The present invention relates to a lacrosse ball throwing and training system and competitive game installation with variable ball trajectory control.
U.S. Pat. No. 7,326,132 of Olexa describes a lacrosse shooting range for practicing lacrosse ball throwing with a ball return mechanism.
U.S. Pat. No. 7,166,045 of Limner an ice hockey game platform (a baseball “batting cage” equivalent), a goal with targets, a computer controlled puck circulator, including a magazine of pucks, a passing unit (i.e. “projector”), which passes (i.e. throws) pucks to a player, a conveyor belt which sorts and conveys already shot pucks into the magazine (i.e. reloads the used pucks) wherein, with a light barrier, a camera and a computer program, the players' shots of pucks toward the quadrangle target are evaluated and assigned a point value in a data network (i.e. score-keeping database of other players) and where the puck magazine is made of an outer tube and an inner tube, with a spiraling helical ramp that is only wide enough so that the pucks moving in progression on the conveyor are aligned in a row behind one another and that the slope and surface of the helical ramp are constructed so that the pucks advance automatically under gravity to the “passing unit (i.e. “projector”) to be thrown again in the direction of the player.
PCT WO95-24950 of Gronroos describes a hockey playing platform with a target, a computer, a puck magazine and a passing unit (i.e. projector)
U.S. Pat. No. 5,498,000 of Cuneo describes a Simulated Goaltender with a camera for photographing a player's swing.
U.S. Pat. No. 6,174,237 of Stephenson describes a game tournament scoring database.
U.S. Pat. No. 5,707,304 of BelleIsle describes a hockey training platform with a conveyor belt and two inclined collector surfaces to transport the hockey pucks back to the player.
U.S. Pat. No. 3,765,675 of DiMarzio simulated hockey playing training device with a simulated goalie.
U.S. Pat. No. 7,661,679 B2 of Mah describes an electronic target system for a sports goal This system does not project balls to a player. It simply instruments a goal with multiple hoops or ring elements mounted on the goal frame as target areas. If a projectile ball goes through the hoop, it is detected and feedback is given to player. A player can be guided to a particular target by lights and feedback can be given by lights and/or siren as to hit/miss.
U.S. Pat. No. 7,854,669 B2 Marty describes a trajectory detection and feedback system, which does not project balls to a player. This system detects the trajectory of a thrown “basketball” as shot by a player on a simulated playing area. The trajectory is detected by video cameras and other sensors and recorded and analyzed by computer with feedback to player, but does not project balls at a desired trajectory to the player.
U.S. Pat. No. 8,052,545 B1 of Assenheimer discloses a sports training device where goal targets are hung from the frame of a goal. If struck by the player's ball, a bell sounds. Assenheimer '545 does not describe a ball projection device which projects a ball toward a player.
U.S. Pat. No. 8,152,661 B2 of House describes a lacrosse training method and apparatus, which uses a lacrosse stick or glove with a laser diode, which transmits a narrow beam of light at a target receiver mounted on a simulated goal. The system is used to train the player in aligning the stick in the proper manner prior to making his or her shot. House '661 does not describe a training method which projects a ball toward a player.
U.S. Pat. No. 8,182,372 B2 of Hayes describes a device for training athletic or sports ball players, which includes a narrow sliver of a goal with vertically dispersed net pouches. If a player hits a ball or puck successfully, it will be captured by one of the nets. Hayes '372 does not disclose a ball projection device which throws balls at a player at desired angles and trajectories.
U.S. Pat. No. 8,287,404 B2 of Cucjen discloses a programmable ball throwing apparatus, which is restricted to a ball projector and the computer system that controls the ball's trajectory path toward the player. Cucjen '404's ball projector does not include vertical height adjustment and the ability for the mechanism to move by motorized wheels. Cucjen '404 uses a pedestal drive motor which controls horizontal aiming. Cucjen '404's launch mechanism is vertical but not horizontal in placement. Cucjen '404 needs vertical launch wheels and separate motors to impart spin by having them rotate at different speeds. Cucjen '404 does not utilize a single launch motor with a belt which rotates both wheels. Cucjen '404 does not describe a tilt mechanism. Because Cucjen '404 does not have a true height adjustment, it cannot duplicate a trajectory where, if one picks a point in three-dimensional (3-D) space, a ball can be launched to the selected point in space at a certain speed from different heights, with resulting different trajectories that cannot be launched from a fixed height. Cucjen '404 also does not describe a motor drive with a motor and a rail for movement of the ball projector.
