The present invention relates generally to ladle metallurgy furnaces. More particularly, the present invention relates to a ladle metallurgy furnace having an improved roof.
The ladle metallurgy furnace (“LMF”) is an additional steel refining step that is used to heat, mix, and refine molten material using alloys and additives mixed with the molten material. Among a number of other components, LMFs include a ladle (which is typically a refractory lined steel vessel that holds molten material for refining), electrodes for providing heat to the molten material, and a roof that sits over the ladle during the refining process. The roof of an LMF maintains heat in the ladle during the refining process and also further assists in directing off gases generated from the refining process out and away from the furnace. The roof further serves to contain the molten material and slag, which are impurities formed on the top layer of the molten material, within the ladle. During the refining process, the molten material and slag tend to splash as a result of the turbulent action generated by the electrodes applying energy to the molten material.
In order to protect the underside of the LMF roof from the splash of molten material, some LMF roofs have been constructed with steel and lined with refractory. Water cooled components constructed principally from carbon steel pipe or tubing applied to the underside of the roof have also been provided as an alternative to refractory lined equipment. With the use of pipe and/or tubing, however, slag has a tendency to adhere to the exposed pipes or multiple welding joints, cracks, and crevices that are present on and between the pipes when it splashes and makes contact with the inside surface of the LMF roof. Additional slag will “stick” to the adhered slag resulting in the growth of stalactite-type slag structures. Over time this adhered slag will cause excess weight to the LMF roof and/or may fall into the molten material during refining, thereby, contaminating the refined material.
The present invention recognizes and addresses the foregoing considerations, and others, of prior art construction and methods.
According to an aspect, the present invention provides a ladle metallurgy furnace that includes a ladle, with an open top, in the form of a vessel for containing molten material. The furnace further includes a ladle metallurgy furnace roof positioned over the open top of the ladle. The ladle metallurgy furnace roof includes an internal structure with a substantially smooth exterior surface, an external surface structure spaced apart from the internal surface and an electrode opening. The ladle metallurgy furnace also includes electrodes extending through the ladle metallurgy furnace roof opening and is received in the ladle.
According to another aspect, the present invention also provides a ladle metallurgy furnace roof with an internal surface structure having a substantially smooth exterior surface, an external surface structure spaced apart from the internal surface structure, a plurality of channels that are defined intermediate the internal and external surface structures, a supply port in fluid communication with at least one channel through the second surface structure and in further fluid communication with a supply line, and a return port in fluid communication with at least one channel through the external surface structure and in further fluid communication with a return line.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate one or more embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended drawings, in which:
Repeat use of reference characters in the present specification and drawings is intended to represent same or analogous features or elements of the invention.
Reference will now be made in detail to presently preferred embodiments of the invention, one or more examples of which are illustrated in the accompanying drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that modifications and variations can be made in the present invention without departing from the scope or spirit thereof. For instance, features illustrated or described as part of one embodiment may be used on another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
A ladle metallurgy furnace (“LMF”) 100 in accordance with an embodiment of the present invention is shown in
Ladle 102 is typically a refractory lined steel vessel that holds the molten material to be refined during the LMF process. However, in additional embodiments, ladle 102 can be made of any other material known in the art for the constructions of ladles utilized with LMFs. The user's application of ladle 102 may dictate the necessary or preferred construction.
Transport mechanism 104 is utilized to properly place ladle 102 under LMF roof 108 such that refining of the molten material may be accomplished. As shown in
LMF roof 108, during the refining process and as shown in
As shown in
As shown in
Referring now to
In this case, individual angle bars may be juxtaposed on internal surface structure 114. The bars are suitably joined by welding to provide internal channels 122. It can be seen that internal surface structure 114 is oriented at a conical angle in the illustrated embodiment. As a result, outer surface structure 120 may have a stair-step configuration on this portion of LMF roof 108.
Alternatively and as shown in
The flow circuits defined by channels 122 may be configured in any manner based on the user's specifications. In this regard, the configuration of channels 122 may be a function of the temperature that LMF roof 108 must obtain or maintain during the refining process. For example, if LMF roof 108 is required to maintain a relatively low temperature in reference to LMF operating procedures, the user may desire to have channels 122 that extend throughout the entire LMF roof 108 (as shown in the Figures) such that cooling fluid can circulate throughout LMF roof 108. In other embodiments, if LMF roof 108 is not required to maintain such a low operating temperature, LMF roof 108 may include only a limited number of channels or a lesser number of discrete flow circuits. Such embodiments may reduce the operating and manufacturing cost of LMF roof 108.
