1. Technical Field
Aspects of this document relate generally to ladders.
2. Background Art
Ladders generally include a vertical or inclined set of rungs or steps and are used, among other things, to allow a user to reach high locations.
Implementations of a ladder may include: a step coupled to a primary leg; and an adjustable base coupled to the primary leg, the adjustable base including: a second base section coupled to the primary leg; a first base section rotatably coupled to the second base section, and; an adjuster configured to retain the first base section at one of a plurality of rotations with respect to the second base section.
Implementations of a ladder may include one, all, or any of the following:
The first base section may be configured to rotate relative to the second base section in a plane that is substantially parallel with a longest length of the step.
The second base section in implementations may be configured to not move relative to the primary leg.
The first base section may include a plurality of feet, each foot configured to rest upon a surface to support the ladder when the ladder is in an open, in-use configuration.
The first base section may be substantially entirely located beneath a bottommost extremity of the primary leg when the ladder is in an open, standing configuration.
The adjustable base may be configured to raise one foot of the first base section in response to a rotation of the first base section and simultaneously lower a different foot of the first base section in response to the rotation of the first base section.
The first base section may include a foot configured to contact a surface substantially directly below a bottommost extremity of the primary leg when the ladder is in an open, standing configuration.
The ladder may further have two primary legs, the step coupled to each primary leg, the ladder further having at least one secondary leg coupled to the primary legs proximate a top of the ladder, the first base section having a foot configured to contact a surface below the step, the foot positioned substantially centrally between two lines defined by longest lengths of two primary legs when the ladder is in an open, standing configuration.
The first base section may be coupled to the second base section only at a single juncture, the juncture configured to allow rotation of the first base section relative to the second base section.
The ladder may include at least three feet configured to contact a surface below the ladder when the ladder is in an open, standing configuration, and the at least three feet of the ladder may form a footprint that defines one of: vertices of an about equilateral triangle, and; vertices of an isosceles trapezoid that is not a rectangle.
The ladder may further include a secondary leg coupled to the primary leg proximate a top of the ladder and configured to have an adjustable length along a longest length of the secondary leg.
Implementations of a ladder may include: at least one primary leg; at least one step coupled to the at least one primary leg; at least one secondary leg coupled to the at least one primary leg proximate a top of the ladder; and a movable section coupled to the at least one primary leg with an arm and further coupled to the at least one secondary leg with an arm; the movable section having a substantially planar upper surface configured to generally face the top of the ladder when the ladder is in an open configuration and configured to generally face the top of the ladder when the ladder is in a closed configuration; wherein the movable section is configured to move upwards substantially towards the top of the ladder and downwards substantially away from the top of the ladder.
Implementations of a ladder may include one, all, or any of the following:
The at least one secondary leg may consist of two secondary legs, and each secondary leg may be configured to move in a plane that is about 120 degrees from a plane of movement of the other secondary leg.
The ladder may be configured to collapse towards a closed configuration in response to an upward movement of the movable section towards the top of the ladder.
The upper surface may be configured to generally face the top of the ladder during all configurations of the ladder between a fully closed configuration and a fully open configuration.
The ladder may be configured to open towards an opened configuration in response to a downward movement of the movable section away from the top of the ladder.
Implementations of a ladder may include: at least one step coupled to at least one primary leg; at least one secondary leg coupled to the at least one primary leg proximate a top of the ladder, and; a movable section coupled to the at least one primary leg, the movable section having a substantially planar, substantially horizontal upper surface; wherein the movable section is configured to collapse the ladder towards a closed configuration in response to an upward movement of the movable section towards the top of the ladder; wherein the movable section is configured to open the ladder towards an opened configuration in response to a downward movement of the movable section away from the top of the ladder, and; wherein the movable section is not configured to substantially rotate and is not configured to substantially tilt with respect to the top of the ladder when the ladder is being interchanged between an opened configuration and a closed configuration.
Implementations of a ladder may include one, all, or any of the following:
The movable section may include a handgrip having a cavity sized to receive a plurality of fingers of a user.
The movable section may include a coupling element configured to receive an end of a pole for the pole to push the movable section upwards towards the top of the ladder.
The at least one primary leg may consist of two primary legs, the at least one secondary leg may consist of two secondary legs, the movable section may be coupled to each primary leg through an arm and a hinge, and the movable section may be coupled to each secondary leg through an arm and a hinge.
The foregoing and other aspects, features, and advantages will be apparent to those artisans of ordinary skill in the art from the DESCRIPTION and DRAWINGS, and from the CLAIMS.
Implementations will hereinafter be described in conjunction with the appended drawings, where like designations denote like elements, and:
This disclosure, its aspects and implementations, are not limited to the specific components, assembly procedures or method elements disclosed herein. Many additional components, assembly procedures and/or method elements known in the art consistent with the intended ladder and related methods will become apparent for use with particular implementations from this disclosure. Accordingly, for example, although particular implementations are disclosed, such implementations and implementing components may comprise any shape, size, style, type, model, version, measurement, concentration, material, quantity, method element, step, and/or the like as is known in the art for such ladders and related methods, and implementing components and methods, consistent with the intended operation and methods.
