking mechanism has an unlocked position and a locked position; wherein said lace has a lace width; wherein at said unlocked position said gap width is larger than said lace width; thereby, allowing said lace passing through said gap to be moved freely both in said forwards direction and in said backwards direction; wherein at said locked position said gap width is smaller than said lace width; whereby said lace passing through said gap is being squeezed between said front end of said turning gate and said gripping wall; wherein when said locking mechanism is in said locked position, then moving said lace in said forwards direction also applies said forwards force on said front end due to friction; wherein said forwards force causes said forwards turning of said turning gate; thereby increasing said gap width and allowing easier said forwards motion of said lace; wherein when said locking mechanism is in said locked position, then moving said lace in said backwards direction also applies said backwards force on said front end due to friction; wherein said backwards force causes said backwards turning of said turning gate; thereby further decreasing said gap width and blocking any additional said backwards motion of said lace; wherein when said locking mechanism is in said unlocked position, said gap width is larger than said lace width; whereby said lace passing in said gap can be moved freely both in said forwards direction and in said backwards direction; thereby, when said locking mechanism is in said locked position, said lace fastening device is a lace ratcheting device which enables said forwards motion of said lace for fastening but blocks said backwards motion of said lace; whereby, when said locking mechanism is in said locked position, said lace fastening device enables said lace fastening and keeps said lace fastened until said locking mechanism is switched into said unlocked position; wherein a torque spring has been installed in said channel; said torque spring has a helical wire structure with a first wire end and a second wire end; wherein said torque spring is mounted on said axle; wherein said torque spring is installed with a bias which tends to cause said backwards turning of said turning gate; wherein, said backwards turning decreases said gap width and squeezes said lace in said gap; wherein a lever is attached to said rear end; wherein said lever protrudes from an opening in said top wall; wherein said lever enables a user to switch said locking mechanism from said locked position into said unlocked position when said user causes said forwards turning of said turning gate by applying on said lever a manual pressure which is high enough to overcome said bias; thereby, when said user does not apply said manual pressure on said lever and no said forwards force is applied on said front end, said bias is keeping said locking mechanism in said locked position.
  • 2. The lace fastening device of claim number 1, wherein said front end of said turning gate has a sharp edge which enables said front end to apply concentrated squeezing pressure on said lace when said lace is squeezed; wherein, said sharp edge also has a smooth side.
  • 3. The lace fastening device of claim number 1, wherein said gripping wall has a smooth surface; whereby, said smooth surface reduces said lace wear when said lace is fastened in said locked position and also when said lace is moved in said unlocked position; In addition, said forwards turning of said turning gate, which occurs when said lace is being fastened, causes said sharp edge of said front end to turn such that said lace slides on said smooth side of said sharp edge; whereby, reducing said lace wear due to fastening.
  • 4. The lace fastening device of claim number 1, wherein a bulge is attached to said gripping wall; wherein said bulge causes additional bending of said lace when said lace is squeezed in said gap between said front end of said turning gate and said gripping wall; whereby, said additional bending increases said lace's motion blocking force when said locking mechanism is in said locked position and said lace is pulled in said backwards direction.
  • 5. The lace fastening device of claim number 1, wherein said lace fastening device with rear spring support comprising: a rear pin attached to said channel; wherein said first wire end is supported by said rear pin; wherein said second wire end is supported by said turning gate.
  • 6. The lace fastening device of claim number 1, wherein said lace fastening device with front spring support comprising: said first wire end supported by said top wall and said second wire end which is supported by said turning gate.
  • 7. The lace fastening device of claim number 1, wherein said lace has a first lace end and a second lace end; wherein said lace fastening device is used for single said lace fastening by tying said first lace end to said lace fastening device and fastening said second lace end with said lace fastening device; wherein said first lace end enables said user to pull in said forwards direction said lace fastening device while said lace fastening device is being pulled in said backwards direction by said second lace end of fastened said lace.
  • 8. The lace fastening device of claim number 7, wherein said lace fastening device with rear spring support comprising: a rear pin attached to said channel; wherein said first wire end is supported by said rear pin; wherein said second wire end is supported by said turning gate.
  • 9. The lace fastening device of claim number 7, wherein said lace fastening device with front spring support comprising: said first wire end supported by said top wall and said second wire end which is supported by said turning gate.
