1. Field of the Invention
The present invention relates generally to lacrosse sticks, and more particularly, to a lacrosse stick having a downwardly canted handle and an upwardly canted head.
2. Background of the Invention
For traditionally-strung pockets (which have thongs and string instead of mesh), thongs (not shown) made of leather or synthetic material extend from upper thong holes 116 in transverse wall 112 to lower thong holes 118 in stop member 114. In some designs, such as the design shown in
As shown in
When double-wall synthetic lacrosse heads were first introduced, the early designs featured straight handles and straight heads, when viewed from a side elevation facing a sidewall of the head. In other words, the lacrosse head remained largely in line with the axis of the handle. Since those early designs, however, the trend has been to lower the lacrosse head below the handle axis. Lowering the head can enable better ball control and provide a player with an indication of the orientation of the lacrosse head, which results from the uneven weight distribution relative to the handle axis in directions radial to the handle axis.
Despite these advantages, the lacrosse sticks having lowered heads can also introduce undesirable ball handling characteristics because the ball is positioned a greater distance below the shaft axis and must travel a greater distance to release from the head. Traditionally, designers have lowered heads either by reshaping the handle or by lowering the sidewalls adjacent to the throat portion. In either case, the reconfiguration positions the ball a greater distance from the shaft axis. Compounding this problem, the reconfiguration can cause the ball to come to rest in a rear head position (i.e., more toward the stop member). This rear head position, combined with the greater travel, can create difficulties in releasing the ball from the head, and can therefore hinder a player's ability to execute quick and accurate shots and passing.
An embodiment of the present invention provides a lacrosse stick having a downwardly canted handle and an upwardly canted head. As used herein, downwardly and upwardly refer to vertical directions when viewed from a side elevation of a lacrosse stick facing a sidewall of the lacrosse head.
In an embodiment of the present invention, the handle can comprise a main portion and a dowel portion. The main portion can have a main portion axis and the dowel portion can have a dowel portion axis. The dowel portion axis can be disposed downwardly at a first angle to the main portion axis. The head can comprise a throat portion and a frame portion. The frame portion can be upwardly canted with respect to the throat portion, when viewed from a side elevation.
Head 204 includes a throat portion 220 and a frame portion 222. Throat portion 220 receives dowel portion 208 of handle 202. In this example, throat portion 220 provides a collar inside of which dowel portion 208 is disposed and a male plug (not shown) that is disposed within dowel portion 208. The axis of throat portion 220 can be coaxial with the dowel portion axis 212.
As shown in
In another aspect of the invention, frame portion 222 is upwardly canted with respect to the throat portion 220 at a point roughly corresponding to the uppermost edge of head 204 directly above the stop member of head 204. At this location above the stop member, the sidewalls could cant upward relative to the stop member.
In another aspect of the invention, the upward canting between frame portion 222 and throat portion 220 occurs at a location more forward (i.e., toward the scoop) in the head 204.
In another aspect of the invention, head 204 is upwardly canted in that the axis 224 of frame portion 222 departs from the axis 212 of throat portion 220 in an upward direction when viewed from a side elevation as shown in
According to this aspect of the invention, the frame portion axis 224 can be defined as a line starting from the midpoint of the end of the dowel portion of the shaft and extending roughly parallel to the upper and lower edges of the sidewalls, at a region of the sidewalls at which the upper and lower edges of the sidewalls are roughly parallel (e.g., in area 225). In the configuration of
Alternatively, the frame portion axis 224 can be defined as a line drawn from the midpoint of the end of the dowel portion to the uppermost edge of the scoop. In the configuration of
To better illustrate the canting of the frame portion 222 with respect to the throat portion 220 in head 204,
Referring again to
In one embodiment of the present invention, the angle 216 cants the frame portion 222 sufficiently upward such that the upper edges of the sidewalls of the head 204 are at or above the main portion axis 210, as that axis is extended through the head 204 as shown in
As shown in
By using a downwardly canted handle in conjunction with an upwardly canted head, the head can be offset closer to the limits of distance 228 (i.e., line 230) than has previously been possible. Indeed, if an ordinary straight head or offset head were attached to a canted handle of the present invention, the head would be disposed downward and well outside the distance 228.