Referring now to
Referring again to
The movable section 22 has a handgrip 26. When a user is unfolding the ladder 2 from the folded configuration to the unfolded configuration, the user may grip the handgrip 26 and pull it downward, and the downward movement of the movable section 22 will function to push the primary legs 4 away from the secondary legs 12 (and the secondary legs 12 away from one another) via the arms 30 until the unfolded configuration is achieved. The handgrip 26 may be included in an upper surface 28 of the movable section 22. In implementations the handgrip 26 may be a cavity which extends from the upper surface 28 of the movable section 22 to a lower surface of the movable section 22.
The movable section 22 also has a coupling element 24. In the implementations shown the coupling element 24 is a cavity roughly in the center of the movable section 22 which extends from the upper surface 28 of the movable section 22 to a lower surface of the movable section 22. A non-rigid pulling element, such as, by non-limiting example, a cord, rope, wire or the like, may be permanently or temporarily coupled to the movable section 22 via the coupling element 24. When the ladder 2 is in the folded configuration, the non-rigid pulling element may be pulled downward to effectuate unfolding the ladder 2 towards the unfolded configuration. A rigid pulling element, such as, by non-limiting example, a stick, pole, or the like, either temporarily or permanently coupled to the movable section 22 (such as via the coupling element 24) may be similarly used for the same purpose.
Additionally, a rigid element such as a stick, pole, or the like (including a standalone item or a portion of another item, such as the pole of a broom or shovel) could also be used to push the movable section 22 upwards while the ladder 2 is in the unfolded configuration in order to effectuate folding the ladder 2 toward the folded configuration. Such a rigid element could be temporarily or permanently coupled to the movable section 22 to push the movable section 22 upwards, such as via the coupling element 24. In other implementations the coupling element 24 could be something different from a cavity such as, by non-limiting example, a loop, threads, an indentation, and the like. In implementations wherein the ladder 2 is sufficiently tall that the movable section 22 is beyond the user's reach when the user is standing on the ground, the user may fold the ladder 2 to the folded configuration by using one of the above mentioned rigid elements to push the movable section 22 upwards.
Referring to
Referring still to
In implementations each primary leg 4, secondary leg 12 and extendable section 14 has the shape of and/or is comprised of one or more or all of rectangular tubing, box tubing, square tubing, or one or more or all of rectangular tubing, box tubing, and/or square tubing with one side removed or missing along its longest length. Accordingly, each primary leg 4, secondary leg 12 and extendable section 14 may have a cross section perpendicular to its longest length, extending substantially along its longest length, having one or more or all of the following shapes: a hollow rectangle; a hollow square; a hollow rectangle with one side removed or missing; and a hollow square with one side removed or missing.
In the implementations shown each primary leg 4, secondary leg 12 and extendable section 14 comprises a shape of rectangular tubing with one side removed or missing substantially along its longest length, thus each primary leg 4, secondary leg 12 and extendable section 14 has a cross section perpendicular to its longest length and extending substantially along its longest length having a shape of a hollow rectangle with one side removed or missing though, as described above, in other implementations each may comprise the shape of rectangular tubing with all four sides such that the cross section of each perpendicular to its longest length and extending substantially along its longest length has a shape of a hollow rectangle with all four sides intact. In other implementations other shapes could be used, such that one or more or all of the primary legs 4, extendable sections 14 and/or secondary legs 12 could have a cross section perpendicular to its longest length and extending substantially along its longest length having a shape of, by non-limiting example, a triangle, a circle, an oval, or any other regular or irregular shape. In implementations the rectangular tubing shape or alternative shape of each extendable section 14 is sized to slide inside the rectangular tubing shape or alternative shape of a secondary leg 12.
Each secondary leg 12 is coupled to an upper foot section 18, and each upper foot section 18 is in turn coupled to a foot 20. The longest length of each upper foot section 18 in the implementations shown is set at an angle to the longest length of each secondary leg 12. In implementations this may align the bottom 58 of the foot 20 to be substantially parallel to a surface upon which the foot 20 is resting during use.
Referring now to
The position of the first base section 38 and second base section 40 with respect to one another is adjusted with an adjuster 44. In the implementations shown the adjuster 44 comprises a pin and hole mechanism whereby a pin (not shown) engages a pin receiver 46 (shown in
In the implementations shown the ladder 2 has a foot 20 at the bottom of each secondary leg 12 and a foot 20 at each distal end of the first base section 38 substantially below the primary legs 4 and, when the adjustable base 36 is in a central, non-rotated setting, substantially aligned with the longest length of the primary legs 4 when the ladder 2 is viewed directly from the front or back (as seen in
Referring to
In implementations one or more or all of the feet 20 may be individually movable with respect to other components of the ladder 2. By way of non-limiting example, in implementations one or more or all of the feet 20 could be coupled to a component or element of the ladder 2 using a ball joint or other mechanism that allows the foot 20 to rotate and/or tilt with respect to other elements of the ladder 2. Such a mechanism may allow the largest planar surface of the foot 20 (in implementations the bottom of the foot 20) to automatically tend towards, or to be manually adjusted towards, substantial parallelism with a surface upon which the ladder 2 is standing during use.
