The present disclosure relates generally to articles of footwear having a lacing system with a tensioner for moving footwear between a tightened state and a loosened state.
This section provides background information related to the present disclosure which is not necessarily prior art.
Articles of footwear conventionally include an upper and a sole structure. The upper may be formed from any suitable material(s) to receive, secure and support a foot on the sole structure. A bottom portion of the upper, proximate to a bottom surface of the foot, attaches to the sole structure. Sole structures generally include a layered arrangement extending between an outsole providing abrasion-resistance and traction with a ground surface and a midsole disposed between the outsole and the upper for providing cushioning for the foot.
The upper may cooperate with laces, straps, or other fasteners to adjust the fit of the upper around the foot. For instance, laces may be tightened to close the upper around the foot and tied once a desired fit of the upper around the foot is attained. Care is required to ensure that the upper is not too loose or too tight around the foot each time the laces are tied. Moreover, the laces may loosen or become untied during wear of the footwear. While fasteners such as hook and loop fasteners are easier and quicker to operate than traditional laces, these fasteners have a propensity to wear out over time and require more attention to attain a desired tension when securing the upper to the foot.
The drawings described herein are for illustrative purposes only of selected configurations and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the drawings.
Example configurations will now be described more fully with reference to the accompanying drawings. Example configurations are provided so that this disclosure will be thorough, and will fully convey the scope of the disclosure to those of ordinary skill in the art. Specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of configurations of the present disclosure. It will be apparent to those of ordinary skill in the art that specific details need not be employed, that example configurations may be embodied in many different forms, and that the specific details and the example configurations should not be construed to limit the scope of the disclosure.
The terminology used herein is for the purpose of describing particular exemplary configurations only and is not intended to be limiting. As used herein, the singular articles “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. Additional or alternative steps may be employed.
When an element or layer is referred to as being “on,” “engaged to,” “connected to,” “attached to,” or “coupled to” another element or layer, it may be directly on, engaged, connected, attached, or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” “directly attached to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
The terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections. These elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example configurations.
At least a portion of the upper of the article of footwear, and in some embodiments substantially the entirety of the upper, may be formed of a knitted component. The knitted component may additionally or alternatively form another element of the article of footwear such as the midsole, for example. The knitted component may have a first side forming an inner surface of the upper (e.g., facing the void of the article of footwear) and a second side forming an outer surface of the upper (e.g. facing generally away from the first side). An upper including the knitted component may substantially surround the void so as to substantially encompass the foot of a person when the article of footwear is in use. The first side and the second side of the knitted component may exhibit different characteristics (e.g., the first side may provide abrasion resistance and comfort while the second side may be relatively rigid and provide water resistance, among other advantageous characteristics mentioned below). The knitted component may be formed as an integral one-piece element during a knitting process, such as a weft knitting process (e.g., with a flat knitting machine or circular knitting machine), a warp knitting process, or any other suitable knitting process. That is, the knitting process may substantially form the knit structure of the knitted component without the need for significant post-knitting processes or steps. Alternatively, two or more portions of the knitted component may be formed separately as integral one-piece elements and then the respective elements attached. In some embodiments, the knitted component may be shaped after the knitting process to form and retain the desired shape of the upper (for example, by using a foot-shaped last). The shaping process may include attaching the knitted component to another object (e.g., a strobel) and/or attaching one portion of the knitted component to another portion of the knitted component at a seam by sewing, by using an adhesive, by bonding or by another suitable attachment process.
