Laminar scrubber apparatus for capturing carbon dioxide from air and methods of use

Information

  • Patent Grant
  • 7833328
  • Patent Number
    7,833,328
  • Date Filed
    Wednesday, September 9, 2009
    15 years ago
  • Date Issued
    Tuesday, November 16, 2010
    14 years ago
Abstract
The present invention is directed to methods for carbon dioxide from air, which comprises exposing solvent covered surfaces to air streams where the airflow is kept laminar, or close to the laminar regime. The invention also provides for an apparatus, which is a laminar scrubber, comprising solvent covered surfaces situated such that they can be exposed to air streams such that the airflow is kept laminar.
Description

This patent disclosure contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure as it appears in the U.S. Patent and Trademark Office patent file or records, but otherwise reserves any and all copyright rights.


FIELD OF THE INVENTION

The present invention relates generally to the field of extractors, including those that work to extract carbon dioxide. The present invention relates to carbon dioxide (CO2) removal under ambient conditions from the open air without heating or cooling the air.


BACKGROUND OF THE INVENTION

Extracting carbon dioxide from ambient air would make it possible to use carbon based fuels and deal with the greenhouse gas emissions after the fact. Since CO2 is neither poisonous nor harmful in parts per million quantities but creates environmental problems simply by accumulating in the atmosphere, it is possible to remove carbon dioxide from air in order to compensate for an equally sized emission elsewhere and at different times. The overall scheme of air capture has been described elsewhere.


The production of carbon dioxide (CO2) occurs in a variety of industrial applications, such as the generation of electricity by burning coal in power plants. Flue gas from coal-burning power plants typically contains a high percentage of nitrogen, about 13% CO2, about 3% oxygen, about 10% water and less than 1% of various pollutants. To sequester CO2 during the operation of coal burners in power plants, CO2 must be separated from the flue gas, which is hot, e.g., temperatures from about 200° C. to about 1000° C. depending on its specific locations in the flue gas lines of the coal-burning power plant. In a carbon constrained world, central sources of CO2 like power plants are likely to capture their own CO2 from the power plant stack.


Hydrocarbons are typically the main components of fuels that are combusted in combustion devices, such as engines. Exhaust gas discharged from such combustion devices contains carbon dioxide gas, which at present is simply released to the atmosphere. However, as greenhouse gas concerns mount, carbon dioxide emissions from all sources will have to be curtailed.


Scrubber designs for separating CO2 from air already exist, but they are limited to packed bed type implementations whose goal is typically to remove all traces of an impurity from another gas. The disadvantages in the art are addressed and overcome by the carbon dioxide separation membranes and methods of use thereof as embraced by the present invention.


SUMMARY OF THE INVENTION

The present invention is directed to methods for removing carbon dioxide from air, which comprises exposing solvent covered surfaces to air streams where the airflow is kept laminar, or close to the laminar regime. The invention also provides for an apparatus which is a laminar scrubber, comprising solvent covered surfaces situated such that they can be exposed to air streams such that the airflow is kept laminar. The following descriptions of the invention include many embodiments and aspects, all of which can be attributable to either the method or the apparatus claimed, even if not so explicitly stated.


Capture of carbon dioxide on board of a vehicle while possible in principle is not practical because of the large amount of weight involved. Therefore our invention aims at capturing carbon dioxide from the air at a later time. The purpose of the removal of carbon dioxide from the air is to balance out the carbon dioxide emission resulting from the operation of vehicle. While the most obvious sources of carbon dioxide emissions that could be remedied by this invention are those for which it would be difficult or impossible to capture the CO2 at the point of emission, the invention is not restricted to such sources but could compensate for any source as well. Indeed this approach of carbon dioxide mitigation could be used to lower the atmospheric concentration of CO2.


Efficient capture of carbon dioxide from air requires a sorbent that can absorb CO2 with minimum energy costs. Processes that heat or cool the air, or that change the pressure of the air by substantial amounts will be energetically disadvantaged.


The apparatus consists of a scrubber design which provides essentially straight flow paths for the air that is blowing through the device. Sorbent covered surfaces are within millimeters to centimeters of the flow path of every air parcel. The simplest embodiment is a set of flat plates with the air moving through the gaps between the plates and the sorbent flowing over the surfaces. In the simplest design these plates stand upright so that wetting of both surfaces can be performed with equal ease. However a variety of other designs described below can vary from this simple design. These include but are not limited to corrugated surfaces, concentric tubes etc.


In one aspect of the invention, the surfaces are smooth parallel plates. In another aspect, the surfaces are not entirely flat, but follow straight parallel lines in the direction of the airflow. Examples include but are not limited to corrugations, pipes or tubes, angular shapes akin to harmonica covers. The invention provides for methods where the surfaces are roughened with grooves, dimples, bumps or other small structures that are smaller than the surface spacing and that remain well within the laminar boundary of the air flow, i.e., the Reynolds number of the flow around these dimples is small, in an optimum it is between 0 and 100.