It is therefore an object of the present invention to provide a lacrosse ball throwing and training system and competitive game installation where the angle and orientation of the ball thrown toward a practice player can be varied in three dimensions and in arc.
It is also an object of the present invention to provide a lacrosse ball throwing and training system and competitive game installation which closely mimics the variety of balls thrown toward a lacrosse player in a real time game situation.
Other objects which become apparent from the following description of the present invention.
The present invention is uniquely configured to provide training and competitive simulated games for the game of lacrosse. Although other installations have been devised to offer training for the games of tennis, baseball, hockey and even lacrosse, they have shortcomings in the ability to simulate actual game ball situations. The lacrosse ball has to be thrown at angles, not just from straight ahead like in a pitched baseball in a batting cage. The ability to be thrown from below (as when using a lacrosse stick in an upward swooping motion) as well as from above (stick used over the shoulder in a downward projection), or laterally in a “side arm” projection should be simulated. Balls should be projected from both right and left to develop the ambidexterity demanded by lacrosse.
Other features such as velocity of the projected ball, goal rotation to simulate field relations between player and goal, and the ability to collect player information and session training goals are also important.
With sensor techniques similar to prior art installations such as multiple light curtains, digital cameras, and appropriate software, performance statistics and even a single “session score” can be developed.
The lacrosse training and competitive game installation is an elongated preferably enclosed space with a player area at one end and a rotatable goal at the distal end. Ball projectors are placed on both sides away from the distal end and closer to the player such that trajectories with significant transverse components are possible. Multiple ball projectors at different heights at each side (such as a low and a high projector) can be used, but the expense and the complexity involved in supplying balls to multiple ball projectors is avoided by using a versatile single ball projector subsystem at each side in this invention.
In the basic embodiment (i.e.—stage one), the ball projector is placed at mid height but offers azimuth and elevation control. As such, a control computer can use the desired target location (in 3-D coordinates), desired ball velocity, and left or right projector choice to place the ball at the target by performing a standard ballistics calculation and then setting elevation and azimuth to place a ball at the designated target within the player area. So the ball can be coming from either the right or left side and can be a high parabolic (low velocity) trajectory or a lower flatter high velocity trajectory.
In an alternate optional stage two embodiment, the entire ball projector sub-assembly is placed on a motorized lift table (or alternate elevator mechanism) to offer actual height control. This offers more control over the combinations of ball velocity and desired trajectory.
In a further alternate stage three embodiment, the lift table of stage two with ball projector atop is placed on rails and is provided with motorized wheels to move the ball projector physically closer or farther away from the player to better control the trajectory of the ball in the lateral or forward directions. The control computer must only know the location of the ball projector and the location of the target along with desired ball velocity to calculate actual distance and then perform ballistics computations based on Newtonian physics.
Although other ball projecting methods such as pneumatic can be used, the preferred ball projector of this invention is one using counter-rotating accelerator rollers driven by an adjustable speed motor such as an AC motor with variable frequency supply. The ball projector subsystem uses a hinged platform adjusted by a motor-controlled lead screw for elevation control. The ball projector is also rotated by a separate motor for azimuth control.
The ball return sub-system uses a return pit under the goal and backdrop area with contours guiding returned balls into one of two angled ball canals (one on the right and one on the left) which guide balls by gravity toward respective ball projector sub-assemblies. The ball pit also has a slowly rotating equalizing motivator which moves accumulating balls on one side of the return pit to the opposite side in case balls on one side tend to back up by being returned there more often. Each ball projector subsystem has an attached ball elevator which scoops balls one at a time from the adjacent ball canal and lifts them above a tube which conveys a single ball to the accelerator rollers upon command.