Forming the upper with the knitted component may provide the upper with advantageous characteristics including, but not limited to, a particular degree of elasticity (for example, as expressed in terms of Young's modulus), breathability, bendability, strength, moisture absorption, weight, and abrasion resistance. These characteristics may be accomplished by selecting a particular single layer or multi-layer knit structure (e.g., a ribbed knit structure, a single jersey knit structure, or a double jersey knit structure), by varying the size and tension of the knit structure, by using one or more yarns formed of a particular material (e.g., a polyester material, or an elastic material such as spandex) or construction (e.g., multifilament or monofilament), by selecting yarns of a particular size (e.g., denier), or a combination thereof. The knitted component may also provide desirable aesthetic characteristics by incorporating yarns having different colors, textures or other visual properties arranged in a particular pattern. The yarns themselves and/or the knit structure formed by one or more of the yarns of the knitted component may be varied at different locations such that the knitted component has two or more portions with different properties (e.g., a portion forming the throat area of the upper may be relatively elastic while another portion may be relatively inelastic). In some embodiments, the knitted component may incorporate one or more materials with properties that change in response to a stimulus (e.g., temperature, moisture, electrical current, magnetic field, or light). For example, the knitted component may include yarns formed of a thermoplastic polymer material (e.g., polyurethanes, polyamides, polyolefins, and nylons) that transitions from a solid state to a softened or liquid state when subjected to certain temperatures at or above its melting point and then transitions back to the solid state when cooled. The thermoplastic polymer material may provide the ability to heat and then cool a portion of the knitted component to thereby form an area of bonded or continuous material that exhibits certain advantageous properties including a relatively high degree of rigidity, strength, and water resistance, for example.
In some embodiments, the knitted component may include one or more yarns or strands that are at least partially inlaid or otherwise inserted within the knit structure of the knitted component during or after the knitting process, herein referred to as “tensile strands.” The tensile strands may be substantially inelastic so as to have a substantially fixed length. The tensile strands may extend through a plurality of courses of the knitted component or through a passage formed within the knitted component and may limit the stretch of the knitted component in at least one direction. For example, the tensile strands may extend from an area underfoot, and/or approximately from a biteline of the upper to a throat area of the upper to limit the stretch of the upper in the lateral direction. The tensile strands may form one or more lace apertures for receiving a lace and/or may extend around at least a portion of a lace aperture formed in the knit structure of the knitted component.
One aspect of the disclosure includes an article of footwear including an upper and a tensioning cable having a first end disposed on one of a lateral side and a medial side of the upper. The tensioning cable is movable in a tightening direction to move the upper into a tightened state and movable in a loosening direction to move the upper into a loosened state. The article of footwear also includes a locking device disposed on the one of the lateral side and the medial side of the upper. The locking device is operable between a locked state restricting movement of the tensioning cable in the loosening direction and an unlocked state permitting movement of the tensioning cable in both the loosening direction and the tightening direction.
This aspect includes one or more of the following optional features. In some examples, the article of footwear further includes a sheath extending from a first end disposed on the one of the lateral side and the medial side, around a tongue portion of the upper, and to a second end disposed on the other of the lateral side and the medial side of the upper. The sheath includes an inner diameter that is greater than an outer diameter of the tensioning cable and receives a portion of the tensioning cable therein. The sheath may be operable to accommodate bunching by the tensioning cable when the tensioning cable is moved in the tightening direction
In some implementations, the tensioning cable extends from the first end, around a tongue portion of the upper, and to a first anchor disposed on the other of the lateral side and the medial side of the upper. Additionally, the tensioning cable may extend from the first anchor around a heel portion of the upper to a second anchor disposed on the one of the lateral side and the medial side of the upper. In some examples, a location of the second anchor is disposed further from an ankle opening of the upper than the first end of the tensioning cable. Moreover, the article of footwear may further include at least one routing conduit that includes an inner diameter that is greater than an outer diameter of the tensioning cable and receives a portion of the tensioning cable that extends around the heel portion of the upper between the first anchor and the second anchor.
In some configurations, the tensioning cable extends around the heel portion of the upper from the first anchor and through the locking device. The locking device may include a braided conduit receiving a portion of the tensioning cable therein and operable between an elongated position restricting movement of the tensioning cable in both the loosening direction and the tightening direction and a compressed position permitting movement of the tensioning cable in both the loosening direction and the tightening direction. The braided conduit may be biased in the elongated position by an elastic band. Additionally or alternatively, the tensioning cable may be moved in the tightening direction through the braided conduit when the tensioning cable is pulled away from the upper.