  • 10. The lace fastening device of claim number 1, wherein two said lace fastening devices are used as a ratchet buckle to fasten two said laces by attaching two said lace fastening devices to one another in a parallel configuration; wherein, in said parallel configuration said two attached said lace fastening devices form a rectangular shape; wherein said rectangular shape has two parallel outer sides; wherein the two said gripping walls of said channels are attached to one another and the two said top walls form two said parallel outer sides; wherein said user can fasten two said laces by pulling in said forwards direction two said laces, which were inserted in said channels; wherein each said top wall has a protruding said lever; whereby, applying said manual pressure on said levers, which is higher than said biases, forces said forwards turning of said turning gates, which unlocks said locking mechanisms and releasing said laces.
  • 11. The lace fastening device of claim number 10, wherein said lace fastening device with rear spring support comprising: a rear pin attached to said channel; wherein said first wire end is supported by said rear pin; wherein said second wire end is supported by said turning gate.
  • 12. The lace fastening device of claim number 10, wherein said lace fastening device with front spring support comprising: said first wire end supported by said top wall and said second wire end which is supported by said turning gate.
  • 13. The lace fastening device of claim number 1, wherein two said lace fastening devices in a triangular configuration are used as said ratchet buckle to fasten two said laces; wherein said triangular configuration is created by rotatably connecting two said lace fastening devices to a connecting plate using a hinge for each said lace fastening device; wherein in said triangular configuration two said gripping walls of said channels form two sides of a triangle, which are joined at said connecting plate; wherein two said levers, which are protruding from two said top walls of said channels are facing one another at the center of said triangle; wherein said user can fasten said laces by pulling in said forwards direction two said laces which were inserted in said channels; wherein two said channels in said triangular configuration can be rotated on their said hinges one said channel with respect to the other said channel; whereby, said manual pressure, which exceeds said biases, on one said gripping wall towards the other said gripping wall, causes said channels to move closer and causes said levers to push one another and forces said forwards turning of said turning gates, which unlocks their said locking mechanisms and releasing said laces.
  • 14. The lace fastening device of claim number 13, wherein said lace fastening device with rear spring support comprising: a rear pin attached to said channel; wherein said first wire end is supported by said rear pin; wherein said second wire end is supported by said turning gate.
  • 15. The lace fastening device of claim number 13, wherein said lace fastening device with front spring support comprising: said first wire end supported by said top wall and said second wire end which is supported by said turning gate.
  • 16. The lace fastening device of claim number 1, wherein said lace fastening device can be used to fasten said lace in an object by attaching said lace fastening device to said object; wherein said user can fasten said lace by inserting said lace into said channel and then pulling said lace in said forwards direction while said locking mechanism is in said locked position; said user can release said lace by applying on said lever said manual pressure that is higher than said bias, which forces said forwards turning of said turning gate, which unlocks said locking mechanism and releasing said lace.
  • 17. The lace fastening device of claim number 16, wherein said lace fastening device with rear spring support comprising: a rear pin attached to said channel; wherein said first wire end is supported by said rear pin; wherein said second wire end is supported by said turning gate.
  • 18. The lace fastening device of claim number 16, wherein said lace fastening device with front spring support comprising: said first wire end supported by said top wall and said second wire end which is supported by said turning gate.
  • 19. The lace fastening device of claim number 10, wherein said channel at said entry opening has a recess at said lower side wall; wherein said channel at said entry opening also has a rear segment of said lower side wall behind said recess; wherein said lace enters said channel via said recess; wherein when said lace is fastened on said footwear, said lace applies a downwards force on said recess; wherein said downwards force is countered by a reaction upwards force applied on said rear segment by said footwear; said downwards force and said reaction upwards force create a moment of force which tends to rotate said lace fastening device towards said footwear; thereby, said moment of force keeps said lace fastening device flat on said footwear.
  • 20. The lace fastening device of claim number 13, wherein said channel at said entry opening has a recess at said lower side wall; wherein said channel at said entry opening also has a rear segment of said lower side wall behind said recess; wherein said lace enters said channel via said recess; wherein when said lace is fastened on said footwear, said lace applies said downwards force on said recess; wherein said downwards force is countered by said reaction upwards force applied on said rear segment by said footwear; said downwards force and said reaction upwards force create a moment of force which tends to rotate said lace fastening device towards said footwear; thereby, said moment of force keeps said lace fastening device flat on said footwear.
  • 21. The lace fastening device of claim number 1, wherein each said front end of said turning gate has a serrated sharp edge which enables said front end to apply higher friction force which serves as a blocking force on said lace when said front end is squeezing said lace.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of provisional patent application Ser. No. 62/252,511, Filed: Nov. 8, 2015.

Provisional Applications (1)
Number Date Country
62252511 Nov 2015 US