The present invention relates generally to lacrosse heads, and more particularly to lacrosse heads having increased ball retention capabilities and improved shooting and passing accuracy.
Lacrosse heads for use in the game of lacrosse are well-known and take on a variety of configurations. Current lacrosse heads are typically manufactured by injection molding processes and are secured to a metal lacrosse handle for use in play. The structure of current lacrosse heads is commonly defined by a base portion that is disposed adjacent to the connection of the handle, a pair of opposing sidewall portions that diverge from the base portion, and a scoop portion that connects the ends of the pair of opposing sidewall portions opposite the base portion. Lacrosse heads are also intended to receive a netting thereon that connects to the base portion, the pair of opposing sidewall portions, and the scoop portion. The netting is intended to retain a lacrosse ball therein.
The scoop portions on current lacrosse heads have a generally smooth and planar inner surface. The smooth planar inner surface is intended to facilitate scooping of ground balls. As is also known, lacrosse heads for use by women are not allowed to have a pocket formed in the netting. As such, when the ball is thrown or passed, it typically contacts the inner surface of the scoop as it is being caused to exit the head. The smooth planar inner surface of the scoop thus assists this action.
It is also understood that certain players, besides those mandated by rules, prefer to string their lacrosse heads with shallow pockets or no pockets. This is done by a variety of different players, including quick forwards or players who desire a quicker release of the lacrosse ball and those who desire the ability to pass over longer distances. The lacrosse ball typically also contacts the scoop portion of the lacrosse head as it exits the head. Therefore, the smooth planar inner surface similarly assists these players with these actions.
A drawback of these lacrosse heads having a scoop with a smooth inner surface is that the lacrosse ball may slide or skid laterally across the smooth surface of the scoop portion as it is being thrown. As a result, the user's line of throwing may be skewed thereby decreasing his accuracy while passing and shooting.
In addition, the smooth surface may cause the lacrosse ball to slide or skid across the scoop portion in a manner that allows the lacrosse ball to be flung through the air with relatively little or no spin. As is known in the art, a lacrosse ball travelling through the air with relatively little or no spin can take an erratic path thereby further decreasing the user's accuracy. It is also known that a lacrosse ball without spin travels slower through the air than one having spin.
Furthermore, existing scoop portions are sufficiently flat across their lateral width such that the lacrosse ball may be thrown from a corner of the lacrosse head where the scoop portion connects to either of the sidewall portions. Throwing the lacrosse ball in this manner does not allow for precise throws. Instead, this type of throwing may skew the user's line of throwing and decrease his accuracy. It is typically desirable to throw the ball in a manner such that the ball rolls off a center section of the scoop portion. Moreover, the lacrosse ball can inadvertently fall out of the head at one of the corners because of its flat configuration.
Existing sidewall portions of lacrosse heads are sufficiently flat such that the lacrosse ball may inadvertently roll off one of the sidewall portions out of the lacrosse head, such as when a player is being checked. Such an adverse effect typically occurs while cradling the ball in a lacrosse head having a shallow pocket. Some lacrosse heads have been manufactured with ball retention ribs or ridges However, these structures are located along the upper rim and thus can decrease the effective catching area of the lacrosse head.
Therefore, it would be advantageous to provide a lacrosse head that allows for accurate, high velocity throwing, in addition to improved ball retention.
The present invention provides a lacrosse head that provides improved ball retention capabilities as well as improved throwing accuracy. The lacrosse head includes a pair of opposing sidewall portions each having a top end, a bottom end, and an inner intermediate section. The inner intermediate section of each of the sidewalls has a shelf integrally formed therein for retaining a lacrosse ball within the frame of the head. The top ends of the opposing sidewall portions are connected to each other by a scoop portion. The scoop portion has a non-skid surface formed thereon, which creates friction for the lacrosse ball as it exits the head. The bottom ends of the opposing sidewall portions are connected by a base portion.
One advantage of the present invention is that the lacrosse head provides a user with improved throwing accuracy.
Another advantage of the present invention is that the lacrosse head allows a user to throw the lacrosse ball with greater velocity.
Yet another advantage of the present invention is that the lacrosse head allows a user to easily retain the ball within the head while a user is cradling the ball and/or running.
Still another advantage of the present invention is that the lacrosse head allows the user to scoop the ball into the head easier.
Other advantages of the present invention will become apparent when viewed in light of the detailed description of the preferred embodiment when taken in conjunction with the attached drawings and appended claims.
In the following figures, the same reference numerals are used to identify the same components in the various views.
