A tripod is a portable stand used to support and stabilize an object and typically includes three legs and a mount. The legs can be pulled apart and placed onto a desired surface, and the object to be stabilized can then be attached to the mount. After use, the legs can be collapsed to facilitate storage and transport of the tripod.
Certain embodiments of the invention provide a tripod assembly comprising a plurality of legs, a central support member, and a central post. Each of the legs is pivotably coupled to the central support member, and the central support member surrounds the central post. A plurality of columns is disposed in a nested arrangement for relative axial movement in a telescopic fashion along an axis of the plurality of columns between a fully-extended position and a collapsed position. Each column has a hollow body such that when the columns are collapsed from the fully-extended position, each column substantially nests within another one of the columns. The plurality of columns is received within the central post when the plurality of columns is in the collapsed position. The tripod assembly further includes a connecting rod having a first end and a second end. The first end of the connector rod is coupled to one of the columns. A bracket assembly is coupled to the second end of the connecting rod and is configured to receive a first rung of a ladder therein.
In certain aspects of this disclosure, a bracket member is pivotably coupled to an uppermost column of the plurality of columns. The bracket member comprises a lower wall and two side walls extending upwardly from the lower wall. A channel is formed in the bracket assembly and bounded collectively by the confronting interior surfaces of the two side walls and a top surface of the lower wall. The channel is configured to receive a second rung of the ladder therein.
Certain aspects of the invention provide a ladder tripod system comprising a ladder and a tripod assembly, such as the tripod assembly described above. The ladder comprises a first stile, a second stile, and a plurality of rungs extending between the first stile and the second stile. A first rung of the ladder is configured to be received in the channel, and a second rung of the ladder, located below the first rung, is configured to be received in the bracket assembly. In some cases, the ladder is a telescoping ladder.
The following detailed description is to be read with reference to the drawings, in which like elements in different drawings have like reference numerals. The drawings, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the invention. Skilled artisans will recognize that the examples provided herein have many useful alternatives that fall within the scope of the invention.
Referring to the drawings, and in particular,
Although the present tripod assembly 10 can generally be attached to any ladder 20, it is intended to be used with a straight-frame ladder that would otherwise need to be leaned against an elevated surface (e.g., a wall, tree, or roof line) for support. Advantageously, by using the tripod assembly 10 of the present disclosure, any straight-frame ladder can be positioned and used where desired, without requiring a wall, tree, or the like to be located nearby. As non-limiting examples, the tripod assembly 10 can be used to stabilize a straight ladder (having only a single section), an extension ladder (having two upper sections that slide up and down so as to adjust a height of the ladder), or a telescoping ladder (that can be expanded to separate the columns for extension of the ladder or collapsed together for retraction of the ladder).
The illustrated tripod assembly 10 has both a base assembly 100 and an upper assembly 195. The base assembly 100 is configured to be placed upon a surface (e.g., a ground or floor surface) so as to support the tripod assembly 10 on the surface. As shown in the illustrated embodiments, the base assembly 100 comprises a central post 110, a plurality of legs 115, and a central support member 120. Each of the legs 115 is pivotably coupled to the central support member 120 at a respective pivot point P. Although only two legs 115 are shown in the drawings, three or more legs 115 are also contemplated and within the scope of the present disclosure.
The base assembly 100 is movable between an extended position 104 and a collapsed position 106. The extended position 104 is shown in
In some cases, the central support member 120 has an opening 125 extending therethrough. In embodiments of this nature, the central post 110 extends through the opening 125. Advantageously, this arrangement allows the central support member 120 to be slidable along the vertical axis A of the central post 110. The slidable nature of the central support member 120, in combination with the pivoting connection between the legs 115 and the central support member 120, permits selective adjustment of an angle (θ1, θ2) between each of the legs 115 and the central support member 120.
To facilitate sliding of the central support member 120 relative to the central post 110, a notch 130 can optionally be formed in an outer surface 135 of the central post 110 (see
In some embodiments, as shown, e.g., in
As shown, e.g., in the non-limiting embodiment of
The illustrated base assembly 100 further comprises a pair of stabilizing arms 150. Skilled artisans will appreciate that the stabilizing arms 150 are optional features that can be included (or omitted) in any embodiment of the present disclosure. When provided, the stabilizing arms 150 assist in both folding and unfolding the base assembly 100 (i.e., in moving the base assembly 100 between the collapsed position 106 and the extended position 104). For example, the stabilizing arms 150 provide a spring-type action that facilitates unfolding of the base assembly 100.
