Ladder seal system for gas turbine engines

Information

  • Patent Grant
  • 8905716
  • Patent Number
    8,905,716
  • Date Filed
    Thursday, May 31, 2012
    12 years ago
  • Date Issued
    Tuesday, December 9, 2014
    10 years ago
Abstract
A sealing system for a gas turbine engine includes an arcuate first ladder seal segment having a central portion, an upstream flange adjoining the central portion, a downstream flange adjoining the central portion opposite the upstream flange, and a plurality of openings. The upstream flange is arranged at an angle θU greater than 0° and less than 90° relative to a given tangential plane, and the downstream flange is arranged at an angle θD greater than 0° and less than 90° relative to the given tangential plane.
Description
BACKGROUND

The present invention relates to seals and more particularly to seals for use with gas turbine engines.


Gas turbine engines include airfoils, such as blades and vanes, arranged in cascade configurations. These airfoils can be arranged in compressor or turbine sections of the engine. The airfoils can include a root (e.g., dovetail shaped root) that allows retention of the airfoil in a mounting structure, such as a rotor disk having one or more blade retention slots. For instance, a single circumferential rotor disk slot or a plurality of generally axial slots can be provided for airfoil retention. Many such airfoils include platforms that define a portion of an endwall or flowpath boundary adjacent to a working portion of the airfoil. In a cascade configuration, the platforms of adjacent airfoils adjoin one another at respective matefaces. However, gaps may remain between the matefaces of adjacent blades, and fluids can leak through those gaps. Fluid leakage can include the escape of fluid from a primary flowpath, leading to undesirable pressure loss. Ladder seals positioned between compressor rotor disks and blade platforms are known as a mechanism to provide mateface gap sealing. These ladder seals help reduce leakage of fluid between adjacent blade platforms, where gaps form. These seals are generally annular in configuration and resemble a “ladder” shape, with openings through which airfoil roots can pass.


It is desired to provide an improved ladder seal system.


SUMMARY

A sealing system for a gas turbine engine according to an aspect of the present invention includes an arcuate first ladder seal segment having a central portion, an upstream flange adjoining the central portion, a downstream flange adjoining the central portion opposite the upstream flange, and a plurality of openings. The upstream flange is arranged at an angle θU greater than 0° and less than 90° relative to a given tangential plane, and the downstream flange is arranged at an angle θD greater than 0° and less than 90° relative to the given tangential plane.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic cross-sectional view of a gas turbine engine.



FIG. 2A is a cross-sectional view of a rotor disk assembly with a ladder seal system according to the present invention.



FIG. 2B is a cross-sectional perspective view of the rotor disk assembly with the ladder seal system.



FIG. 3 is a top view of a ladder seal segment of the ladder seal system.



FIG. 4 is a cross-sectional view of the ladder seal segment, taken along line 4-4 of FIG. 3.





While the above-identified drawing figures set forth at least one embodiment of the invention, other embodiments are also contemplated, as noted in the discussion. In all cases, this disclosure presents the invention by way of representation and not limitation. It should be understood that numerous other modifications and embodiments can be devised by those skilled in the art, which fall within the scope and spirit of the principles of the invention. The figures may not be drawn to scale, and applications and embodiments of the present invention may include features and components not specifically shown in the drawings.


DETAILED DESCRIPTION

In general, the present invention provides a ladder seal system suitable for use with airfoils (e.g., blades or stators) in a gas turbine engine. For example, the ladder seal can be used for a high pressure compressor stage with a mounting disk (e.g., rotor disk) having a circumferential airfoil retaining groove, and can be positioned between the disk and the platforms of airfoils engaged with the disk. The ladder seal can include angled flanges along opposite upstream (that is, leading or forward) and downstream (that is, trailing or aft) edges. In general, the specific angles and widths of the ladder seal flanges can be configured to correspond to an underside surface of blade platforms that are positioned adjacent to the ladder seal. At the upstream edge the ladder seal can have a wider flange than the flange at the downstream edge, or vice-versa. The flanges can be angled greater than 0° and less than 90° (e.g., approx.) 15° with respect to a tangential plane or a plane at a central circumferential portion of the ladder seal. The ladder seal can be configured to flex to accommodate tolerance variations and variations in alignment between adjacent blade platforms. Openings are provided in the ladder seal to allow insertion of airfoil roots. Openings in the ladder seal can include at least one double or dumbbell-shaped opening to accommodate a blade lock used to secure the airfoils to the disk.



