This application incorporates by reference two design applications entitled “Four-Legged Ladder With System Opening Facilitator” and “Three-Legged Ladder With System Opening Facilitator”, both filed the same day as this application.
This disclosure generally relates to ladders.
Ladders may be used in order to facilitate access to and support activity in places above the ground and/or floor. Ladders may be used outdoors and/or indoors. Ladders may be used for business and/or personal activity, or any other activities not listed in this disclosure.
In some embodiments, a ladder system may comprise a first section comprising: a first rail, a second rail, and a first support (e.g., a first step) connected to the first rail and the second rail; a second section comprising a first leg; a first connector for connecting, either directly or indirectly via one or more second connectors, the first section to the second section; and a ladder system-opening facilitator connected to the first section and the second section, wherein the first section is substantially parallel to the second section when the ladder system is in a closed position, wherein the ladder system-opening facilitator automatically completes an opening action for the ladder system in response to initiation of the opening action, and wherein the first section is angular to the second section when the ladder system is in an open position.
In some embodiments with a ladder system, the initiation of the opening action comprises application of first force to at least one of the first section or the second section.
In some embodiments with a ladder system, the first force is provided by a source external to the ladder system.
In some embodiments with a ladder system, the first force is less than a second force for both initiating and completing the opening action.
In some embodiments with a ladder system, the first force is less than a second force for completing the opening action.
In some embodiments with a ladder system, the ladder system-opening facilitator provides a force for automatically completing the opening action.
In some embodiments with a ladder system, the first connector or the one or more second connectors comprises at least one of a cap, a platform, a step, a plate, a brace, a hinge, or a rivet.
In some embodiments with a ladder system, the first support is positioned substantially perpendicularly to at least one of the first rail or the second rail.
In some embodiments with a ladder system, the first connector or the one or more second connectors is positioned near an edge of at least one of the first section or the second section.
In some embodiments with a ladder system, the ladder system comprises a step ladder system.
In some embodiments with a ladder system, the ladder system comprises a platform ladder system.
In some embodiments with a ladder system, the ladder system-opening facilitator is connected to the first rail and the first leg.
In some embodiments with a ladder system, the ladder system-opening facilitator is connected to the first support and the first leg.
In some embodiments with a ladder system, the first leg comprises a third rail, wherein the second section further comprises a fourth rail and a second support, and wherein the second support is connected to the third rail and the fourth rail.
In some embodiments with a ladder system, the ladder system-opening facilitator is connected to the first rail and the third rail.
In some embodiments with a ladder system, the ladder system-opening facilitator is connected to the first rail and the fourth rail.
In some embodiments with a ladder system, the ladder system-opening facilitator is connected to the first support and the second support.
In some embodiments with a ladder system, the ladder system-opening facilitator comprises a gas strut.
In some embodiments with a ladder system, the ladder system opening facilitator comprises a compressible mechanical device and/or resilient material that can provide outward force.
In some embodiments with a ladder system, the ladder system-opening facilitator comprises an electric motor.
In some embodiments with a ladder system, the ladder system-opening facilitator comprises a spring.
In some embodiments with a ladder system, the ladder system-opening facilitator comprises multiple ladder system-opening facilitators.
In some embodiments with a ladder system, the multiple ladder system-opening facilitators are substantially parallel to each other.
In some embodiments with a ladder system, the multiple ladder system-opening facilitators are substantially in series to each other.
In some embodiments, the ladder system may further comprise a spreader.
In some embodiments, the ladder system-opening facilitator is located above the spreader.
In some embodiments, the ladder system-opening facilitator is located below the spreader.
In some embodiments, the spreader comprises the ladder system-opening facilitator.
In some embodiments, the second section comprises a second leg.
In some embodiments, the second section comprises a second support connected to the first leg and the second leg.
In some embodiments, the ladder system-opening facilitator is connected to the first support and the second support.
In some embodiments, the ladder system-opening facilitator is connected to the first rail and the second support.
In some embodiments, at least a portion of the first section or the second section is manufactured with at least one of aluminum, fiberglass, plastic, or wood.
In some embodiments, the ladder system may further comprise a line connected to at least the second section.
In some embodiments, pulling a portion of the line towards the first section causes the ladder system to enter a closed position.
In some embodiments, a force associated with pulling the portion of the line towards the first section is greater than a resistant force provided by the ladder system-opening facilitator.