Each of the stabilizing arms 150 has a first end 155 and a second end 160. As shown in
In some embodiments, the base assembly 100 comprises a lock 170. The lock 170 is configured to limit movement of the legs 115 relative to the central support member 120. Because the stabilizing arms 150 move in response to movement of the legs 115, the lock 170 is also configured to limit movement of the stabilizing arms 150 relative to both the central base member 146 and the legs 115. An actuator 172 can be provided to selectively lock and unlock lock 170. Although details of a particular locking mechanism are shown in
As described above, the tripod assembly 10 also includes an upper assembly 195. The upper assembly 195 includes a plurality of columns 200. The columns 200 are disposed in a nested arrangement for relative axial movement in a telescopic fashion along a longitudinal axis of the plurality of columns 200 between a fully-extended position 205 and a collapsed position 210. Each column 200 has a hollow body such that when the columns 200 are collapsed from the fully-extended position 205, each column 200 substantially nests within another one of the columns 200. The telescopic arrangement of the columns 200 allows a height of the tripod assembly 10 to be adjusted, which in turn allows the tripod assembly 10 to be used with ladders 20 of various heights. As illustrated in the embodiment of
As shown, for example in
The upper assembly 195 further includes a plurality of connector assemblies 220. As shown in
Each connector assembly 220 comprises a latch assembly 235 having a locking pin 240. Each locking pin 240 is moveable between an extended position 250 and a retracted position. When each locking pin 240 is in the extended position 250, the locking pin 240 extends into an aperture 222 defined on the associated connector assembly 220 and into openings 260 of adjacent columns 200 to selectively lock the columns 200 so as to prevent relative axial movement between the adjacent columns 200. When each locking pin 240 is in the retracted position, the locking pin 240 retracts out of the openings 260 of the adjacent columns 200 to release the adjacent columns 200 so as to permit relative axial movement between the adjacent column 200. In some embodiments of the present invention, each locking pin 240 is biased (e.g., by spring 245) to assume the extended position 250. Each spring 245 exerts a biasing force against the corresponding locking pin 240 to engage the locking pin 240 with the adjacent columns 200 in order to reversibly lock the adjacent columns 200 relative to each other. This arrangement is similar to the spring-biased locking pin described in commonly-assigned disclosure of U.S. Pat. No. 8,225,906, the entire contents of which are hereby incorporated by reference.
A plurality of actuators 265 is also provided. Each actuator 265 is coupled to a respective locking pin 240 and disposed on an extension portion 230 of a respective one of the connector assemblies 220. Each actuator 265 is operatively coupled to a corresponding locking pin 240 such that when actuated, the corresponding locking pin 240 moves from the extended position 250 to the retracted position. In more detail, each actuator 265 is moveable along the respective extension portion 230 (e.g., by a thumb of a user), in a direction that is generally aligned with a direction in which the respective extension portion 230 extends, away from the respective collar portion 225, in order to retract the respective locking pin 240 against the biasing force of the spring 245 and thereby allow an upper one of the adjacent columns 200 to retract and collapse within a lower one of the adjacent columns 200.
The upper assembly 195 also includes a fastening assembly 270, portions of which are shown in the non-limiting embodiments of
The fastening assembly 270 further comprises a latch assembly 295 having a first locking pin 300. The first locking pin 300 is moveable between a first position 310 and a second position. When the first locking pin 300 is in the first position 310, the first locking pin 300 extends into a selectable one of the holes 215 to selectively lock the fastening assembly 270 to the uppermost column 212 so as to restrict slidable movement of the fastening assembly 270 relative to the uppermost column 212. When the first locking pin 300 is in the second position, the first locking pin 300 retracts out of the selected hole 215 of the uppermost column 212 to release the fastening assembly 270 so as to allow slidable movement of the fastening assembly 270 relative to the uppermost column 212. The fastening assembly 270 can include a spring that exerts a biasing force against the first locking pin 300 to engage the first locking pin 300 with the selected hole 215 in order to reversibly lock the fastening assembly 270 in position relative to the uppermost column 212.