FIG. 1 is a schematic cross-sectional view of an embodiment of a gas turbine engine 10. The illustrated embodiment of the engine 10 shows a turbofan configuration, though persons of ordinary skill in the art will appreciate that other configurations are possible in further embodiments. The gas turbine engine 10 includes a fan section 12, a bypass duct 14, a turbine core that includes a compressor section 16, a combustor section 18 and a turbine section 20, which are arranged between an upstream inlet 22 and a downstream exhaust outlet 24. An airflow F can enter the engine 10 via inlet 22 and can be divided into a bypass flow FB and a core flow FC. The bypass flow FB can pass through the bypass duct 14, generating thrust, and the core flow FC passes along a primary flowpath through the compressor section 16, the combustor section 18 and the turbine section 20.


A variable area nozzle 26 can be positioned in bypass duct 14 in order to regulate a bypass flow FB with respect to a core flow FC, in response to adjustment by one or more actuators 27. Adjustment of the variable area nozzle 26 allows the turbofan 10 to control or limit a temperature of the core flow FC, including during times of peak thrust demand.


The turbine section 20 can include a high-pressure turbine (HPT) section 28 and a low-pressure turbine (LPT) section 29. The compressor section 16 can include a low pressure compressor (LPC) or boost section 30 and a high pressure compressor (HPC) section 31. The compressor 16 and turbine 20 sections can each include a number of stages of airfoils, which can be arranged as alternating cascades of rotating blades and non-rotating vanes (or stators). The HPT section 28 is coupled to the HPC 31 via a HPT shaft 32, forming a high pressure spool. The LPT section 29 is coupled to the fan section 12 and the LPC 30 via a LPT shaft 34, forming the low pressure or fan spool. The LPT shaft 34 can be coaxially mounted within HPT shaft 32, about centerline axis CL, such that the HPT and LPT spools can rotate independently (i.e., at different speeds).


The fan section 12 is typically mounted to a fan disk or other rotating member, which is driven by the LPT shaft 34. A spinner 36 can be included covering the fan disk to improve aerodynamic performance. As shown in FIG. 1, for example, the fan section 12 is forward-mounted in an engine cowling 37, upstream of the bypass duct 14. In alternative embodiments, the fan section 12 can be aft-mounted in a downstream location, with an alternative coupling configuration. Further, while FIG. 1 illustrates a particular two-spool high-bypass turbofan embodiment of turbine engine 10, this example is provided merely by way of example and not limitation. In other embodiments, the gas turbine engine 10 can be configured either as a low-bypass turbofan or a high-bypass turbofan, in a reverse-flow configuration, the number of spools can vary, etc.


In the particular embodiment of FIG. 1, the fan section 12 is coupled to the LPT shaft 34 via an optional planetary gear or other fan drive geared mechanism 38 (shown in dashed lines), which provides independent speed control. More specifically, the fan drive gear mechanism 38 allows the engine 10 to control the rotational speed of the fan section 12 independently of the high and low spool speeds (that is, independently of HPT shaft 32 and LPT shaft 34), increasing the operational control range for improved engine response and efficiency across an operational envelope.


In operation, compressor 16 compresses incoming air of the core flow FC for the combustor section 18, where at least a portion of that air is mixed with fuel and ignited to produce hot combustion gas. The combustion gas can exit the combustor section 18 and enter the HPT section 28, which drives the HPT shaft 32 and in turn drives the HPC 31. Partially expanded combustion gas transitions from the HPT section 28 to the LPT section 29, driving the fan section 12 and the LPC 30 via the LPT shaft 34 and, in some embodiments, the fan drive gear mechanism 38. Exhaust gas can exit the engine 10 via exhaust outlet 24.