Referring to
The foot 20 may have a coupler 56 used to couple the foot 20 to another element. For example, a larger foot (or an enlargement foot) may be desirable in instances where the ladder 2 is to rest on a sandy or otherwise unstable surface such that engaging more surface area of the surface upon which the foot 20 is resting would be desirable. The larger foot or enlargement foot may be coupled to the foot 20 and/or held in place via the coupler 56. The coupler 56 may comprise a cavity and/or may comprise threads for that purpose. An attachment with a rough or other surface or spikes may similarly be coupled to the foot 20 for similar purposes such as for better grip in wet conditions, in snow, and so forth. The foot 20 may also have, by non-limiting example, a slide-and-lock mechanism, threads, a snap-on mechanism, and or the like at an outer perimeter of the foot 20 or at another location on the foot 20 to allow the coupling of any of the above mentioned enlargement feet and/or attachments. The bottom 58 of the feet 20 may comprise rubber or another high-friction element to increase friction between the feet 20 and the surface(s) upon which the feet 20 are resting. In implementations the feet 20 may be cold molded with rubber being used for each bottom 58 and a hard plastic being used for the rest of each foot 20.
The ladder 2 may be made of conventional materials used to make goods similar in the art, such as, by non-limiting example, wood, metals such as aluminum and steel, polymers, plastics, rubber, fiberglass, composites, and the like. Those of ordinary skill in the art will readily be able to select appropriate materials and manufacture these products from the disclosures provided herein. In implementations the primary legs 4, secondary legs 12 and arms 30 may be formed from ladder-grade composite fiberglass formed using a pultrusion mechanism by Liberty Pultrusions of West Miffin, Pa. In implementations one or more or all of the arms 30, primary legs 4 and secondary legs 12 may have an I-beam cross section. In implementations, as described above, one or more or all of the primary legs 4, secondary legs 12 and extendable sections 14 may comprise rectangular, box, or square tubing or rectangular, box, or square tubing with one side removed or missing, and may thusly have a cross section of, by non-limiting example, a hollow square or rectangle or a hollow square or rectangle with one side removed or missing. In implementations the upper foot section 18 comprises a polymer.
In implementations one or more or all of the following elements: the top 16; steps 6; second base section 40; adjustable base 36; and first base section 38, may comprise one or more or all of the following materials: Omni PA6 IM 8 UV BK2000 Impact Modified Nylon 6 w/UV Black; Omni PA6 UGR33 UV BK2000 Impact Modified Nylon 6 w/UV Black. In implementations top 16 and steps 6 comprise Omni PA6 IM 8 UV BK2000 Impact Modified Nylon 6 w/UV Black while the adjustable base 36, first base section 38 and second base section 40 comprise Omni PA6 UGR33 UV BK2000 Impact Modified Nylon 6 w/UV Black.
Other aspects of the ladder 2 may be found in U.S. Pat. No. 6,206,139 to Robert C. Bogart, Jr., issued Mar. 27, 2001, titled “Folding Tripod Ladder Having Extendable Legs.”
In implementations a method of using a ladder 2 may comprise one, more, or all of the following: adjusting a longest length of a secondary leg 12 through the use of an extendable section 14; adjusting a longest length of both secondary legs 12 through the use of extendable sections 14; adjusting a position of the first base section 38 and second base section 40 with respect to one another with an adjuster 44; opening the ladder 2 to an open configuration by moving a movable section 22 downwards; closing the ladder 2 to a closed configuration by moving a movable section 22 upwards; retaining the ladder 2 in a closed position by receiving a bar 52 with bar receivers 54; and extricating the ladder 2 from a retained closed position by removing the bar 52 from the bar receivers 54.