An actuator 315 is coupled to the first locking pin 300 of the fastening assembly 270. Actuator 315 is pivotably coupled to the fastening assembly 270 at a first pivot point 285 such that actuator 315 is moveable with respect to the collar 275 and associated tabs 280. At least a portion of actuator 315 is movable in a direction away from the collar 275 in order to retract the spring-biased first locking pin 300 against a biasing force of the spring and thereby allow the fastening assembly 270 to slide along the length of the uppermost column 212.
The upper assembly 195 also includes a connecting rod 320 having a first end 325 and a second end 330. The first end 325 of the connecting rod 320 is pivotably coupled to the fastening assembly 270 at pivot point 285. As shown in the non-limiting embodiment of
The bracket assembly 335 includes a first portion 340, a second portion 345, and a third portion 350. Both the second portion 345 and the third portion 350 are coupled to the first portion 340, and the second portion 345 is pivotally coupled to the second end 330 of the connecting rod 320. In some cases, a pivot pin is used to pivotally couple the second portion 345 of the bracket assembly 335 to the second end 330 of the connecting rod 320.
The first portion 340 of the bracket assembly 335 includes a top wall 355 and two side walls 360 that extend down from the top wall 355 and that are parallel with respect to each other. Each side wall 360 has a respective channel 365 formed therein. These two channels 365 are opposed (i.e., positioned directly across from each other on opposite sides of the first portion 340).
The third portion 350 of the bracket assembly 335 is slidably coupled to the first portion 340 of the bracket assembly 335 such that the third portion 350 slides relative to the first portion 340. In particular, the third portion 350 is movable toward the second portion 345 such that the third portion 350 is slidable between a first position and a second position. The third portion 350 is located nearer to the connecting rod 320 when in the first position than when in the second position. When the third portion 350 is in the first position, it is configured to secure a selected rung 25 of the ladder 20 within the bracket assembly 335.
The third portion 350 includes a base member 370 coupled to a projecting member 375. The base member 370 has a top wall 380 and two side walls 385 that extend down from the top wall 380. The base member 370 is attached to the first portion 340 of the bracket assembly 335 in such a manner that the top wall 380 of the base member 370 surrounds the top wall 355 of the first portion 340 of the bracket assembly 335, and the side walls 385 of the base member 370 each surround a respective side wall 360 of the first portion 340 of the bracket assembly 335. The selected rung 25 of the ladder 20 is positioned on top of top wall 380 when the third portion 350 is in the second position. The third portion 350 is then slid from the second position to the first position so as to secure the selected rung 25 within the bracket assembly 335.
A respective channel 390 is formed in each of the side walls 385 of the base member 370. The two channels 390 are opposed (i.e., positioned directly across from each other on opposite sides of the base member 370). A first pin 400 extends through each of channels 365, and a second pin 405 extends through each of channels 390. This arrangement permits sliding movement of the third portion 350 of the bracket assembly 335 relative to the second portion 365 of the bracket assembly 335, while also ensuring that these two portions 350, 365 remain coupled together.
The projecting member 375 of the third portion 350 of the bracket assembly 335 includes a flange 430 that extends over the base member 370. When the selected rung 25 of the ladder 20 is received in the third portion 350 of the bracket assembly 335 and the third portion 350 is in the first position, the flange 430 extends over a top of the selected rung 25 so as to secure the rung 25 within the locking assembly 335.
A tongue 410 is provided that selectively permits or restricts sliding movement of the third portion 350 relative to the first portion 340 of the locking assembly 335. As shown in the non-limiting embodiment of
As shown in the embodiment of
As shown in the non-limiting embodiment of
A channel 515 is formed in the bracket member 500 and is bounded collectively by the confronting interior surfaces 512 of the two side walls 510 and a top surface 520 of the lower wall 505. A pad can optionally be mounted in the channel 515 such that when a rung 25 of the ladder 20 is received in the channel 515, the pad is located between the receiver 500 and the rung 25. The pad can comprise a non-slip material, such as foam, rubber, or the like so as to increase friction with a rung 25 positioned in the channel 515 (as opposed to when no pad is used). Such a pad will also help to limit lateral sliding movement of a rung 25 when the rung 25 is received in the channel 515. Optionally, the material for the pad can also be flame-resistant, oil-resistant, solvent-resistant, and suitable for outdoor use.