In some examples, the braided conduit is biased in the elongated position and transitions to an intermediate compressed position when the tensioning cable is pulled away from the upper, wherein the intermediate compressed position permits movement of the tensioning cable in the tightening direction and restricts movement of the tensioning cable in the loosening direction. The braided conduit may extend between a first end operatively connected to a first attachment mechanism fixedly attached to the one of the lateral side and the medial side of the upper and a second end operatively connected to a second attachment mechanism movable relative to the first attachment mechanism.
The article of footwear may further include a release operatively connected to the second attachment mechanism. The release is operable to move the second attachment mechanism toward the first attachment mechanism to move the braided conduit into the compressed position when a force of a predetermined magnitude is applied to the release. In some examples, the tensioning cable extends from the second attachment mechanism and routes through a series of lateral engagement features extending along a lateral edge of a throat opening of the upper, and a series of medial engagement features extending along a medial edge of the throat opening of the upper.
Another aspect of the present disclosure provides a method of manufacturing an article of footwear including an upper. The method includes providing a tensioning cable movable in a tightening direction to move the upper into a tightened state and movable in a loosening direction to move the upper into a loosed state. The tensioning cable is disposed on one of a lateral side and a medial side of the upper. The method further includes extending the tensioning cable through a locking device disposed on the one of the lateral side and the medial side of the upper, the locking device operable between a locked state restricting movement of the tensioning cable in the loosening direction and an unlocked state permitting movement of the tensioning cable in both the loosening direction and the tightening direction.
This aspect provides one or more of the following optional features. In some implementations, the method further includes extending the tensioning cable through a sheath extending from a first end disposed on the one of the lateral side and the medial side, around a tongue portion of the upper, and to a second end disposed on the other of the lateral side and the medial side of the upper. The sheath may be operable to accommodate bunching by the tensioning cable when the tensioning cable is moved in the tightening direction.
In some examples, extending the tensioning cable through the locking device includes extending the tensioning cable through a braided conduit operable between an elongated position restricting movement of the tensioning cable in both the loosening direction and the tightening direction and a compressed position permitting movement of the tensioning cable in both the loosening direction and the tightening direction. Additionally or alternatively, the method may further include extending the braided conduit between a first end operatively connected to a first attachment mechanism fixedly attached to the one of the lateral side and the medial side of the upper and a second end operatively connected to a second attachment mechanism movable relative to the first attachment mechanism.
Referring to
The upper 100 includes interior surfaces that define an interior void 102 configured to receive and secure a foot for support on the sole structure 200. An ankle opening 104 in the heel portion 16 may provide access to the interior void 102. For example, the ankle opening 104 may receive a foot to secure the foot within the void 102 and facilitate entry and removal of the foot from and to the interior void 102. A throat opening 140 corresponding to an instep of the foot, extends between a lateral edge 142 and a medial edge 144 of the upper 100 and from the ankle opening 104 to an area adjacent the forefoot portion 12. In some examples, the upper 100 includes a series of lateral engagement features 180 that extend along the lateral edge 142 of the throat opening 140 and a series of medial engagement features 190 that extend along the medial edge 144 of the throat opening 140. The engagement features 180, 190 may include apertures (eyelets) formed through the upper 100 that extend along corresponding ones of the lateral and medial edges 142 and 144. In other configurations, the engagement features 180, 190 may include a series of mesh loops attached to the upper 100 along corresponding ones of the lateral and medial edges 142 and 144. Additionally or alternatively, and as shown in the examples of
In some examples, the tightening mechanism 300 includes a tensioning cable 302 that extends along the upper 100 to adjust a fit of the interior void 102 around the foot and accommodate entry and removal therefrom. More specifically, the tensioning cable 302 may route through the engagement features 180, 190 to automatically move the upper 100 between the tightened state and the loosened state when the tightening mechanism 300 moves between the corresponding ones of the tightened state and the loosened state. For instance, movement by the tightening mechanism 300 in the tightened state cinches the upper 100 by drawing the lateral and medial edges 142 and 144 toward one another to close or constrict the throat opening 140 such that the inter void 102 closes around the foot. Here, the tensioning cable 302 is movable in a tightening direction 304 (
The upper 100 may include a tongue portion 110 that extends along the throat opening 140 between the interior void 102 and the tensioning cable 302. The upper 100 may be formed from one or more materials that are stitched or adhesively bonded together to form the interior void 102. Suitable materials of the upper may include, but are not limited, textiles, foam, leather, and synthetic leather. The materials may be selected and located to impart properties of durability, air-permeability, wear-resistance, flexibility, and comfort.