Implementations of a ladder 2 may incorporate one or more or all elements, aspects, configurations or the like of ladders and other devices that are described in U.S. Pat. No. 6,206,139 to Robert C. Bogart, Jr., issued Mar. 27, 2001, entitled “Folding Tripod Ladder Having Extendable Legs,” the disclosure of which is incorporated entirely herein by reference. Conventional ladders and other devices are described in the following references: U.S. Pat. No. 4,524,849 to Riddle, issued Jun. 25, 1985, entitled “Tripod”; U.S. Pat. No. 160,081 to P. P. Carnes, issued Feb. 23, 1875, entitled “Firemen's Ladder”; U.S. Pat. No. 5,590,739 to High et al., issued Jan. 7, 1997, entitled “Adjustable extension stepladder”; U.S. Pat. No. 6,874,598 to Baker, issued Apr. 5, 2005, entitled “Ergonomically improved tripod stepladder”; U.S. Pat. No. 3,878,917 to McBride, issued Apr. 22, 1975, entitled “Adjustable ladder support attachment”; U.S. Pat. No. D507,079 to Drum, issued Jul. 5, 2005, entitled “Tripod legs and ladder for wildlife feeder”; U.S. Pat. No. 4,646,876 to Grawi, issued Mar. 3, 1987, entitled “Walking ladder”; European Pat. App. Pub. No. EP2060735(A1), published May 20, 2009, naming Jennhwa Alan Lo as inventor and entitled “Tripod stepladder with removable extensions”; European Pat. App. Pub. No. EP1584773(A1), published Oct. 12, 2005, naming Frédéric Ladurée as inventor and entitled “Tripod stand for legs of scaffolding and feet of ladder with automatic level correction on very irregular ground”; European Pat. App. Pub. No. EP1218616(B1), published May 6, 2009, naming Eckhard Klein as inventor and entitled “Ladder scaffolding with lean-to ladder”; U.S. Pat. App. Pub. No. 20100252364, published Oct. 7, 2010, naming Vestal et al. as inventors and entitled “Collapsible safe ladder”; UK Pat. App. Pub. No. GB2348235A, published Sep. 27, 2000, naming David Richard Hendrik Veen as inventor and entitled “Adjustable extension for ladder leg with swivel foot”; U.S. Pat. No. D373,428 to Nashleanas et al., issued Sep. 3, 1996, entitled “Adjustable stabilizer foot for a ladder”; European Pat. App. Pub. No. EP0940555(A2), published Sep. 8, 1999, naming Bruno Stehle as inventor and entitled “Free-standing ladder”; European Pat. App. Pub. No. EP1079062(A2), published Feb. 28, 2001, naming Bryan Philips as inventor and entitled “Step ladder”; European Pat. App. Pub. No. EP0047151(A2), published Mar. 10, 1982, naming Patrick Yelverton Williams as inventor and entitled “Ladder levelling arrangements”; U.S. Pat. No. 1,733,338 to Enke, issued Oct. 29, 1929, entitled “Adjustable foot support for ladders”; U.S. Pat. No. 1,280,741 to Hunn, issued Oct. 8, 1918, entitled “Adjustable foot for ladders”; U.S. Pat. No. 1,088,169 to Osterhoudt, issued Feb. 24, 1914, entitled “Adjustable foot for ladders”; U.S. Pat. No. 1,589,743 to Clary, issued Jun. 22, 1926, entitled “Adjustable and reversible ladder foot”; U.S. Pat. No. 1,551,395 to Husted, issued Aug. 25, 1925, entitled “Adjustable foot device for ladders”; U.S. Pat. No. 1,088,168 to Osterhoudt, issued Feb. 24, 1914, entitled “Adjustable foot for ladders”; U.S. Pat. No. 5,678,656 to Lanzafame, issued Oct. 21, 1997, entitled “Positive engaging ladder stabilizing and leveling device”; U.S. Pat. App. Pub. No. 20120048647, published Mar. 1, 2012, naming Green et al. as inventors and entitled “Collapsible safe ladder”; WIPO PCT App. Pub. No. WO0059344, published Oct. 12, 2000, naming Gwynneth as inventor and entitled “Self stabilising system”; U.S. Pat. No. 3,964,574 to Bentivegna, issued Jun. 22, 1976, entitled “Ladder leveling device”; U.S. Pat. No. 4,497,390 to Wilson, issued Feb. 5, 1985, entitled “Self-adjusting ladder”; U.S. Pat. No. 6,672,427 to Sheffield, issued Jan. 6, 2004, entitled “Ladder base stabilizer”; U.S. Pat. No. 5,542,497 to Macyszyn, issued Aug. 6, 1996, entitled “Ladder level adjusting attachment”; U.S. Pat. No. 7,036,633 to Lanzafame, issued May 2, 2006, entitled “Quick release for ladder levelers”; U.S. Pat. No. 5,845,744 to Beck et al., issued Dec. 8, 1998, entitled “Ladder levelling device”; U.S. Pat. No. 5,853,065 to Hutson et al., issued Dec. 29, 1998, entitled “Adjustable leg ladder assembly”; U.S. Pat. No. 6,044,929 to Wishner, issued Apr. 4, 2000, entitled “Ladder leveling device”; U.S. Pat. No. 4,766,976 to Wallick, Jr., issued Aug. 30, 1988, entitled “Ladder leg extender and leveler”; U.S. Pat. No. 4,085,820 to Cerny, issued Apr. 25, 1978, entitled “Ladder leveler”; U.S. Pat. No. 5,064,024 to Barham, issued Nov. 12, 1991, entitled “Ladder leg extender