At least one knob 530 is rotatably coupled to the top edge 522 of one of the side walls 510 of the receiver 500. The at least one knob 530 can include only one knob, or can include two or more knobs. The side walls 510 comprise a first side wall 531 and a second side wall 532. The second side wall 532 is located further from the coupling assembly 450 than is the first side wall 531. In some embodiments, the at least one knob 530 is coupled to the second side wall 532. By positioning the at least one knob 530 on the second side wall 532 (and away from the coupling assembly 450), the at least one knob 530 is also spaced from a flange 26 of the selected rung 25 when the selected rung 25 is positioned in the receiver 500. This arrangement helps ensure that the rung 25 will not interfere with rotation of the at least one knob 530.
The at least one knob 530 is rotatable between a first position 535 and a second position 540. When the at least one knob 530 is in the first position 535, a portion 545 of each knob 530 extends over (i.e., above) the channel 515 such that the at least one knob 530 is configured to abut a rung 25 of the ladder 20 to secure the rung 25 in the channel 515 (see
As shown in the illustrated embodiments, a bracket assembly 600 can be used to couple the bracket member 500 and the coupling assembly 450. In some cases, bracket assembly 600 is coupled to the first side wall 531 of the bracket member 500. Bracket assembly 600 comprises a main portion 605, a top flange 610, a bottom flange 615, and a pair of extension tabs 620. The top flange 615 extends onto the top edge 522 of the first side wall 531, and the bottom flange 615 extends onto a bottom edge 618 of the lower wall 505. Each of the extension tabs 620 extends outwardly from the main portion 605 of bracket assembly 600 in a direction perpendicular (or substantially perpendicular) to the main portion 605.
The tripod assembly 10 further includes an adjusting mechanism 650 coupled to the uppermost column 212 and the bracket member 500. The adjusting mechanism 650 enables pivotable movement of the bracket member 500 relative to the uppermost column 212 so as to selectively adjust an angle that the tripod assembly 10 forms with the ladder 20. In some cases, the adjusting mechanism 650 includes a limit stop so as to limit rotation of the tripod assembly 10 to a maximum angle of about 90 degrees from the ladder 20. In certain embodiments, the adjusting mechanism 650 includes a clamping lever 655 that can be selectively tightened down (i.e., clamped) so as to restrict rotation of the clamping lever 655, thereby also restricting pivotable movement of the bracket member 500 relative to the uppermost column 212.
In the embodiments illustrated in
In some embodiments, a ladder tripod system 700 is provided that includes a ladder 20 and a tripod assembly 10. The ladder 20 comprises a first stile 22, a second stile 24, and a plurality of rungs 25 extending between the first stile 22 and the second stile 24. In some cases, the ladder 20 is a telescoping ladder. Non-limiting examples of ladders 20 that can be used with the tripod assembly 10 and ladder tripod system 700 of the present disclosure are disclosed in U.S. Pat. Nos. 8,387,753; 8,225,906; U.S. Patent Application Publication No. 2019/0136623; U.S. Patent Application Publication No. 2019/0093428; and U.S. Patent Application Publication No. 2019/0055783, each of which is incorporated by reference herein in its entirety.
The first 22 and second 24 stiles each have a plurality of columns 21. In some embodiments, the columns 21 are formed of aluminum. However, skilled artisans appreciated that other materials are contemplated and are within the scope of the invention. Although the columns 21 are illustrated as having a circular cross-section (when viewed along a longitudinal axis of the columns 21), the columns 21 can alternatively have a rectangular cross-section such as those illustrated in U.S. Publication No. 2012/0267197 A1 assigned to the assignee of the instant application, the disclosure of which is hereby incorporated by reference in its entirety. Other cross-sections not specifically disclosed herein (e.g., square, oval or polygonal shapes) are also contemplated.
In some cases, each rung 25 comprises a generally planar first surface 27 and a generally planar second surface 29 opposite to the planar first surface 27. The first surface 27 of each rung 25 defines a planar standing surface. When the ladder 20 is extended for use and attached to the tripod assembly 10 (as described below), a user may step on the planar first surface 27. The planar first surface 27 of each rung 25 may have treads 36 defined therein to provide friction between the planar first surface 27 and the contact surface of a user (e.g., soles of the user's shoes).