In some implementations, the sole structure 200 includes an outsole 210 and a midsole 220 arranged in a layered configuration. For example, the outsole 210 engages with a ground surface during use footwear 10 and the midsole 220 is disposed between the upper 100 and the outsole 210. In some examples, the sole structure 200 may also incorporate additional layers such as an insole or sockliner that may reside within the interior void 102 of the upper 100 to receive a plantar surface of the foot to enhance the comfort of the footwear 10. The outsole 210 may attach to the upper 100 and generally provide abrasion-resistance and traction with the ground surface. Accordingly, the outsole 210 may be formed form one or more materials that impart durability and wear-resistance, as well as enhance traction with the ground surface. For example, rubber may form at least a portion of the outsole 210. The midsole 220 may secure to the upper 100 using stitching or adhesives and may define a footbed surface that may be contoured to conform to a profile of the bottom surface (e.g., plantar) of the foot). One or more polymer foam materials may form the midsole 220 and/or portions of the outsole to provide resilient compressibility under an applied load to attenuate ground-reaction forces. In some examples, the midsole 220 is integrally formed with the outsole 210 and extends through the portions 12, 14, 16 of the footwear 10.
In some implementations, the tensioning cable 302 extends between a first end 308 attached to the upper 100 at an attachment location 309 and a second end 310 attached to the upper 100 at an attachment location 311. The attachment locations 309, 311 associated with the first and second ends 308, 310, respectively, of the tensioning cable 302 may be disposed substantially adjacent to one another in an area along the lateral side 18 of the upper 100 within the heel portion 16 of the footwear 10. The tensioning cable 302 may define a first segment 302-1 extending from the first end 308 at the attachment location 309 and a second segment 302-2 extending substantially parallel to the first segment 302-1 from the second end 310 at the attachment location 311. In other configurations, the attachment locations 309, 311 may be disposed along the medial side 20 of the upper 100 and/or within the mid-foot or forefoot portions 14, 12, respectively, of the footwear 10.
From their corresponding attachment locations 309, 311 at the lateral side 18 of the upper 100, the segments 302-1, 302-1 of the tensioning cable 302 may extend substantially parallel to one another around the tongue portion 110 proximate to where the ankle opening 104 and the throat opening 140 meet (i.e., proximate to above the instep of the wearer's foot) to a medial anchor feature 312 (
As shown in
The locking device 350 is operable between a locked state restricting movement of the tensioning cable 302 in the loosening direction 306 and an unlocked state permitting movement of the tensioning cable 302 in both the loosening direction 306 and the tightening direction 304. In some configurations, the locking device 350 is biased into the locked state. In these configurations, the locking device 350 may include a release mechanism 352 operable to transition the locking device from the locked state to the unlocked state. For example, a release force 357 (
In some implementations, the segments 302-1 and 302-2 of the tensioning cable 302 include corresponding lacing patterns selected so that a total closure distance between the lateral edge 142 and the medial edge 144 of the throat opening 140 according to the corresponding lacing pattern for the first lace segment 302-1 is approximately equal to a total closure distance between the lateral edge 142 and the medial edge 144 of the throat opening 140 according to the corresponding lacing pattern for the second lace segment 302-2. Moreover, when the tensioning cable 302 moves in the tightening direction 304, a take up distance of the first lace segment 302-1 is approximately equal to a take up distance of the second lace segment 302-2. Thus, the take up distance of the first lace segment 302-1 is approximately equal to the total closure distance between the lateral edge 142 and the medial edge 144 of the throat opening 140 according to the corresponding lacing pattern for the first lace segment 302-1, while the take up distance of the second lace segment 302-2 is approximately equal to the total closure distance between the lateral edge 142 and the medial edge 144 of the throat opening 140 according to the corresponding lacing pattern for the second lace segment 302-2.