The present invention is directed to implementations of the above method where surface roughening has been obtained through sand blasting or other similar means. In one aspect of the invention, the surface roughening can be obtained by etching.


In another aspect of the invention, the apparatus contains surfaces that are part of plates made from steel or other hydroxide resistant metals. In one aspect of the invention, the plates are made from glass. In another aspect, the plates are made from plastics, including but not limited to polypropylene.


In yet another aspect of the invention, the surfaces are foils or other thin films that are held taut by wires and supported by taut wire or wire netting. The invention provides for an apparatus where all but a supporting wire in the front and the back run parallel to the wind flow direction. In one aspect, the films are supported on a rigid structure. For example, the rigid structure can be a solid plate, a honeycomb, or latticework that can lend structural rigidity to the films. The invention is not limited to these examples.


The invention also provides for an apparatus and method where the films are made from plastic foils. The invention provides for an apparatus and method where the plastic foil has been surface treated to increase the hydrophilicity of the surface. Such treatments can be state of the art or represent novel treatments. In another aspect of the invention, an apparatus or method is provided where surfaces have been coated or treated to increase hydrophilicity of the plates.


The method or apparatus of the invention further provides that the direction of the airflow is horizontal. The method or apparatus of the invention provides that the surfaces—or the line of symmetry of the surfaces—is vertical. The invention provides for where the liquid solvent flow is at right angle to the airflow. The invention provides for a method and an apparatus where the surface spacing is between 0.3 centimeters (cm) and 3 cm. In another embodiment, the surface length at right angle to the airflow direction is between 0.30 m to 10 m. In another embodiment, the airflow speed is between 0.1 meters per second (m/s) and 10 m/s. In another embodiment, the distance of airflow between the surfaces is between 0.10 m and 2 m.


In one embodiment of the invention, liquid solvent is applied by means of spraying a flow onto the upper edge of the surface. In another embodiment, the solvent is applied to both sides of the plates. In another embodiment, the solvent is applied in a pulsed manner. In another embodiment, the liquid solvent is collected at the bottom of the surfaces or plates in a catch tray.


In another embodiment of the method and apparatus, the collected fluid or CO2 solvent is immediately passed on to a recovery unit. In another embodiment, the collected fluid is recycled to the top of the scrubbing unit for additional CO2 collection.


In another embodiment of the method or apparatus of the invention, the apparatus is equipped with airflow straighteners to minimize losses from misalignment between the surfaces and the instantaneous wind field.


In another embodiment of the method or apparatus of the invention, the apparatus is equipped with mechanisms that either passively or actively steer the surfaces so that they point into the wind.


In another embodiment of the method or apparatus of the invention, the laminar wind scrubber utilizes pressure drops created by natural airflows. In one embodiment, the pressure drops created by natural airflows include, but are not limited to: (a) wind stagnation in front of scrubber; (b) pressure drops created by flows parallel to the entrance and/or exit into the scrubbers; (c) pressure drops created by thermal convection as for example in a cooling tower or by thermal convection along a hill side.


In one embodiment of the method or apparatus, the surfaces are rotating disks where wetting is helped by the rotary motion of the disks, and the air is moving at right angle to the axis. In one embodiment of the method or apparatus, the axis is approximately horizontal and the disks dip into the solvent at their rim and the circular motion promotes distribution of the fluid on the disks.


In another embodiment, the liquid is sprayed onto the disk as it is moved by a radially aligned injector. In another embodiment, the liquid is extruded onto the disk near the axis.


In another embodiment of the invention, the surfaces are concentric tubes of circular or other cross-section shape with the air flowing in the direction of the tube axis. In another embodiment, the tubes rotate around the center axis. In one embodiment of the invention, the tube axis is oriented approximately vertically and solvent is applied in a manner that it flows downward on the surfaces of the tube. In another embodiment, the axis is at some angle to the vertical and the solvent is inserted at a single point at the upper opening and flows downward in a spiral motion covering the entire surface.


In one embodiment of the invention, the solvent used in the apparatus and in the method is a hydroxide solution. In one aspect, the hydroxide concentration is from about 0.1 molar to about 20 molar. In another embodiment, the hydroxide concentration is from about 1 molar to about 3 molar. In one embodiment, the concentration of the solution exceeds 3 molar. In another aspect of the invention, the concentration of the solution has been adjusted to minimize water losses or water gains. In another embodiment of the invention, the concentration of the solution is allowed to adjust itself until its vapor pressure matches that of the ambient air.