apparatus with improved vertical adjustment means”; U.S. Pat. No. 3,933,221 to Sorenson, issued Jan. 20, 1976, entitled “Ladder adjusting and stabilizing apparatus”; U.S. Pat. No. 5,526,898 to Clark, issued Jun. 18, 1996, entitled “Leg extension assembly”; U.S. Pat. No. 5,335,754 to Gibson, issued Aug. 9, 1994, entitled “Self-levelling ladder”; U.S. Pat. No. 6,253,876 to Cosgrave et al., issued Jul. 3, 2001, entitled “Ladder stabilizer apparatus”; U.S. Pat. No. 5,012,895 to Santos, issued May 7, 1991, entitled “Ladder stabilizer comprising top extension arms and attached stabilizer bars”; U.S. Pat. App. Pub. No. 20020178683, published Dec. 5, 2002, naming Phillips as inventor, entitled “Flat folding scaffold system with shrubbery shelter”; U.S. Pat. No. 3,858,684 to Goings, issued Jan. 7, 1975, entitled “Telescoping ladder”; U.S. Pat. No. 6,688,426 to Mikros, issued Feb. 10, 2004, entitled “Wheel extension and lift device for ladders”; U.S. Pat. No. 4,978,098 to Peckinpaugh, issued Dec. 18, 1990, entitled “Adjustable support”; U.S. Pat. No. 6,810,995 to Warford, issued Nov. 2, 2004, entitled “Portable stairs with adjustable landing platform height”; U.S. Pat. No. 4,135,690 to Clarke et al., issued Jan. 23, 1979, entitled “Adjustable angle floor support”; U.S. Pat. No. 6,910,666 to Burr, issued Jun. 28, 2005, entitled “Adjustable leveling mount”; U.S. Pat. No. 4,949,809 to Levi et al., issued Aug. 21, 1990, entitled “Extendable pole locking mechanism for ladder stabilizer”; U.S. Pat. No. 5,154,255 to Kiska et al., issued Oct. 13, 1992, entitled “Ladder shoe and method of use”; U.S. Pat. No. 6,158,551 to Gray, issued Dec. 12, 2000, entitled “Extension ladder shelf”; U.S. Pat. No. 3,693,756 to Walker et al., issued Sep. 26, 1972, entitled “Ladder stabilizer”; U.S. Pat. No. D273,996 to Rasler, issued May 22, 1984, entitled “Ladder-mounted utility shelf”; U.S. Pat. No. 5,058,707 to Waid, issued Oct. 22, 1991, entitled “Work shelf for a folding stepladder”; U.S. Pat. No. 6,698,699 to Bailey, issued Mar. 2, 2004, entitled “Working material retaining accessory”; U.S. Pat. No. 839,087 to Adler, issued Dec. 25, 1906, entitled “Ladder”; U.S. Pat. No. 7,887,016 to Gunsaullus, issued Feb. 15, 2011, entitled “All terrain material and tool tray”; U.S. Pat. No. 5,715,909 to Gagnon, issued Feb. 10, 1998, entitled “Stepladder including a bracing shelf”; U.S. Pat. No. D380,559 to Sweeney, issued Jul. 1, 1997, entitled “Shelf platform”; U.S. Pat. No. 2,930,442 to Carter, issued Mar. 29, 1960, entitled “Stepladder attachment”; U.S. Pat. No. 4,418,793 to Brent, issued Dec. 6, 1983, entitled “Ladder aid device”; U.S. Pat. No. D388,882 to Kain, issued Jan. 6, 1998, entitled “Combined work ladder and platform”; U.S. Pat. No. 8,186,481 to Moss et al., issued May 29, 2012, entitled “Ladders, ladder components and related methods”; U.S. Pat. No. 7,967,264 to Peterson, issued Jun. 28, 2011, entitled “Ladder attached support bracket and paint can and roller pan holders for use therewith”; U.S. Pat. No. 6,341,666 to Allen, issued Jan. 29, 2002, entitled “Stepladder accessory tray”; U.S. Pat. No. 6,502,664 to Peaker, Sr., issued Jan. 7, 2003, entitled “Accessorized stepladder”; U.S. Pat. No. 7,051,837 to Brahier, issued May 30, 2006, entitled “Folding workbench and dolly combination”; U.S. Pat. No. 6,098,749 to Enochs, issued Aug. 8, 2000, entitled “Work holder”; U.S. Pat. No. 4,331,217 to Stecklow, issued May 25, 1982, entitled “Ladder step and stabilizer”; U.S. Pat. No. 3,042,142 to Butler, issued Jul. 3, 1962, entitled “Step-ladder attachment”; U.S. Pat. No. 6,145,620 to Strunk, issued Nov. 14, 2000, entitled “Work support assembly for use with stepladder”; U.S. Pat. No. 5,584,357 to Gugel et al., issued Dec. 17, 1996, entitled “Ladder”; U.S. Pat. No. 5,791,437 to Figliuzzi, issued Aug. 11, 1998, entitled “Ladder with nesting brace gusset plate hinge”; U.S. Pat. No. 5,044,468 to Worthington, Jr., issued Sep. 3, 1991, entitled “Ladder leveling device”; U.S. Pat. Pub. No. 20120261214, published Oct. 18, 2012, naming Dondurur et al. as inventors, entitled “Safety ladder”; U.S. Pat. Pub. No. 20080078616, published Apr. 3, 2008, naming Ursitti as inventor, entitled “Self leveling ladder system”; U.S. Pat. No. 4,600,080 to Forrester, issued Jul. 15, 1986, entitled “Three-legged stepladder”; U.S. Pat. No. 4,618,027 to Piretti, issued Oct. 21, 1986, entitled “Folding ladder with three stiles”, and; European Pat. App. Pub. No. EP0957231(A1), published Nov. 17, 1999, naming Charalambous et al. as inventors, entitled “Ladder”.