FIGS. 2A and 2B are cross-sectional views of a rotor disk assembly 50 that includes airfoils 52 (e.g., rotor blades), a disk 54 (e.g., rotor disk), a ladder seal system 56, and an optional wire seal 58. The rotor disk assembly 50 can be a stage of the high pressure compressor 31, or can be in another section of the engine 10 in further embodiments. It should be noted that in FIG. 2B one airfoil 52 is omitted to better reveal otherwise hidden structures of the assembly 50.


As shown in the illustrated embodiment, each airfoil 52 can include a working portion 52-1, a root 52-2 and a platform 52-3 located between the working portion 52-1 and the root 52-2 (as used herein, the term “root” can also encompass what is sometimes separately referred to as a “shank”). The working portion 52-1 can be positioned to extend into a primary flowpath of the engine 10 to interact with a working fluid. The root 52-2 can have a dovetail shape or other desired shape to retain the airfoil 52 relative to the disk 54. The platform 52-3 can form a portion of a boundary of the primary flowpath. When positioned with other airfoils in a cascade, matefaces of adjacent platforms adjoin each other, with a small gap in between that runs in a generally upstream/downstream direction. Those of ordinary skill in the art will appreciate that airfoil platform matefaces can have a variety of configurations, from linear to non-linear, and can be arranged in an axial direction or at a non-parallel angle relative to the engine centerline CL. The ladder seal system 56 can be utilized with nearly any type of mateface configuration.


At an underside (i.e., radially inner surface, as shown in the illustrated embodiment) of the platform 52-3, a notch 52-4, an upstream angled portion 52-5, a central portion 52-6, and a downstream angled portion 52-7 can be provided. The functions of these underside features of the platform features are explained further below.


The disk 54 includes at least one slot 54-1, which in the illustrated embodiment is a single circumferentially-extending slot at an outer rim of the disk 54. The slot 54-1 and the root 52-2 can have complementary shapes, allowing the slot 54-1 to radially retain the airfoil 52. A load feature (not shown) can be formed in the slot 54-1, or other suitable features provided, to facilitate insertion of the root 52-2 into the slot 54-1. Furthermore, a lock feature (not shown) can be provided in the slot 54-1 to allow engagement of an airfoil lock (not shown) to help secure a cascade of airfoils 52 in the slot 54-1.


The disk 54 can further include a ramped circumferential ridge 54-2 that extends radially outward from the outer rim on an upstream side of the slot 54-1 (i.e., on an upstream rail). The ridge 54-2 can protrude radially outward at least as far as a flowpath surface of the platform 52-3 of the airfoil 52, and be positioned upstream of a leading edge of the platform 52-3, in order to help reduce flow separation at or near the leading edge of the platform 52-3.


In addition, the disk 54 can further include a circumferentially-extending ridge 54-3 that extends radially outward from the outer rim on a downstream side of the slot 54-1 (i.e., on a downstream rail). The ridge 54-3 can be positioned generally upstream of a trailing edge of the platform 52-3 of the airfoil 52, that is, with a downstream edge of the ridge 54-3 located at or upstream of the trailing edge of the platform 52-3, such that the ridge 54-3 is positioned generally underneath the platform 54-3. The notch 52-4 can be formed in the platform 52-3 immediately upstream of the trailing edge and can have a shape that is complementary to a shape of the ridge 54-3 of the disk 54, with the ridge 54-3 extending into (i.e., radially overlapping with) the notch 52-4. A sealing effect is provided by the notch 52-4 and the ridge 54-3, which together alter the shape of a space between the platform 52-3 and the disk 54. In alternative embodiments, the notch 52-4 and the ridge 54-3 could instead be located at or near a leading edge of the platform 52-3 and an upstream rail of the disk 54, respectively.


The ladder seal system 56 includes one or more arcuate ladder seal segments that extend circumferentially and are located at least partially within the space between the platform 52-3 of the airfoil 52 and the disk 54. In one embodiment, two approximately 180° segments are provided, though in further embodiments only one segment or more than two segments can be utilized.