In some embodiments, a ladder system may comprise a first section comprising: a first rail, a second rail, and a first support connected to the first rail and the second rail; a second section comprising a first leg; a first connector for connecting, either directly or indirectly via one or more second connectors, the first section to the second section; and a ladder system-opening facilitator connected to the first section and the second section, wherein the first section is substantially parallel to the second section when the ladder system is in a closed state, wherein the first section is at a first angle to the second section when the ladder system is in an initial open state, wherein the ladder system moves from the closed state to the initial open state upon application of external force to at least one of the first section or the second section, wherein the first section is at a second angle to the second section when the ladder system is in a final open state, and wherein the ladder system-opening facilitator causes the ladder system to move from the initial open state to the final open state.
In some embodiments, the ladder-opening facilitator provides force for causing the ladder system to move from the initial open state to the final open state.
In some embodiments, when the ladder system moves to the initial open state, the ladder system-opening facilitator is automatically triggered to cause the ladder system to move from the initial open state to the final open state.
In some embodiments, a ladder system may comprise a first section comprising: a first rail, a second rail, and a first support connected to the first rail and the second rail; a second section comprising a first leg; a first connector for connecting, either directly or indirectly via one or more second connectors, the first section to the second section; and a ladder system-opening facilitator connected to the first section and the second section, wherein in response to first angular displacement between the first section and the second section, the ladder system-opening facilitator automatically causes second angular displacement between the first section and the second section, and wherein the second angular displacement is greater than the first angular displacement.
It may be convenient (e.g. for transportation purposes) to have ladders that can be configured in more than one configuration. At least one of the configurations may facilitate ladder use, whereas at least one other configuration may facilitate ladder transportation. For example, a self-supporting ladder (i.e. one that can stand upright on its own) may comprise two or more sections that can fold away from each other into an open configuration, or fold toward each other to a closed configuration. A section may comprise or be part of a plane. In some embodiments, a “configuration” may interchangeably refer to a “position” (e.g. open configuration and open position), while in other embodiments “configuration” and “position” may be distinct or one may be a subset of the other. As another example, a ladder intended for use with an external support (e.g. a building that the ladder is leaned on) may comprise two or more parallel sections that may be slidably disposed relative to one another.
It may be convenient and/or safe for a ladder itself to facilitate the configuring of the ladder from one configuration to another configuration. This configuring process may comprise the opening and/or closing of the ladder, and may involve a system-opening facilitator (SOF) that facilitates easier opening of the ladder.
Referring to
Referring to
In some embodiments, the ladder sections may be connected by one or more connectors. In some embodiments, a connector may comprise a cap, ladder support, SOF attachment, and/or spreader. Referring to
In some embodiments, the ladder may comprise two sections. In some embodiments, each of the sections may comprise one or more other sections. In some embodiments, a ladder section may comprise one or more rails. For example,
In some embodiments, one ladder section may be intended for a user (e.g. human) to climb, whereas the other section may not be intended for a human user to climb. For example, the first section of
In some embodiments, a ladder section may comprise one or more supports that extend from one rail of the section to another rail of the section. In some embodiments, a step ladder may comprise supports, each of which is solely connected to a first ladder section or a second ladder section. In some embodiments, supports may be attached perpendicularly to ladder rails. In some embodiments, a support may comprise at least one of a step, brace, plate, cap, or platform, any connector described herein, etc., any of which may or may not be intended to support the force of entities positioned thereon. In some embodiments, any support or connector used for directly connecting two or more ladder sections or indirectly connecting two or more ladder sections, via one or more connectors, may be referred to as a connector. For example,
In some embodiments, a ladder may be configured in an open or a closed configuration. For example,
In some embodiments, the ladder may comprise one or more system-opening facilitators (SOFs). For example,
Referring to
In some embodiments, an SOF may comprise one or more SOFs. In some embodiments with more than one SOF, the multiple SOFs may be substantially parallel. In some embodiments with an SOF comprising more than one SOFs, the multiple SOFs may not be parallel and may be angular with respect to each other. For example,
In some embodiments, an SOF may be substantially vertical when an SOF is in a compressed configuration and/or when a ladder is in a closed configuration. For example, see the configuration of SOF 110 in
In some embodiments, one or both ends of an SOF may rotate with respect to at least one axis when the ladder is being configured to a different configuration (e.g. when a ladder is being opened or closed). Referring to