Conventional ladders and other devices are further disclosed in the following references, corresponding disclosures of which are filed together with this application: the AMERISTEP RAPTOR tripod and/or GRIZZLY tripod which were offered for sale on the huntingfishingdirect.com website; the BIG GAME TREESTANDS TRIUMPH 16′ tripod which was offered for sale on the gandermountain.com website; the APEX tripod and PURSUIT 12-ft. tripod which was offered for sale in a BIG GAME TREESTANDS section of a CABELA'S product catalog; the FAXKO tripod ladder system which was disclosed in a product description filed with this application; the GUIDE GEAR SGTS-13R 13 ft. tripod which was described in a product description filed with this application; the GUIDE GEAR 13′ tripod stand and LADDER TREE STAND LEVELER KIT which were offered for sale in a GUIDE GEAR catalog, and; a WERNER 8 ft. fiberglass tripod ladder which was offered for sale by LOWE'S on the lowes.com website.
In implementations the ladder 2 comprises a tripod ladder.
In implementations of a ladder 2 may include a step 6 coupled to a primary leg 4 and an adjustable base 36 coupled to the primary leg 4, the adjustable base 36 including: a second base section 40 coupled to the primary leg 4; a first base section 38 rotatably coupled to the second base section 40, and; an adjuster 44 configured to retain the first base section 38 at one of a plurality of rotations with respect to the second base section 40.
In implementations the first base section 38 may be configured to rotate relative to the second base section 40 in a plane that is substantially parallel with a longest length of the step 6.
The second base section 40 in implementations may be configured to not move relative to the primary leg 4.
The first base section 38 may include a plurality of feet 20, each foot 20 configured to rest upon a surface to support the ladder 2 when the ladder 2 is in an open, in-use configuration.
The first base section 38 may be substantially entirely located beneath a bottommost extremity of the primary leg 4 when the ladder 2 is in an open, standing configuration.
The adjustable base 36 may be configured to raise one foot 20 of the first base section 38 in response to a rotation of the first base section 38 and simultaneously lower a different foot 20 of the first base section 38 in response to the rotation of the first base section 38.
The first base section 38 may include a foot 20 configured to contact a surface substantially directly below a bottommost extremity of the primary leg 4 when the ladder 2 is in an open, standing configuration.
The ladder 2 may further have two primary legs 4, the step 6 coupled to each primary leg 4, the ladder 2 further having at least one secondary leg 12 coupled to the primary legs 4 proximate a top 16 of the ladder 2, the first base section 38 having a foot 20 configured to contact a surface below the step 6, the foot 20 positioned substantially centrally between two lines defined by longest lengths of two primary legs 4 when the ladder 2 is in an open, standing configuration.
The first base section 38 may be coupled to the second base section 40 only at a single juncture, the juncture configured to allow rotation of the first base section 38 relative to the second base section 40.
The ladder 2 may include at least three feet 20 configured to contact a surface below the ladder 2 when the ladder 2 is in an open, standing configuration, and the at least three feet 20 of the ladder 2 may form a footprint that defines one of: vertices of an about equilateral triangle, and; vertices of an isosceles trapezoid that is not a rectangle.
The ladder 2 may further include a secondary leg 12 coupled to the primary leg 4 proximate a top 16 of the ladder 2 and configured to have an adjustable length along a longest length of the secondary leg 12.
Implementations of a ladder 2 may include: at least one primary leg 4; at least one step 6 coupled to the at least one primary leg 4; at least one secondary leg 12 coupled to the at least one primary leg 4 proximate a top 16 of the ladder 2; and a movable section 22 coupled to the at least one primary leg 4 with an arm 30 and further coupled to the at least one secondary leg 12 with an arm 30; the movable section 22 having a substantially planar upper surface 28 configured to generally face the top 16 of the ladder 2 when the ladder 2 is in an open configuration and configured to generally face the top 16 of the ladder 2 when the ladder 2 is in a closed configuration; wherein the movable section 22 is configured to move upwards substantially towards the top 16 of the ladder 2 and downwards substantially away from the top 16 of the ladder 2.
In implementations the at least one secondary leg 12 may consist of two secondary legs 12, and each secondary leg 12 may be configured to move in a plane that is about 120 degrees from a plane of movement of the other secondary leg 12.