As more clearly shown in
Supply and return manifold 132, 134 may be constructed with any number of supply and return ports 138, 140. For example, a respective supply port 138 and return port 140 may be utilized at each channel 122. Such applications may be useful when a high degree of cooling is necessitated. In other embodiments, a smaller number of supply and return ports 138, 140 may be utilized. In such embodiments, cooling fluid may travel around the circumference of LMF roof 108 more than once prior to entering a return port 140.
In order to supply cooling fluid and then return it through the channels to be re-cooled, pressure may be provided at supply line 136 such as by an upstream pump. Alternatively, or in addition, suction may be provided at return line 142. The user's specification will dictate the items necessary or desirable for movement of the cooled fluid. For example, if the user is required to circulate the coolant fluid through LMF roof 108 at a relatively fast rate or for a great distance, pressure and suction may be required. Conversely, if fluid need only travel through a portion of LMF roof 108, LMF may only require either upstream pressure or downstream suction.
LMF roof 108 may further include additive ports 144 as shown in
As shown in
Delta ring 150 also facilitates directing off-gases that are associated with the procedure out of the system. For example, in
Reference is now made to
Any cooling fluid may be utilized in the present invention. In some embodiments, the cooling fluid will be water that is cooled from a refrigeration source prior to entering supply line 136. In other embodiments, the cooling fluid may comprise a water/glycol mixture. Such embodiments may be useful when the cooling fluid is required to have a relatively low temperature. The use of a water/glycol mixture may ensure that the cooling fluid does not freeze, and therefore, does not hinder the performance of the cooling fluid. In such embodiments, a mixture of between about 50% and about 90% water and about 10% and about 50% glycol may be appropriate.
With internal surface first side 116 being a substantially smooth surface, the previous issues of slag adhering to the inside of an LMF roof are reduced. With minimal welding joints, cracks and crevices, the present invention provides limited uneven surfaces to which the slag can adhere. It is believed that such improvements will allow for less maintenance to LMF roofs 108 over time. For example, LMF roofs of the present invention will not be weighed down by excessive slag, thereby avoiding possible problems with the existing systems for lowering and raising the LMF roofs. In addition, LMF roofs of the present invention lessen the requirements for maintenance to remove build up of slag on the inside roof surface. Avoiding such procedures not only avoids the time and costs for removing such excess slag but also avoids the possibilities of causing leaks to existing pipes while removing the slag. Further, the internal smooth surface of LMF roof 108 reduces the occurrences of built-up slag breaking off and falling into the refined material. Slag that falls into the refined material can negatively affect the quality of the material, and may cause additional reworks of the refining process to ensure the quality of the required steel is met.
These and other modifications and variations to the present invention may be practiced by those of ordinary skill in the art, without departing from the spirit and scope of the present invention, which is more particularly set forth in the appended claims. In addition, it should be understood that aspects of the various embodiments may be interchanged in whole or in part. Furthermore, those of ordinary skill in the art will appreciate that the foregoing description is by way of example only, and is not intended to limit the invention so further described in such appended claims. Therefore, the spirit and scope of the appended claims should not be limited to the description of the versions contained therein.
Number | Name | Date | Kind |
---|---|---|---|
4046323 | McKerrow et al. | Sep 1977 | A |
4633480 | Bleimann | Dec 1986 | A |
4644558 | Kerr | Feb 1987 | A |
4722483 | Saville et al. | Feb 1988 | A |
4903640 | Howard | Feb 1990 | A |
4903752 | Rokop | Feb 1990 | A |
5067659 | Heeren et al. | Nov 1991 | A |
5327453 | Arthur et al. | Jul 1994 | A |
5397379 | Barker et al. | Mar 1995 | A |
5426664 | Grove | Jun 1995 | A |
5999558 | Miner et al. | Dec 1999 | A |
6059028 | Kincheloe et al. | May 2000 | A |
6189818 | Kunz et al. | Feb 2001 | B1 |
6269112 | Poloni et al. | Jul 2001 | B1 |
6330269 | Manasek et al. | Dec 2001 | B1 |
6404799 | Mori et al. | Jun 2002 | B1 |
6418157 | Fox | Jul 2002 | B1 |
6547849 | Gross et al. | Apr 2003 | B2 |
6870873 | Lyons et al. | Mar 2005 | B2 |
6910431 | Satchell, Jr. | Jun 2005 | B2 |
6999495 | Popenov et al. | Feb 2006 | B2 |
7824604 | Higgins et al. | Nov 2010 | B2 |
20030005314 | Gammel et al. | Jan 2003 | A1 |
Entry |
---|
Supplemental Information provided by representative for Superior machine Company of S.C. |
Number | Date | Country | |
---|---|---|---|
20120193844 A1 | Aug 2012 | US |