The present invention can best be understood in connection with the accompanying drawings. It is noted that the invention is not limited to the precise embodiments shown in drawings, in which:
As shown in
Therefore, in general, the lacrosse training and competitive game installation preferably includes an elongated enclosed space having a pair of side walls and containing a goal area 5 adjacent one end of the space and a player area 115 at an opposite end thereof. While the geometry of the enclosed space can vary, the goal area preferably has a rear wall and one or more respective baffle regions projecting forward from the rear wall of the goal area. Each projecting baffle region each has one or more throwing apertures 3, 4, through which lacrosse balls 10 are hurled into the enclosed space in sequences. At least one movably pivotable ball projector assembly is mounted behind the one or more baffle regions adjacent to the throwing apertures, for hurling the lacrosse balls 10, 11 at multiple selected trajectory angles and/or arcs into the enclosed space, simulating passed lacrosse balls 10, 11 thrown or bounced between players. A simulated goal simulates actual player throwing and shooting of balls toward the simulated goal. A collection system collects balls from the goal area and delivers the balls to each ball projector assembly.
Each ball projector assembly includes a ball projector 35 having an ejection port aligned with a throwing aperture, a base supporting the ball projector, a preferably flexible and corrugated vertical tube for dropping incoming balls into the ball projector 35, and a ball elevator 70 for picking up lacrosse balls from a canal containing returned balls, and carrying returned balls up to baffles above the ball projector 35, whereby baffles direct the returned balls into the respective vertical tube 52.
Optionally, the ball elevator 70 includes a timing belt riding on pulleys, and scoops mounted on the timing belt to scoop up a ball 10, 11 each from each canal.
Each ball projector 35 preferably includes a plate 36 having mounted thereon an adjustable speed drive motor 44 and accelerator rollers 42 for engaging and hurling the lacrosse balls 10, 11. The plate 36 has preferably one edge 37 hinged and attached to a spacer block 38 mounted on a horizontal plate 57, and a motor 50 driven lead screw for adjusting tilt of the top plate 36 about the hinged edge thereof, for changing the vertical angle of movement of balls 10, 11 through each hurling aperture 3 or 4. The horizontal plate is mounted for rotation in a horizontal plane, wherein an azimuth motor 58 is preferably supported on a stationary plate 48 to rotate the horizontal plate 57 to change azimuth direction of the lacrosse balls 10, 11 being hurled through the hurling aperture 3 or 4. Preferably, the stationary plate 48 rotates about a shaft which is aligned with a fixed and stationary portion of the aforementioned vertical tube 52.
Preferably, the system for collecting balls 10, 11 from the goal area and delivering the balls to each ball projector assembly 35 includes a ball pit 20 extending across a width of the enclosed space, between the side walls of the space, having a raised center region dividing the pit into right and left sections to direct balls 10, 11 into the respective canals on each side of the enclosure, with an equalizing motivator, such as having hinged arms 26 rotating at a low speed via gearmotor 18 located on top of the raised center region, being rotationally mounted, to insure that balls 10, 11 do not back up into either of the left or right sections.
The lacrosse training and competitive game installation includes a base which preferably is a platform assembly which is vertically adjustable, to adjust the height at which the lacrosse balls 10, 11 are being hurled, wherein the throwing apertures are sized and shaped to accommodate adjustments of the respective projectors.
The platform assembly also preferably has upper and lower platform plates with height adjustable means 96 for raising or lowering the upper platform plate with respect to the lower platform plate.
Preferably, the lower platform plate is supported on wheels 105, riding on rails 102, whereby the ball projector assembly is movable toward and away from the player area 115.
Preferably, the bracket is attached to, and extends from, the lower platform plate, wherein a distal end of the bracket is attached to and supports the bottom pulley of the elevator, whereby the bottom pulley is adjustable along a length of the ball return canal, so that scoops on the timing belt are always appropriately spaced from the lower platform plate.
To make the simulated lacrosse practice more intriguing, the lacrosse training and competitive game installation of hides some structural details of the lacrosse training and competitive game installation from the player's view by a curtain 112 or other view obstruction member.
In a preferred embodiment, each ball projector 35 is vertically movable, and a ball projector sub-assembly is placed on a motorized lift mechanism to control actual height of the one ball projector 35. This motorized lift mechanism preferably includes a motor, such as for example a motor 50 driving a lead screw in either direction, to raise or lower a table via a lifter, such as a lead screw nut, wherein variation can be achieved up or down from a central position.