FIG. 3 is a top view of an embodiment of ladder seal segments 60 of the ladder seal system 56, and FIG. 4 is a cross-sectional view of one of the ladder seal segments 60, taken along line 4-4 of FIG. 3. The ladder seal segments 60 of the illustrated embodiment include a central portion 60-1, an upstream flange 60-2, a downstream flange 60-3, and a plurality of openings 60-4. The ladder seal segments 60 are asymmetric in the upstream/downstream or axial direction in the illustrated embodiment, though in alternative embodiments the segments 60 can be symmetric in the upstream/downstream or axial direction. The upstream flange 60-2 and the downstream flange 60-3 can be arranged to adjoin opposite sides of the central portion 60-1. In one embodiment, the ladder seal segments 60 can have a nominal thickness of approximately 0.254 mm (0.010 inch), or another thickness as desired.


The upstream flange 60-2 can be arranged at an angle θU greater than 0° and less than 90° relative to a given tangential plane 62 that is parallel to the centerline axis CL. In one embodiment, the angle θU can be in the range of approximately 11.7° to 19.1°. In a further embodiment the angle θU can be approximately 15°. The upstream flange 60-2 can be configured to correspond to the upstream angled portion 52-5 of the platform 52-3, such that the upstream angled portion 52-5 is also arranged at the angle θU. The downstream flange 60-3 can be arranged at an angle θD greater than 0° and less than 90° relative to the given tangential plane 62. In one embodiment, the angle θD can be in the range of approximately 11.3° to 18.5°. In a further embodiment the angle θD can be approximately 15°. The downstream flange 60-3 can be configured to correspond to the downstream angled portion 52-7 of the platform 52-3, such that the downstream angled portion 52-7 is also arranged at the angle θD. The angles θU and θD can be selected such that the flanges 60-2 and 60-3 are angled radially outward, that is, toward the platforms 52-3 of the airfoils 52, when installed. The central portion 60-1 can have a substantially planar configuration and be arranged tangentially relative to the centerline axis CL. In general, the shape of the segments 60 can correspond to a shape of the underside of the platform 52-3, with the upstream flange 60-2 corresponding to the upstream angled portion 52-5, the central portion 60-1 corresponding to the central portion 52-6, and the downstream portion 60-3 corresponding to the downstream angled portion 52-7. It should be noted that the particular angles and ranges of angles described above are provided merely by way of example and not limitation. Other angles and angle ranges are possible in further embodiments.


The upstream flange 60-2 can have a width DU in a direction parallel to the centerline axis CL (i.e., a projected width along the centerline axis CL), the central portion 60-1 can have a width DC in the same direction (i.e., a projected width along the centerline axis CL), and the downstream flange 60-3 can have a width DD in the same direction (i.e., a projected width along the centerline axis CL). In some embodiments, the width DU can be different (e.g., greater than) the width DD. For example, in one embodiment, the width DU can be in a range of approximately 0.312 to 0.389 cm (0.123 to 0.153 inches) and the width DD can be in a range of approximately 0.231 to 0.257 cm (0.091 to 0.101 inches). Dimensions of the seal segments 60 can be selected such that an upstream edge of each segment 60 terminates at or downstream of the leading edge of the platforms 52-3, and such that a trailing edge of each segment 60 terminates at or upstream of the notch 52-4. It should be noted that other dimensions are possible in further embodiments.


The openings 60-4 are provided to allow the roots 52-2 of the airfoils 52 to pass through the ladder seal segment 60. The number and size of the openings 60-4 can vary as desired for particular applications, and can vary as function of a size of the roots 52-2. The openings 60-4 are spaced apart such that body portions of the seal segments 60 generally form a “ladder” shape. The body portions of the segments 60 can rest against the underside surfaces of the platforms 52-3 of the airfoils 52, with portions 60-5 of the seal segments 60 in between adjacent openings 60-4 covering and sealing gaps between adjacent platform matefaces. In the illustrate embodiment, the openings 60-4 extend through the central portion 60-1 as well as portions of the upstream and downstream flanges 60-2 and 60-3. Circumferential ends of the segments 60 can terminate within the openings 60-4, to help avoid interruption of the portions 60-5 that provide sealing.