The ladder 2 may be configured to collapse towards a closed configuration in response to an upward movement of the movable section 22 towards the top 16 of the ladder 2.
The upper surface 28 may be configured to generally face the top 16 of the ladder 2 during all configurations of the ladder 2 between a fully closed configuration and a fully open configuration.
The ladder 2 may be configured to open towards an opened configuration in response to a downward movement of the movable section 22 away from the top 16 of the ladder 2.
Implementations of a ladder 2 may include: at least one step 6 coupled to at least one primary leg 4; at least one secondary leg 12 coupled to the at least one primary leg 4 proximate a top 16 of the ladder 2, and; a movable section 22 coupled to the at least one primary leg 4, the movable section 22 having a substantially planar, substantially horizontal upper surface 28; wherein the movable section 22 is configured to collapse the ladder 2 towards a closed configuration in response to an upward movement of the movable section 22 towards the top 16 of the ladder 2; wherein the movable section 22 is configured to open the ladder 2 towards an opened configuration in response to a downward movement of the movable section 22 away from the top 16 of the ladder 2, and; wherein the movable section 22 is not configured to substantially rotate and is not configured to substantially tilt with respect to the top 16 of the ladder 2 when the ladder 2 is being interchanged between an opened configuration and a closed configuration.
In implementations the movable section 22 may include a handgrip 26 having a cavity sized to receive a plurality of fingers of a user.
The movable section 22 may include a coupling element 24 configured to receive an end of a pole for the pole to push the movable section 22 upwards towards the top 16 of the ladder 2.
The at least one primary leg 4 may consist of two primary legs 4, the at least one secondary leg 12 may consist of two secondary legs 12, the movable section 22 may be coupled to each primary leg 4 through an arm 30 and a hinge, and the movable section 22 may be coupled to each secondary leg 12 through an arm 30 and a hinge.
In places where the description above refers to particular implementations of a ladder and related methods and implementing components, sub-components, methods and sub-methods, it should be readily apparent that a number of modifications may be made without departing from the spirit thereof and that these implementations, implementing components, sub-components, methods and sub-methods may be applied to other ladders and related methods. The terms “comprising,” “comprises” and any variation, as used herein with respect to a list of method elements or article elements, are intended to be non-exclusive and convey that the method or article may include non-listed elements. For example, a list indicating that an article “comprises A, B and C” includes an article that has A, B and C and also includes an article that has A, B, C, D, E and F.
This document claims the benefit of the filing date of U.S. Provisional Patent Application 61/580,570 entitled “Tripod Ladder and Methods of Use” to Robert C. Bogart et al., which was filed on Dec. 27, 2011, the disclosure of which is hereby incorporated entirely herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
160081 | Carnes | Feb 1875 | A |
419821 | Burrows | Jan 1890 | A |
461366 | Odem | Oct 1891 | A |
538570 | White | Apr 1895 | A |
554695 | Hood | Feb 1896 | A |
569170 | McCormick | Oct 1896 | A |
621479 | Stephenson | Mar 1899 | A |
839087 | Adler | Dec 1906 | A |
947409 | Hudson | Jan 1910 | A |
970560 | Samuelson | Sep 1910 | A |
1088168 | Osterhoudt | Feb 1914 | A |
1088169 | Osterhoudt | Feb 1914 | A |
1280741 | Nunn | Oct 1918 | A |
1354166 | Busko | Sep 1920 | A |
1496459 | Gilbert | Jun 1924 | A |
1551395 | Husted | Aug 1925 | A |
1589743 | Clary | Jun 1926 | A |
1733338 | Enke | Oct 1929 | A |
1866974 | Hohing et al. | Jul 1932 | A |
1873107 | Blosser | Aug 1932 | A |
1944099 | Mearkle | Jan 1934 | A |
2305985 | Obermeyer | May 1941 | A |
2364048 | Barkey | Dec 1944 | A |
2409266 | Fowler | Oct 1946 | A |
2500333 | Young | Mar 1950 | A |