In downwardly canting the handle and upwardly canting the head, one of ordinary skill in the art would appreciate the interplay between the chosen angles 214 and 216, and the effects that certain dimensions may have on achieving a maximum lowering of the head that still complies with the applicable rules. For example, the length of the throat portion 220 of head 204 and the dowel portion 208 of handle 202, along with angles 214 and 216, can affect the positioning of head 204.
In one implementation that complies with the NCAA 2.75 inch rule, dowel portion 208 is approximately 2 inches, angles 214 and 216 are approximately 10 degrees, the maximum height of the throat and sidewalls is about 2 inches, and the length of head 204 is about 11 inches including throat portion 220 and frame portion 222. In other implementations, angle 214 is within a range of approximately 3 degrees to approximately 25 degrees and the length of the dowel portion 208 is within a range of approximately 1 to approximately 5 inches. With a longer dowel portion 208, the angle 214 could be smaller. For example, if the dowel portion 208 and main portion 206 are roughly equal in length (e.g., the cant is at the center of the handle), then angle 214 is slight. Varying these angles and lengths could provide lacrosse sticks with different feel and performance characteristics, as desired.
In addition, although
In an embodiment of the present invention, in which the angles 214 and 216 are approximately 90 degrees, the dowel portion axis 212 and the throat portion axis 212 are essentially vertical in
The downwardly canted handle and upwardly canted head of the present invention lower the center of mass of the head in the y-direction (see
The lowered center of mass and the forward placement of the ball provide a better-playing lacrosse stick. By gradually canting the handle, the head throat portion, and the head frame portion towards the cradling, throwing, and receiving part of the net, the shooting and passing capabilities of the stick improve because the ball naturally comes to rest more forward in the head in comparison to conventional canted or offset heads. This gradual cant through the handle and head is preferable to a more severe offset of the sidewalls, which can impede passing and shooting. In this manner, the downwardly canted handle and upwardly canted head of the present invention can lower the head over a longer distance with a more gradual slope from the main portion axis 210 of the handle 202.
Tests have been conducted to compare the y-direction center of mass of conventional lacrosse sticks to an exemplary stick according to the present invention. In these tests, the plane of the handle and the plane of the bottom edge of the sidewalls were kept the same in all of the sticks. The center of mass of each stick was determined with the shaft parallel to the x-axis. Three types of conventional lacrosse sticks were tested: (1) a conventional straight sidewall and straight handle stick (e.g., STX Excalibur™); (2) a conventional lowered head stick using an abrupt offset sidewall head and straight handle (e.g., Brine Edge™); and (3) a conventional lowered head stick using a canted offset head and a straight handle (e.g., STX Proton +™). These tests showed that a stick having a canted handle and head of the present invention had a y-direction center of mass lower than the conventional straight sidewall and straight handle stick, and roughly equal to the y-direction centers of mass of the abrupt offset sidewall head and the canted offset head.
Assuming all other lacrosse head variables to be equal (e.g., pocket depth and sidewall openings), the center of mass in the y-direction can dictate the extent to which a player feels the ball in the head and how readily the ball releases from the head when passed or shot. With a straight sidewall head and handle, a player can experience very little feel for the ball in the head, as the center of mass in the y-direction is located toward the upper rails of the sidewall and is more in the same plane as the player's hands when gripping a handle. In this configuration, however, the ball can release very quickly out of the straight head and handle stick due to the shorter distance the ball must travel and the mid-head position that the ball assumes.