One or more dumbbell-shaped openings 60-4′ can optionally be provided in the seal segments 60. The openings 60-4′ can be formed in a shape resembling two adjacent openings 60-4 with a connection channel that forms a common opening space. The openings 60-4 can accommodate two roots 52-2 and a lock engaged with the slot 54-1 of the disk 54 that helps retain the airfoils 52.


The seal segments 60 can be made of a metallic material, and can be flexible to accommodate positional variations between platforms 52-3 of adjacent airfoils 52 that occur during operation or are the result of small manufacturing tolerance variations. Furthermore, the flanges 60-2 and 60-3 can flex relative to the central portion 60-1 of the seal segments 60 such that the seal segments can fit closely against the undersides of the platforms 52-3 to provide relatively good sealing.


If the optional wire seal 58 is provided, the wire seal 58 can abut an underside (i.e., radially inner surface) of the ladder seal segments 60.


Any relative terms or terms of degree used herein, such as “substantially”, “essentially”, “generally” and the like, should be interpreted in accordance with and subject to any applicable definitions or limits expressly stated herein. In all instances, any relative terms or terms of degree used herein should be interpreted to broadly encompass any relevant disclosed embodiments as well as such ranges or variations as would be understood by a person of ordinary skill in the art in view of the entirety of the present disclosure, such as to encompass ordinary manufacturing tolerance variations, incidental alignment variations, alignment or shape variations induced by thermal or rotational operational conditions, and the like.


While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims. For example, while described primarily with respect to an embodiment for a rotor assembly of a gas turbine engine compressor, the ladder sealing system of the present invention can also be utilized for stator assemblies and/or for turbine sections.


DISCUSSION OF POSSIBLE EMBODIMENTS

The following are non-exclusive descriptions of possible embodiments of the present invention.


A sealing system for a gas turbine engine can include an arcuate first ladder seal segment that includes a central portion; an upstream flange adjoining the central portion, wherein the upstream flange is arranged at an angle θU greater than 0° and less than 90° relative to a given tangential plane; and a downstream flange adjoining the central portion opposite the upstream flange, wherein the downstream flange is arranged at an angle θD greater than 0° and less than 90° relative to the given tangential plane; and a plurality of openings.


The system of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:


the upstream flange can have a width DU and the downstream flange has a width DD, and wherein the width DU is not equal to the width DD;


the upstream flange can have a width DU and the downstream flange has a width DD, and wherein the width DU is greater than the width DD;


the angle θU can be in the range of approximately 11.7° to 19.1°, and the angle θD can be in the range of approximately 11.3° to 18.5°;


the angle θU can be approximately 15°;


the angle θD can be approximately 15°;


an arcuate second ladder seal segment, wherein the first and second ladder seal segments are each approximately 180° segments;


an airfoil having a platform located adjacent to the ladder seal segment, the platform defining an upstream angled portion and a downstream angled portion, wherein the upstream angled portion is arranged at the angle θU, and wherein the downstream angled portion is arranged at the angle θD;


an airfoil having a platform located adjacent to the ladder seal segment, and a root; and a disk having an outer rim and a slot in which the root of the airfoil is retained, wherein the first ladder seal segment is positioned between the outer rim and the platform with the root extending through one of the plurality of openings;


the platform includes a notch and the disk includes a circumferential ridge at the outer rim, and wherein ridge extends radially into the notch;


the ladder seal is flexible;


the plurality of openings can each extend through at least portions of the central portion, the upstream flange, and the downstream flange; and/or


the plurality of openings include a dumbbell or barbell-shaped opening.


A method for making a sealing arrangement for a gas turbine engine can include providing an annular seal segment; angling an upstream flange of the seal segment at an angle θU greater than 0° and less than 90° relative to a given tangential plane; angling a downstream flange of the seal segment at an angle θD greater than 0° and less than 90° relative to the given tangential plane; and forming an opening in the seal segment, wherein the opening extends through at least portions of both the upstream and downstream flanges.