In some embodiments, an SOF may comprise attachment hardware that facilitates attachment to the ladder. In some embodiments, an SOF may not comprise attachment hardware. For example, attachment hardware may be distinct from the SOF and separately provided and/or installed. In some embodiments, an SOF may be attached to the ladder by its end points which may comprise attachment hardware. In some embodiments, an SOF may be attached to the first and/or second section of the ladder. In some embodiments, an SOF attachment may be achieved at least in part by a screw, bolt, nut, rivet, male connector, female connector, hook, latch, hinge, adhesive, etc. Referring to
In general, an SOF may be oriented in either direction with respect to the ladder sections. For example, in SOF 110 embodiments comprising a gas strut as illustrated in
In some embodiments with four rails, an SOF may attach to a step associated with the first section and a step, brace, plate, etc., associated with the second section. In some embodiments with four rails, an SOF may attach to a first section rail and a second section rail. In some embodiments, a ladder with two first section rails and one second section rail may comprise an SOF. In such embodiments with three rails, an SOF may attach to a step associated with the first section and a rail associated with the second section. Referring to
In some embodiments, an SOF may assist a person opening the ladder by automatically completing the opening process after the opening process has been initiated by the person. In some embodiments with two ladder sections, the opening process may be initiated by pushing or pulling one ladder section away from the other ladder sections. Following the initiation of the opening process, the opening process may be continued and/or completed by triggering (e.g., automatically triggering) an SOF to exert outward force and/or complete an opening of the ladder (e.g. by pressing a button to start an electric motor-powered strut). In some embodiments, the triggering of an SOF may occur immediately after a sufficient force is exerted on at least one of the ladder sections (e.g. after one of the ladder sections is pushed away sufficiently hard from the other ladder section). In some embodiments, an SOF may provide outward force or resistant force that would need to be overcome when closing the ladder (e.g., in the case of a spring). In other embodiments, an SOF may provide no outward force during the closing process (e.g., in the case of a disengageable electric motor-powered strut). In other embodiments, an SOF may provide inward force during the closing process (e.g. in the case of a reverse engaged electric motor-powered strut). In some embodiments, an SOF may be configured to allow an external interaction to reduce or disable the opening force associated with the SOF. For example, in some embodiments with an electric motor-powered strut, a button may be provided for pressing by a user to disable the motor-powered strut while the user attempts to close the ladder.
In some embodiments, more than one SOF may be used (e.g., to provide additional opening force, which may be useful for larger or heavier ladders). In some embodiments with more than one SOF, the more than one SOFs may be attached in parallel (e.g. to rails and/or steps and/or other SOFs). For example, see
In some embodiments, a ladder may comprise one or more spreaders. In some embodiments, the spreader may be attached to a first section and a second section. In some embodiments, the spreader may fold depending on the configuration of the ladder. For example, the spreader may comprise at least two segments which become parallel when the ladder is in a closed position. In some embodiments, the spreader may be configured along a common line when the ladder is in the open position. For example, a spreader may extend horizontally between a first section and a second section when a ladder is fully opened. In some embodiments, the spreader may provide locking functionality and/or structural stability to a ladder in at least one configuration. For example, a spreader may be manually and/or automatically engaged when the ladder is in an open position (e.g. in order to maintain the ladder in an open position). For example, a spreader comprising at least two segments may further comprise a spreader lock that may limit the range of motion of the spreader segments. For example, a spreader lock may prevent two or more segments of a spreader from further angling downward after achieving a horizontal configuration, and such a spreader lock may be attached to and positioned above the two or more spreader segments. In some embodiments, the spreader may prevent the ladder from becoming configured in a certain way. For example, a spreader may only allow the ladder sections to span a limited distance based on the length of the spreader and the attachment points of the spreader to the ladder sections.
In some embodiments involving a spreader, an SOF may be positioned above a spreader, while in other embodiments, an SOF may be below a spreader. Additionally, an SOF may be positioned at substantially the same height as the spreader. Such positioning may be chosen in part based on achieving a desired amount of SOF force and/or positioning an SOF advantageously in view of human use (e.g. for safety and/or for providing open space in a desired ladder area).
In some embodiments, a spreader may comprise an SOF. In such an embodiment, an SOF itself may provide locking functionality when the ladder is in the open position in order to maintain the ladder in a stable open position during use. For example, a gas strut or other SOF may latch after extending a certain amount, and further require the user to unlatch the gas strut in order to close the ladder. In another example, an electric motor-powered strut or other SOF may engage a lock after extending to a certain amount, and further require the user to disengage the strut lock in order to close the ladder.