2580045 | Reed | Dec 1951 | A |
2650014 | Harrison | Aug 1953 | A |
2930442 | Carter | Mar 1960 | A |
3042142 | Butler | Jul 1962 | A |
3165169 | Machen | Jan 1965 | A |
3189124 | Rateau | Jun 1965 | A |
3693756 | Walker et al. | Sep 1972 | A |
3858684 | Goings | Jan 1975 | A |
3878917 | McBride | Apr 1975 | A |
3933221 | Sorenson | Jan 1976 | A |
3964574 | Bentivegna | Jun 1976 | A |
4029223 | Adamski et al. | Jun 1977 | A |
4085820 | Cerny | Apr 1978 | A |
4135690 | Clarke et al. | Jan 1979 | A |
4331217 | Stecklow | May 1982 | A |
4366940 | Vargas | Jan 1983 | A |
4418793 | Brent | Dec 1983 | A |
D273996 | Rasler | May 1984 | S |
4497390 | Wilson | Feb 1985 | A |
4524849 | Riddle | Jun 1985 | A |
4600080 | Forrester | Jul 1986 | A |
4618027 | Piretti | Oct 1986 | A |
4646876 | Grawi | Mar 1987 | A |
4766976 | Wallick, Jr. | Aug 1988 | A |
4796727 | Eaton | Jan 1989 | A |
4846305 | Kupfert | Jul 1989 | A |
4899849 | Levi et al. | Feb 1990 | A |
4949809 | Levi et al. | Aug 1990 | A |
4978098 | Peckinpaugh | Dec 1990 | A |
5012895 | Santos | May 1991 | A |
5044468 | Worthington, Jr. | Sep 1991 | A |
5058707 | Waid | Oct 1991 | A |
5064024 | Barham | Nov 1991 | A |
5154255 | Kiska et al. | Oct 1992 | A |
5335754 | Gibson | Aug 1994 | A |
5526898 | Clark | Jun 1996 | A |
5542497 | Macyszyn | Aug 1996 | A |
D373428 | Nashleanas et al. | Sep 1996 | S |
5584357 | Gugel et al. | Dec 1996 | A |
5590739 | High et al. | Jan 1997 | A |
D380559 | Sweeney | Jul 1997 | S |
5678656 | Lanzafame | Oct 1997 | A |
5685391 | Gundlach | Nov 1997 | A |
D388882 | Kain | Jan 1998 | S |
5715909 | Gagnon | Feb 1998 | A |
5722507 | Kain | Mar 1998 | A |
5791437 | Figliuzzi | Aug 1998 | A |
5845744 | Beck et al. | Dec 1998 | A |
5853065 | Hutson et al. | Dec 1998 | A |
6044929 | Wishner | Apr 2000 | A |
6098749 | Enochs | Aug 2000 | A |
6145620 | Strunk | Nov 2000 | A |
6158551 | Gray | Dec 2000 | A |
6206139 | Bogart, Jr. | Mar 2001 | B1 |
6253876 | Cosgrave et al. | Jul 2001 | B1 |
6341666 | Allen | Jan 2002 | B1 |
6502664 | Peaker, Sr. | Jan 2003 | B1 |
6672427 | Sheffield | Jan 2004 | B1 |
6688426 | Mikros | Feb 2004 | B1 |
6698699 | Bailey | Mar 2004 | B1 |
6810995 | Warford | Nov 2004 | B2 |
6874598 | Baker | Apr 2005 | B1 |
6910666 | Burr | Jun 2005 | B2 |
D507079 | Drum | Jul 2005 | S |
6986405 | Meeker | Jan 2006 | B2 |
7036633 | Lanzafame | May 2006 | B2 |
7051837 | Brahier | May 2006 | B1 |
7887016 | Gunsaullus | Feb 2011 | B2 |
7967264 | Peterson | Jun 2011 | B1 |
8186480 | Yoakum, Jr. | May 2012 | B1 |
8186481 | Moss et al. | May 2012 | B2 |
8381875 | Leng | Feb 2013 | B2 |
20020178683 | Phillips | Dec 2002 | A1 |
20060192071 | Choi | Aug 2006 | A1 |
20070181369 | Gibson et al. | Aug 2007 | A1 |
20080078616 | Ursitti | Apr 2008 | A1 |
20090229918 | Moss et al. | Sep 2009 | A1 |
20100252364 | Vestal et al. | Oct 2010 | A1 |
20120048647 | Green et al. | Mar 2012 | A1 |
20120261214 | Dondurur et al. | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
0047151 | Aug 1982 | EP |
0940555 | Sep 1999 | EP |
0957231 | Nov 1999 | EP |
1079062 | Feb 2001 | EP |
1584773 | Oct 2005 | EP |
2060735 | May 2009 | EP |
2348235 | Sep 2000 | GB |
WO9211425 | Jul 1992 | WO |
WO0059344 | Oct 2000 | WO |
WO0125584 | Apr 2001 | WO |
Entry |
---|
Ameristep the Raptor triopod and Grizzly tripod, offered for sale on www.huntingfishingdirect.com, last accessed Aug. 29, 2010. |
Big Game Treestands Triumph tripod, offered for sale on www.gandermountain.com website, last accessed Aug. 29, 2010. |
Apex tripod and Pursuit tripod, offered for sale in Big Game Treestands section of Cabela's catalog, published at least as early as Dec. 26, 2011. |
Faxko tripod ladder system product description, published at least as early as Dec. 26, 2011. |
Guide Gear SGTS-13R 13 foot tripod product description, publication at least as early as 2009. |
Guide Gear 13 foot tripod stand and Ladder Tree Stand Leveler Kit, offered for sale in Guide Gear catalog, published at least as early as Dec. 26, 2011. |
Werner 8 foot fiberglass tripod ladder, offered for sale on Lowe's website at lowes.com at least as early as Dec. 18, 2012, last accessed Dec. 11, 2012. |
Number | Date | Country | |
---|---|---|---|
61580570 | Dec 2011 | US |