The method of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features and/or additional steps:


forming a notch in an airfoil platform, wherein the notch is located downstream of the seal segment; and positioning a circumferential ridge at least partially in the notch.


A sealing system for a gas turbine engine can include an airfoil having a platform and a root; a mounting disk having an outer rim and a slot in which the root of the airfoil is retained; and an arcuate first ladder seal segment positioned between the outer rim of the disk and the platform of the airfoil, the first ladder seal segment including a central portion; an upstream flange adjoining the central portion, wherein the upstream flange has a width DU; a downstream flange adjoining the central portion opposite the upstream flange, wherein the downstream flange has a width DD, and wherein the width DU is not equal to the width DD; and a plurality of openings.


The system of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:


the upstream flange can be arranged at an angle θU greater than 0° and less than 90° relative to a given tangential plane, and the downstream flange can be arranged at an angle OD greater than 0° and less than 90° relative to the given tangential plane;


the angle θU can be in the range of approximately 11.7° to 19.1°, and the angle θD can be in the range of approximately 11.3° to 18.5°;


the plurality of openings each extend through at least portions of the central portion, the upstream flange, and the downstream flange; and/or


the plurality of openings include a dumbbell or barbell-shaped opening.

Claims
  • 1. A sealing system for a gas turbine engine, the system comprising: an arcuate first ladder seal segment that includes: a central portion;an upstream flange adjoining the central portion and defining an upstream edge of the segment that is angled radially outward relative to an arc radius of the arcuate first ladder segment, wherein in an uninstalled state the upstream flange is arranged at an angle θu greater than 0° and less than 90° relative to a given tangential plane; anda downstream flange adjoining the central portion opposite the upstream flange and defining a downstream edge of the segment that is angled radially outward relative to the arc radius of the arcuate first ladder segment, wherein in the uninstalled state the downstream flange is arranged at an angle θD greater than 0° and less than 90° relative to the given tangential plane; anda plurality of openings.
  • 2. The system of claim 1, wherein the upstream flange has a width DU and the downstream flange has a width DD, and wherein the width DU is not equal to the width DD.
  • 3. The system of claim 1, wherein the upstream flange has a width DU and the downstream flange has a width DD, and wherein the width DU is greater than the width DD.
  • 4. The system of claim 1, wherein the angle θU is in the range of approximately 11.7° to 19.1°, and wherein the angle θD is in the range of approximately 11.3° to 18.5°.
  • 5. The system of claim 1, wherein the angle θU is approximately 15°.
  • 6. The system of claim 1, wherein the angle θD is approximately 15°.
  • 7. The system of claim 1 and further comprising: an arcuate second ladder seal segment, wherein the first and second ladder seal segments are each approximately 180° segments.
  • 8. The system of claim 1 and further comprising: an airfoil having a platform located adjacent to the ladder seal segment, the platform defining an upstream angled portion and a downstream angled portion, wherein the upstream angled portion is arranged at the angle θU, and wherein the downstream angled portion is arranged at the angle θD.
  • 9. The system of claim 1 and further comprising: an airfoil having a platform located adjacent to the ladder seal segment, and a root; anda disk having an outer rim and a slot in which the root of the airfoil is retained, wherein the first ladder seal segment is positioned between the outer rim and the platform with the root extending through one of the plurality of openings.
  • 10. The system of claim 9, wherein the platform includes a notch and the disk includes a circumferential ridge at the outer rim, and wherein ridge extends radially into the notch.
  • 11. The system of claim 1, wherein the ladder seal is flexible.