The ball projector 35 can also be horizontally movable, or both horizontally and vertically movable. Movement can be achieved when the ball projector assembly is placed on rails 102 and is provided with motorized wheels to move the ball projector physically closer or farther away from the player to control the trajectory of the ball in the lateral or forward directions. Optionally, these motorized wheels include a driven wheel 105, one or more non-driven wheels 106 under a lift table 95, a drive motor 104 importing back and forth motion of the lift table on the wheels, to vary predetermined distance from or to a player region 115 as guided by the rails 102, to permit control of parabolic trajectory of the balls 10, 11 toward the player area 115 from deeper down range to as close to the player area 115 with more transverse ball trajectories, as is possible, wherein the ball trajectories vary in elevation, azimuth, height and distance adjustments.
The motorized lift mechanism also moves longitudinally with the ball projector assembly, moving along an angled guide rail parallel to the ball return canal. The horizontally movable ball projector 35 assembly preferably moves horizontally along the rails between further baffles extending along each side wall of the elongated enclosed space. Each baffle region is preferably a pair of respective left and right forward projecting side baffle regions projecting forward from the rear wall of the goal area; wherein each of the projecting side baffle regions has a respective throwing aperture, through which lacrosse balls are hurled into said enclosed space in sequence.
The ball projector assembly can be a plurality of ball projector assemblies 35, with each ball projector assembly 35 mounted behind a respective side baffle 110, 111 with optional curtain 112, adjacent each of the throwing apertures for hurling the lacrosse balls 10, 11 into the enclosed space, simulating passed balls between players. The simulated goal is mounted for rotation around a vertical axis in the goal area for simulating throwing and shooting of balls at various angles to a goal. Balls 10, 11 are collected from the goal area and delivered to each ball projector assembly 35.
To stimulate accurate throwing of the lacrosse balls 10, 11, the simulated goal may include one or more signal lights 19 embedded with marked target areas of the goal, wherein the respective signal lights guide the player to throw and shoot the ball at a certain region of the simulated goal. One or more ball sensors are embedded on one or more specified regions on a back side of the simulated goal sensing device, to a nearby throw and shoot of each ball, to transmit feedback to an optional computer, wherein the one or more sensors are preferably accelerometers. The signal lights 19 may be ultra-bright AlInGa (aluminum indium gallium) surface mount light emitting diodes (LED's) or other suitable lights. The accelerometers are preferably single axis analog or digital MEMS accelerometers, located with the signal lights 19 on the simulated goal surface, to sense a hit by a returned ball 10, 11 in the vicinity of the lighted signals on the simulated goal. The accelerometer sends feedback to the computer of peak acceleration, and/or signal signature analysis, to score the sensed signal as a “hit” or “miss”, or any other scaled score as directed by the software of the computer.
In use, a method for training and providing a competitive lacrosse game installation for lacrosse players includes the steps of:
a) providing an elongated enclosed space having a pair of side walls and containing a goal area adjacent one end of said space and a player area at an opposite end thereof, where the goal area has a rear wall and respective left and right forward projecting side baffle regions projecting forward from said rear wall of said goal area;
b) each of said side baffle regions having a throwing aperture through which lacrosse balls are hurled into said enclosed space in sequence;
c) mounting a ball projector assembly behind said side baffle adjacent each of said throwing apertures for hurling said lacrosse balls into said enclosed space;
d) mounting a simulated goal for rotation around a vertical axis in said goal area for simulating throwing and shooting of balls at various angles and trajectories to a goal;
e) installing a system for collecting balls from said goal area and delivering said balls to each said ball projector assembly; and
f) directing said ball projector assemblies to hurl balls sequentially and alternately from opposite throwing apertures into said player space, changing direction and height of said balls, and simultaneously rotating said simulated goal to train each player to receive passes from other players and throw each ball received at said simulated target at any angle.
In the foregoing description, certain terms and visual depictions are used to illustrate the preferred embodiment. However, no unnecessary limitations are to be construed by the terms used or illustrations depicted, beyond what is shown in the prior art, since the terms and illustrations are exemplary only, and are not meant to limit the scope of the present invention.
It is further known that other modifications may be made to the present invention, without departing the scope of the invention, as noted in the appended Claims.
This application is based upon provisional patent application Ser. No. 61/687,406 filed on Apr. 24, 2012, and claims priority therefrom pursuant to 28 U.S. Code §119(e). Applicant incorporates the aforementioned provisional application by reference herein.
Number | Date | Country | |
---|---|---|---|
61687406 | Apr 2012 | US |