The tensioning cable 302 may be highly lubricious and/or be formed from one or more fibers having a low modulus of elasticity and a high tensile strength. For instance, the fibers may include high modulus polyethylene fibers having a high strength to weight ratio and very low elasticity. Additionally or alternatively, cable 302 may be formed from a molded monofilament polymer and/or woven steel with or without other lubrication coating. In some examples, the cable 302 includes multiple strands of material woven together.
In some implementations, a sheath 316 receives the portions of the lace segments 302-1, 302-2 that extend around the tongue portion 110 between the corresponding attachment locations 309, 311 disposed at the lateral side 18 of the upper 100f and the medial anchor feature 312 disposed at the medial side 20 of the upper 100f. The sheath 316 may include a fabric material that imparts elastic properties. The sheath 316 may extend between a first end 318 (FIG. 1) attached to the lateral side 18 of the upper 100 and a second end 320 (
In some examples, the sheath 316 enclosing the lace segments 302-1, 302-2 extends around the tongue portion 110 and through a medial locating loop 324 (
In some implementations, a pair of routing tubes 321 and 322 extend around the heel of the upper 100 between the medial anchor feature 312 and the lateral anchor feature 314. The routing tubes 321, 322 are configured to receive corresponding portions of the lace segments 302-1, 302-2 of the tensioning cable 302 for routing around the heel of the footwear 10. For instance, upon exiting the channels at the second end 320 of the sheath 316, the first lace segment 302-1 may extend through the corresponding passage 312-1 of the medial anchor feature 312 and through the first routing tube 321 around the heel of the upper 100 before passing through the corresponding passage 314-1 of the lateral anchor feature 314. Similarly, the second lace segment 302-2 may extend through the corresponding passage 312-2 of the medial anchor feature 312 and through the second routing tube 322 around the heel of the upper 100 before passing through the corresponding passage 314-2 of the lateral anchor feature 314. The routing tubes 321 and 322 may extend substantially parallel to one another and be formed from a substantially rigid material having interior walls configured to facilitate movement of the lace segments 302-1, 302-2 when the tensioning cable 302 moves in the tightening direction 304 and in the loosening direction 306. In some examples, the tubes 321, 322 are lined or coated with a low friction material, such as a lubricous polymer (e.g., Teflon™), that facilitates slidability for unrestricted movement of the lace segments 302-1, 302-2 therethrough.
In some implementations, the locking device 350 is a one-way locking device 350 that permits movement of the tensioning cable 302 in the tightening direction 304 when the locking device 350 is in the locked state. This arrangement allows the tensioning cable 302 to move in the tightening direction 304 each time the pulling force 322 (
In addition to routing the tensioning cable 302 around the tongue portion 110 from the attachment locations 309, 311 disposed at the lateral side 18 to the medial anchor feature 312 disposed at the medial side 20, the channels of the sheath 316 may also be operable to accommodate bunching by the tensioning cable 302 during movement by the tightening mechanism 300 in the tightened state. For instance, each channel of the sheath 316 receives a respective portion of the lace segments 302-1, 302-2 along the length of the tensioning cable 302, and is operable to accommodate bunching by the lace segments 302-1, 302-2 when the tensioning cable 302 moves in the tightening direction 304.