  • 12. The system of claim 1, wherein the plurality of openings each extend through at least portions of the central portion, the upstream flange, and the downstream flange.
  • 13. The system of claim 1, wherein the central portion has a flat configuration in cross-sectional profile, and wherein the upstream and downstream flanges each have a generally frusto-conical shape.
  • 14. A sealing system for a gas turbine engine, the system comprising: an arcuate first ladder seal segment that includes: a central portion;an upstream flange adjoining the central portion, wherein the upstream flange is arranged at an angle θU greater than 0° and less than 90° relative to a given tangential plane; anda downstream flange adjoining the central portion opposite the upstream flange, wherein the downstream flange is arranged at an angle θD greater than 0° and less than 90° relative to the given tangential plane; anda plurality of openings, wherein the plurality of openings include a dumbbell-shaped opening.
  • 15. A sealing system for a gas turbine engine, the system comprising: an airfoil having a platform and a root;a mounting disk having an outer rim and a slot in which the root of the airfoil is retained; andan arcuate first ladder seal segment positioned between the outer rim of the disk and the platform of the airfoil, the first ladder seal segment including: a central portion;wherein a positive angle value for an angle θU or θD is relative to an arc radius of the arcuate first ladder segment; andan upstream flange adjoining the central portion, wherein the upstream flange has a width DU, wherein the upstream flange is arranged at an angle θU greater than 0° and less than 90° relative to a given tangential plane in an uninstalled state; anda downstream flange adjoining the central portion opposite the upstream flange, wherein the downstream flange has a width DD, and wherein the width DU is not equal to the width DD, wherein the downstream flange is arranged at an angle θD greater than 0° and less than 90° relative to the given tangential plane in the uninstalled state; anda plurality of openings.
  • 16. The system of claim 15, wherein the angle θU is in the range of approximately 11.7° to 19.1°, and wherein the angle θD is in the range of approximately 11.3° to 18.5°.
  • 17. The system of claim 15, wherein the plurality of openings each extend through at least portions of the central portion, the upstream flange, and the downstream flange.
  • 18. The system of claim 15, wherein the plurality of openings include a dumbbell-shaped opening.
  • 19. The system of claim 15 and further comprising: a wire seal positioned along a radially inner surface of at least one of the upstream and downstream flanges.
US Referenced Citations (39)
Number Name Date Kind
2717554 Stalker Sep 1955 A
2948505 Sonder Aug 1960 A
3088708 Feinberg May 1963 A
3428244 Palmer Feb 1969 A
3709631 Karstensen et al. Jan 1973 A
3752598 Bowers et al. Aug 1973 A
3972645 Kasprow Aug 1976 A
4042191 Johnson Aug 1977 A
4183720 Brantley Jan 1980 A
4279424 Zerlauth Jul 1981 A
4311432 Kildea Jan 1982 A
4422827 Buxe et al. Dec 1983 A
4464096 Trousdell et al. Aug 1984 A
4505642 Hill Mar 1985 A
4626002 Hagemeister et al. Dec 1986 A
4643638 Laurello Feb 1987 A
4645425 Morrison, Jr. Feb 1987 A
4664599 Robbins et al. May 1987 A
4685863 McLean Aug 1987 A
4767260 Clevenger et al. Aug 1988 A
4875830 Trousdell et al. Oct 1989 A
5820338 Kasprow et al. Oct 1998 A
5924699 Airey et al. Jul 1999 A
6254344 Wright et al. Jul 2001 B1
6375429 Halila et al. Apr 2002 B1
6565322 Lieser et al. May 2003 B1
6682307 Tiemann Jan 2004 B1
6981847 Arinci et al. Jan 2006 B2
7334331 Bouchard et al. Feb 2008 B2
7735833 Braun et al. Jun 2010 B2
8011892 Ramlogan et al. Sep 2011 B2
8025296 Uehara et al. Sep 2011 B2
8043050 Heinz-Schwarzmaier et al. Oct 2011 B2
20040241001 DiBella Dec 2004 A1
20060222502 Hansen et al. Oct 2006 A1
20070014667 Pickens et al. Jan 2007 A1
20090208326 Durocher et al. Aug 2009 A1
20100040479 Spangler et al. Feb 2010 A1
20110268564 Martin et al. Nov 2011 A1
Foreign Referenced Citations (2)
Number Date Country
0 305 223 Mar 1989 EP
2003020995 Jan 2003 JP
Non-Patent Literature Citations (1)
Entry
International Search Report and Written Opinion, dated Nov. 13, 2013, for PCT Application No. PCT/US2013/043361, 9 pages.
Related Publications (1)
Number Date Country
20130323060 A1 Dec 2013 US