In some embodiments, the opening process may be initiated by a force applied by the user to a first ladder section and/or a second ladder section. For example, a user may push one ladder section away from the other ladder section, or pull two ladder sections apart. A user may refer to a person, a robot, a computing system, a motor vehicle, etc. In some embodiments, an SOF may not provide outward force until the opening process has been initiated. In other embodiments, an SOF may provide outward before or during initiation of the opening process. In other embodiments, an SOF may continually provide outward force (e.g., before the initiation process), but may not provide enough outward force to modify the configuration (e.g. open) the ladder until after an opening process has been initiated by an external force. For example, an external force (e.g. user or gravity) may initiate the opening process by starting to push one ladder section away from the other section (e.g. such that the angular displacement of the two sections about one or more hinge joints increases), and one or more SOFs may automatically (i.e. without any additional action beyond initiating the ladder opening process) complete the opening process without additional force required from the external force (e.g. person or gravity). When the opening process is completed, the angular displacement of the two sections about the one or more hinge joints reaches its maximum possible angular displacement.
In some embodiments, an SOF may be triggered to complete an opening process once the ladder has been configured from a closed configuration to a preliminary open configuration associated with less than the maximum possible angular displacement as described previously. In some embodiments, an initiating force may configure a ladder from a closed configuration to an initially open or a preliminary open configuration or state. In some embodiments, an opening force may configure a ladder from a closed and/or preliminary open configuration to a fully open (or just “open”) configuration. In some embodiments, an initiating force may be less than an opening force. In some embodiments, the angular displacement of the ladder sections associated with an initiation force may be less than the angular displacement of the ladder sections associated with an opening force. In some embodiments, triggering an SOF to complete the opening of a ladder may occur after achieving a certain angular displacement between the ladder sections (e.g. after the ladder sections have been initially opened from a closed configuration).
In some embodiments, one or more SOFs may provide an initiation force while one or more other SOFs may provide an opening force. In some embodiments, an SOF may provide an initiation force and an opening force. Additionally or alternatively, an SOF may provide a closing force for reducing the angular displacement between the two ladder sections until the two ladder sections are substantially parallel to each other.
In some embodiments, a user may statically fix one ladder section during the opening process (e.g. by standing on the one ladder section) while an SOF automatically completes the opening process. For example, the user may fix a first ladder section to the ground (e.g. by pressing down ladder section support via foot) while lifting a second ladder section off the ground in order to further facilitate the opening process via an SOF. “Lifting” of a ladder section in this process may comprise rotating the base of the ladder about the fixed point.
In some embodiments, the external force (e.g., the force for initiating the opening of the ladder, the force for completing the opening of the ladder, the force for closing the ladder, etc.) may be applied manually by a human. In some embodiments, the external force may be provided by gravity (e.g. by appropriately position the ladder). In some embodiments, the external force may be provided by a pulled member (e.g. line attached to at least one ladder section), e.g. with the pulled member being pulled by a human. In some embodiments, the external force may be provided by an additional SOF attached to the ladder which is able to initiate but not complete the opening process. In some embodiments, the external or opening force provided during the beginning of the opening process (e.g. the force provided by a human) may be less than the external or opening force provided by an SOF during the remainder of the opening process.
In some embodiments, a ladder may comprise a connector and at least two sections, each of the two sections comprising at least one support. In some embodiments, a ladder may comprise a platform ladder. In some embodiments, the platform ladder may comprise a platform supported by a first ladder section and/or a second ladder section, and located above all, or at least some, ladder supports. In some embodiments, the platform may be intended to support the force of entities positioned thereon. In some embodiments, a ladder may refer to a step ladder and/or platform ladder. In some embodiments, a ladder, step ladder, or platform ladder may be referred to as a ladder system, step ladder system, or platform ladder system, respectively.