In scenarios when locking device 350 permits movement of the tensioning cable 302 in the tightening direction 304 while in the locked state, application of the pulling force 322 (
In some examples, the locking device 350 includes a braided member (e.g., braided rope or conduit) 360 extending between a first end 361 attached to a first attachment mechanism 354 and a second end 362 attached to a second attachment mechanism 358. The first attachment mechanism 354 may be fixedly attached to the upper 100 via stitching or adhesives and may define a passage 356 having an inlet operable to receive both lace segments 302-1, 302-2 exiting the corresponding passages 314-1, 314-2 of the lateral anchor feature 314, and an outlet fixedly attached to the first end 361 of the braided member 360 for routing the segments 302-1, 302-2 therethrough. The second attachment mechanism 358 is configured for movement relative to the upper 100 and defines a passage 359 having an inlet fixedly attached to the second end 362 of the braided member 360 for receiving the segments 302-1, 302-2, and an outlet operative to direct each of the segments 302-1, 302-2 toward the area proximate to where the lateral edge 142 of the throat opening 140 and the ankle opening 104 meet for routing through the engagement features 180, 190, as discussed above.
The movement by the second attachment mechanism 358 relative to the upper 100 allows the braided member 360 to move between an elongated position (i.e., when the second end 362 of the braided member 360 is biased away from the first end 361) and a compressed position (i.e., when the second end 362 of the braided member 360 is pulled toward the first end 361). For example, an interior wall 365 (
In some configurations, the second attachment mechanism 358 is operatively connected to a biasing member 372 that biases the second attachment mechanism 358 away from the first attachment mechanism 354. In these configurations, the biasing of the second attachment mechanism 358 is operative to bias the second end 362 of the braided member 360 attached thereto away from the first end 361 of the braided member 360 such that the braided member 360 is biased in the elongated position. The braided member 360 may be formed from multiple strands of monofilament polymer woven together in an interlocking pattern between the first and second ends 361 and 362 of the braided member 360.
Referring to
Moreover, and with reference to
The foregoing description has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular configuration are generally not limited to that particular configuration, but, where applicable, are interchangeable and can be used in a selected configuration, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
This application claims priority to U.S. Provisional Application Ser. No. 62/413,210, filed Oct. 26, 2016, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2602207 | Kellems | Jul 1952 | A |
3722112 | Morgan | Mar 1973 | A |
5471769 | Sink | Dec 1995 | A |
5537763 | Donnadieu | Jul 1996 | A |
5839210 | Bernier | Nov 1998 | A |
7818899 | Dinndorf et al. | Oct 2010 | B2 |
7856740 | De Bast | Dec 2010 | B2 |
20030177661 | Tsai | Sep 2003 | A1 |
20050126043 | Reagan | Jun 2005 | A1 |
20050210706 | Johnson | Sep 2005 | A1 |
20060196083 | Martin | Sep 2006 | A1 |
20070186447 | Ramos | Aug 2007 | A1 |
20070240334 | Johnson | Oct 2007 | A1 |
20080301919 | Ussher | Dec 2008 | A1 |
20100175278 | Seliger | Jul 2010 | A1 |
20100319216 | Grenzke et al. | Dec 2010 | A1 |
20110030244 | Motawi | Feb 2011 | A1 |
20130255045 | Gonzalez | Oct 2013 | A1 |
Number | Date | Country |
---|---|---|
624001 | Jul 1981 | CH |
Entry |
---|
European Patent Office (ISA), International Search Report and Written Opinion for International Application No. PCT/US2017/058306, dated Dec. 15, 2017. |
Number | Date | Country | |
---|---|---|---|
20180110295 A1 | Apr 2018 | US |
Number | Date | Country | |
---|---|---|---|
62413210 | Oct 2016 | US |