Referring primarily to
Typically, either a traditional pocket 12 (as shown in
As is known in the art, a pocket 12 having shallow depth typically causes the lacrosse ball to be thrown off or contact the scoop portion 16 as it is exiting the lacrosse head 10. Of course, a variety of other pocket depths may cause the lacrosse ball to be thrown off the scoop portion 16. Thus, while the invention disclosed herein is preferably for use with a lacrosse head having a shallow pocket, such as a lacrosse head for use in women's play, it can be utilized with any other lacrosse head.
Referring now to
The nubs 20 preferably are integral parts of the scoop portion 16 of the lacrosse head 10, but may be otherwise as desired. For example, a strip of plastic having nubs formed thereon may be attached or otherwise adhered to existing scoop portions of lacrosse heads. The nubs 20 are preferably hemispherical protrusions extending from the surface of the scoop portion 16. Of course, it is understood that the nubs 20 may comprise other suitable shapes other than hemispherical, such as rectangular, square, oval, or conical. Moreover, while nubs 20 are the preferred surface deformity, other surface deformities or irregularities may be utilized, including dimples. Further, the non-skid structures can be created by post manufacturing processes, such as by overmolding.
These nubs 20 or other surface unevenness are interspersed across the scoop portion 16 to allow for increased gripping on a lacrosse ball thrown off the scoop portion 16. In other words, the nubs 20 impart friction to the lacrosse ball, which can prevent it from slipping as well as imparting spin thereto. The density of nubs 20 per square inch is sufficient to provide the maximum amount of grip on the lacrosse ball. For example, there are preferably thirty (30) nubs 20 disposed within a square inch of the scoop portion 16. However, a variety of other patterns may be utilized. Moreover, the number of structures in a given area may also vary as desired. The nubs 20 are preferably dispersed over a substantial or large portion of the scoop 16. However, it will be understood that the nubs 20 may be selectively positioned along certain advantageous portions of the scoop 16, such as the center section, which primarily contacts the lacrosse ball.
As the user throws a lacrosse ball off the scoop portion 16, the nubs 20 grip the lacrosse ball and prevent it from sliding off the scoop portion 16 as well as prevent it from sliding laterally or side-to-side. Instead, the nubs 20 cause the lacrosse ball to roll off the scoop portion 16 with a substantial amount of spin. A person skilled in the art will understand that applying spin to the lacrosse ball produces aerodynamic conditions which enable the lacrosse ball to travel through the air with greater velocity than it would without spin. The nubs 20 also will assist a player in scooping up a lacrosse ball as opposed to pushing it across the ground because the non-skid surface provides a better grip for the lacrosse ball. This is because of the friction applied to the ball causing it to rotate into the head instead of skidding.
In addition, the user's accuracy is improved when spin is applied to the lacrosse ball. It is known in the art that lacrosse balls thrown without spin can take erratic paths, which can cause them to miss their intended target. On the other hand, lacrosse balls thrown with spin follow predictable paths and consequently allow for greater throwing accuracy by the user.
The scoop portion 16 also preferably includes a ledge portion 22 including a pair of slanted surfaces 24. Preferably, the slanted surfaces 24 are formed by increasing the thickness of the scoop portion 16. The slanted surfaces 24 are intended to contact the lacrosse ball and direct it back into the pocket preventing a ball from inadvertently exiting the head in the corner areas of the scoop. The lacrosse ball 10 can then be thrown off a center section 26 of the scoop portion 16 thereby allowing for an improved direct line of throwing and consequently greater throwing accuracy. It is known in the art that the user's throwing accuracy is improved when the lacrosse ball is thrown from the center section of the scoop portion 16.
Preferably, two opposing slanted surfaces 24 are integrated within opposite ends of the scoop portion 16 adjacent to the sidewall portions 14. However, it is understood that more or less slanted surfaces 24 may be integrated within the same or different areas of the scoop portion 16 as desired.
Referring now to
Preferably, each shelf 28 is formed within an inner intermediate section 30 of each sidewall portion 14. The inner intermediate section 30 preferably is the part of the sidewall portions 14 that is most frequently in contact with the lacrosse ball as the user cradles the lacrosse ball. However, it is understood that shelves 28 may be formed within other sections of the sidewall portions 14. The shelf 28 is preferably configured such that an upper portion 32 of the sidewall portion 14 extends further inwardly than a lower portion 34 of the sidewall portion 14 in the intermediate section 30. Obviously, the shelf 28 can take on a variety of different configurations.
While particular embodiments of the invention have been shown and described, numerous variations and alternate embodiments will occur to those skilled in the art. Accordingly, it is intended that the invention be limited only in terms of the appended claims.
Number | Date | Country | |
---|---|---|---|
Parent | 10755858 | Jan 2004 | US |
Child | 11344518 | Jan 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10187769 | Jul 2002 | US |
Child | 10755858 | Jan 2004 | US |