In the present invention, a player experiences more feel for the ball in comparison to a straight head and handle stick because the center of mass in the y-direction for the present invention is located more toward the bottom rail. At the same time, the present invention enables a forward ball position, in which the ball rests closer to the scoop. This forward ball position improves feel for the ball and release of the ball from the pocket. Such characteristics provide a lacrosse stick with superior ball handling and throwing capabilities.
Although some of the figures illustrate embodiments of the present invention having roughly octagonal-shaped handles, it should be understood that a lacrosse stick according to the present invention could be adapted to fit any variety of shaft shapes, such as teardrop, asymmetrical, and oval. Indeed, the lacrosse stick of the present invention could be adapted to accommodate a cylindrical shaft or a shaft having any number of sides.
Examples of suitable materials for a lacrosse head according to the present invention include nylon, composite materials, elastomers, metal, urethane, polycarbonate, polyethylene, polypropylene, polyketone, polybutylene terephalate, acetals (e.g., Delrin™ by DuPont), acrylonitrile-butadiene-styrene (ABS), acrylic, acrylic-styrene-acrylonitrile (ASA), alcryn (partially crosslinked halogenated polyolefin alloy), styrene-butadiene-styrene, styrene-ethylene-butylene styrene, thermoplastic olefinic (TPO), thermoplastic vulcanizate (TPV), ethylene-propylene rubber (EPDM), and polyvinyl chloride (PVC).
Examples of suitable materials for a handle according to the present invention include wood, metal (e.g., aluminum, titanium, scandium, CU31, C405, and C555), plastic, and composites. Methods for manufacturing the handle can include welding the dowel portion to the main portion, hot or cold forming a bend or curve into the handle, molding material to form the handle, sintering particles to form the handle, extruding the handle with a bend or curve, and laying up composite materials in the desired shape.
In one implementation of the present invention, a handle is formed by rotary-draw cold bending, in which material (e.g., tube) is drawn around a rotating bend form without heating. The forward-tangent of the material is clamped to the bend die and is drawn around the die as it rotates, while the back tangent is held in place against the rotating bend die by a pressure die. Thus, the point of contact between the rotating bend die and the pressure die is the line of tangency. What distinguishes rotary-draw bending from other methods is that this line of tangency is fixed in space. Therefore, mandrel and wiper tooling can be fixtured at the point of bend to fully control the flow of material. This control helps to produce tube bends of superior quality.
In another implementation of the present invention, a handle is formed by press bending, sometimes referred to as vertical bending. Press bending is distinguished from rotary-draw bending by the fact that when the ram die (analogous to the bend die in rotary-draw bending) pushes the tube through a pair of wing dies (analogous to the pressure die in rotary-draw bending), two lines of tangency form following the points of contact between the circumference of the ram die and each face of the two wing dies.
In another implementation of the present invention, a handle is formed by hydroforming. Hydroforming uses fluid pressure in place of a punch in a conventional tool set to form the part into the desired shape of the die. This technique is very useful for producing whole components that would otherwise be made from multiple stampings joined together.
In another implementation of the present invention, a handle is formed by hot bending or hot forming. In this method of bending, the ductility of the tubing material is increased by heating it either before placement on the machine or in-process. Usually, in-process heating of the material is done indirectly, e.g., with heating elements fixtured in the tools so that the material is heated by conduction through the tools.
Although embodiments of the present invention describe exemplary lacrosse sticks having handles attached to heads by female and/or male mechanical connections and with screws or other fasteners, one of ordinary skill in the art would appreciate that the present invention is equally applicable to unitary lacrosse sticks. For example, the entire handle and head could be formed as one piece, from laid-up composite materials, similar to methods by which some tennis racquets are manufactured. For this reason, the present invention should not be limited to lacrosse sticks assembled from separate components.
The foregoing disclosure of the preferred embodiments of the present invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many variations and modifications of the embodiments described herein will be apparent to one of ordinary skill in the art in light of the above disclosure. The scope of the invention is to be defined only by the claims, and by their equivalents.