Each rung 24 can be connected to a column 21 of the first stile 22 and a column 21 of the second stile 24. Each rung 25 can be connected to the columns 21 by a connector assembly 38. Each connector assembly 38 attached to columns 21 of the ladder 20 has a collar portion 39 for generally surrounding or contacting a column 21 of the ladder 20, and a rung portion integrally formed with the collar portion. The rung portion is held within (e.g., by friction fit) the hollow body of a rung 25. The rungs 25 can be substantially hollow so as to allow such a connector assembly 38 (described below) to fasten the rung 25 to a column 21 on each of the first stile 22 and the second stile 24. The rungs 25 can be extruded from aluminum, although other materials and means of manufacturing can also be used.
The ladder 20 can include a plurality of connector assemblies 38. The connector assemblies 38 of the ladder 10 can be substantially identical, although the connector assemblies of the first stile 22 are mirror images of connector assemblies of the second stile 24. The connector assemblies of the ladder 20 can have latch assemblies housed in the hollow portion of each rung 25 to unlock or selectively lock relative axial movement between adjacent columns 21. Such connector assemblies are described in U.S. Pat. Nos. 8,387,753 and 6,883,645, both assigned to the assignee of the instant application, the disclosure of each of which is hereby incorporated by reference in its entirety.
Each connector assembly 38 of the ladder 20 comprises a locking pin moveable between an extended position and a retracted position for extending into or retracting out of openings of adjacent columns 21 to selectively lock or release the columns 21 respectively. The ladder 20 includes a plurality of actuators (e.g., release buttons) that are manually actuatable and that permit collapsing the ladder 20 in a sequential manner. The sequence involves collapsing the columns 21 on a lower portion of the ladder prior to collapsing columns 21 immediately thereabove. The latch assembly can also have a release button that is manually actuatable to unlock the selectively locked relative axial movement between two adjacent columns 21 of the ladder 20. In some cases, an actuator may be provided on every connector assembly 38 of the ladder 20.
The present disclosure also includes a method of stabilizing a ladder 20 on the tripod assembly 10. The method comprises the step of extending the ladder 20 to a desired height. In certain embodiments, the ladder 20 can be extended by grasping a rung 25 so as to telescopically extend each column 21 of the ladder 20 relative to an adjacent column 21 of the ladder 20 (for instance, all columns 21 except the bottom-most or the bottom-few columns 21). Once a column 21 of the first stile 22 and the second stile 24 are each extended relative to adjacent columns 21 of the first stile 22 and the second stile 24 respectively, the columns 21 can each be locked to restrict relative axial (telescopic sliding) movement with respect to adjacent columns 21.
The method also comprises the step of extending the tripod assembly 10 to a desired height. This step involves telescopically extending each column 200 of the tripod assembly 10 relative to an adjacent column 200 of the tripod assembly 10 (the fully extended position is shown in
The method further comprises the step of connecting the tripod assembly 10 to the ladder 20. This step involves securing the bracket member 500 to an upper rung 25 of the ladder 20 by rotating the at least one knob 530 into the first position 535. This step also involves securing the bracket assembly 335 to a lower rung 25 of the ladder (i.e., a rung located below, such as immediately below, the upper rung to which the bracket member 500 is secured). The connecting rod 320 can be pivotally adjusted and slidably moved along the uppermost column 212 (such that the first locking pin 300 extends into a selectable hole 215) in order to create a certain distance and angle between the ladder 20 and the tripod assembly 10. The positioning of the connecting rod 320 relative to the uppermost column 212 of the tripod assembly 10 will depend on which particular rungs 25 the tripod assembly 10 is secured to.
After use, the tripod assembly 10 and the ladder 20 can be disconnected from each other. Thereafter, both the ladder 20 and the tripod assembly 10 can be collapsed, and transported and/or stored as desired.
Although the present embodiments has been described in considerable detail with reference to certain disclosed embodiments, the disclosed embodiments are presented for purposes of illustration and not limitation and other embodiments are possible. One skilled in the art will appreciate that various changes, adaptations, and modifications may be made without departing from the spirit of the invention.
This application claims the benefit of U.S. Provisional Application No. 62/925,400, filed Oct. 24, 2019, the content of which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62925400 | Oct 2019 | US |