In some embodiments, a platform ladder may be distinguished from a step ladder in that the highest vertical support of a step ladder may not be intended for standing thereon and/or does not provide a structurally stable surface for supporting a large object (e.g. user or bucket), whereas the highest vertical support of a platform ladder may be intended for standing thereon and/or does provide a structurally stable surface for supporting a large object (e.g. a user or bucket). Referring to
In some embodiments a line may be attached to one ladder section in order to facilitate closing the ladder. For example, a line may be attached to the support of a second section of a ladder in order to facilitate closing the ladder from a user most proximal to a first section of the ladder (e.g. by manually pulling the line from second section towards the first section). Alternatively or additionally, in some embodiments, a line may be attached to the first ladder section to allow pulling the line in the direction from the first ladder section toward the second ladder section, and/or in the direction from the second ladder section toward the first ladder section.
The line may be manually pulled by a human in the direction from the first ladder section toward the second ladder section, or vice versa, in order to apply force to overcome the outward force of an SOF. Note that embodiments involving a line may have additional attachment and/or guide hardware at the section the line is pulled from, e.g. in order to maintain the line in a convenient location for user manipulation and/or to keep the line position stable during the closing process. For example, a loop may be attached to a ladder section different from the ladder section to which the line is attached, with the intention that the line will be pulled through the loop.
In some embodiments, the line may be attached to a far ladder section (e.g., with respect to the position of the user) via a step, brace, or plate. In some embodiments, the line may be attached to a near ladder section (e.g., with respect to the position of the user) via a step, brace, or plate. For example, the step, brace, or plate of a near ladder section may comprise an aperture (e.g. underneath the step, brace or plate) that serves to prevent the line from being pulled through the aperture (e.g. if the near line end is larger than the middle line segment) and/or to guide the line during the closing process.
In some embodiments, the line may comprise a rope, cord, string, tube, band, or other elongated device to facilitate pulling. In some embodiments, the line may comprise a handle and/or grip-enhancing features along its length. In some embodiments, the line may be flexible. In other embodiments, the line may be inflexible. In some embodiments, the line may be inelastic. In other embodiments, the line may be elastic.
In some embodiments, the ladder material (including the material of a cap, rail, leg, web, flange, connector, hinge, attachment, support, step, brace, plate, platform, SOF, or line) may comprise at least one of aluminum, fiberglass, plastic, wood, etc.
In some embodiments, ladder rails may comprise friction-enhancing feet near the bottom of the rails. For example, the feet may be rubber and/or grooved covers for the bottom of the rails. In some embodiments, the feet may be used to prevent movement of the ladder base while statically configured and/or during configuring of the ladder from one configuration to another configuration. For example, friction-enhancing ladder feet may be advantageous in order to secure at least one section of a ladder while force is applied to at least one other section of the ladder in order to realize a change of configuration of the ladder.
In some embodiments, ladder rails, legs, steps, braces, plates, platforms, feet, spreaders, and/or spreader locks may be attached to one another via screws, bolts, nuts, rivets, male connectors, female connectors, hooks, latches, hinges, adhesive, etc. In some embodiments, any ladder component may be attached to any other ladder component at least in part by a screw, bolt, nut, rivet, male connector, female connector, hook, latch, hinge, adhesive, etc. A male connector may be substantially concave (e.g. the ball of a ball joint) whereas a female connector may be substantially convex or comprise an aperture (e.g. the receiving portion of a ball joint).
While various embodiments in accordance with the disclosed principles have been described above, it should be understood that they have been presented by way of example only, and are not limiting. Thus, the breadth and scope of the invention(s) should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the claims and their equivalents issuing from this disclosure. Furthermore, the above advantages and features are provided in described embodiments, but shall not limit the application of such issued claims to processes and structures accomplishing any or all of the above advantages.
Additionally, the section headings herein are provided for consistency with the suggestions under 37 C.F.R. 1.77 or otherwise to provide organizational cues. These headings shall not limit or characterize the invention(s) set out in any claims that may issue from this disclosure. Specifically and by way of example, although the headings refer to a “Technical Field,” such claims should not be limited by the language chosen under this heading to describe the so-called technical field. Further, a description of a technology in the “Background” is not to be construed as an admission that technology is prior art to any invention(s) in this disclosure. Neither is the “Summary” to be considered as a characterization of the invention(s) set forth in issued claims. Furthermore, any reference in this disclosure to “invention” in the singular should not be used to argue that there is only a single point of novelty in this disclosure. Multiple inventions may be set forth according to the limitations of the multiple claims issuing from this disclosure, and such claims accordingly define the invention(s), and their equivalents, that are protected thereby. In all instances, the scope of such claims shall be considered on their own merits in light of this disclosure, but should not be constrained by the headings herein.