In one embodiment, the hydroxide is sodium hydroxide. In another embodiment, the hydroxide is potassium hydroxide. In another embodiment, the solvent is a hydroxide solution where additives or surfactants have been added. In a further embodiment, the additives or surfactants work to increase the reaction kinetics of CO2 with the solution. Without limitation, such additives could be state of the art or improvements on the art. In one embodiment, the additives are intended to reduce the water vapor pressure over the solution. Such additives could be state of the art or improvements on the art. In a further embodiment of the invention, the additives or surfactants change the viscosity or other rheological properties of the solvent. In one aspect of the invention, the additives or surfactants improve the absorption properties of the solvent to scrub gases other than CO2 from the air (e.g. ozone). In another embodiment, the method or apparatus combines additives that create all or part of the properties disclosed hereinabove.





BRIEF DESCRIPTION OF THE DRAWINGS

Additional aspects, features and advantages afforded by the present invention will be apparent from the detailed description and exemplification hereinbelow, taken in conjunction with the accompanying drawings wherein like numerals depict like parts, and wherein:



FIG. 1 is an end view, and FIG. 2 is a side elevational view of a scrubber apparatus in accordance with the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to methods and devices to capture carbon dioxide by absorption into a strongly alkaline solution. Although general for sorbent recovery already exist, the present invention includes an apparatus designed to expose alkaline fluids to atmospheric air where these fluids absorb CO2.


An apparatus that performs this task is the first in a series of modules that together provide air capture capabilities. The system discussed here differs from previous CO2 scrubber designs in that it is optimized for capturing carbon dioxide from air rather than scrubbing air clean of CO2. As a result uniform extraction from the air or maximum reduction of the CO2 content of the air are not at issue, what matters is maximizing the rate of CO2 uptake by the sorbent fluid.


Such technology would provide the ability of delivering gasoline, diesel or other carbonaceous fuels that are effectively carbon neutral because already prior to their combustion an amount of CO2 has been removed from the air that matches their ultimate emission. Similarly it is possible to compensate for the emissions of a car or any other vehicle including airplanes by removing the amount of CO2 that will be emitted over the lifetime of the vehicle before or shortly after their introduction to the market.


One Embodiment
Description of an Air Scrubber Unit

The purpose of an air scrubber unit is to remove CO2 from an airflow that is maintained by a low-pressure gradient. Air scrubber units could also capture other gases present in the air. Typical pressure gradients are such that they could be generated by natural airflows. Pressure drops across the unit range from nearly zero pressure to a few hundreds of Pascal, a preferred range is from 1 to 30 Pa and an optimal range may be from 3 to 20 Pa. However, we explicitly state that we do not limit our claim to units that are exclusively wind driven. We also consider the use of fans either with or without ductwork to guide the air and we explicitly consider units that are driven by convection.


Flow velocities through the scrubber unit may range from virtually stagnant to a few tens of meters per second. A preferred range would be from 0.5 to 15 m/s an optimal range for wind driven systems ranges from 1 m/sec to 6 m/sec.


The apparatus of the invention in one embodiment comprises a flat, hydroxide coated, surfaces approximately centimeters apart. These large flat sheets are referred to as lamellae. In one embodiment, a single lamella is bound by two sheets covered in hydroxide solution. Air flows between the sheets and parallel to their surfaces. A set of lamellae form a complete and independent unit, which is referred to herein as a scrubber cell. The typical depths of these surfaces or lamellae range from tens of centimeters to a few meters and the height can vary from tens of centimeter to many meters.


The surfaces could be made from solid plates, light-weight mesh like structures covered with thin membranes or films, or from thin films that are held in place with wire mesh structure.


There is quite some flexibility in the overall design, but the following are important design features that distinguish this approach from others:


1) Plate structures are smooth in the direction of the airflow on scales of the plate separation. (However, incidental or engineered structures on a much finer scale may be used to improve the CO2 transport coefficient.) Variations in shape that are at right angles to the air flow are of relatively little concern, as long as they do not interfere with the efficient wetting of the plates, sheets or surfaces.


2) The surfaces are held in place sufficiently tightly or rigidly for their flexing or flapping not significantly to reduce pressure variations between the lamellae.


3) Flow through openings in the surfaces is inhibited so that it cannot significantly reduce pressure variations between the lamellae.


4) The spacing between the lamellae is chosen such that the system does not transition out of the laminar flow or at least does not deviate much from that regime.


5) The depth of the membrane units is kept short enough to avoid nearly complete depletion of the air in the front part of the unit.


6) For utilization of both sides of the plates it is preferable to arrange the surfaces vertically. However, deviations from such a design could be considered for other flow optimizations.


7) The height of the lamella is chosen to optimize wetting properties of the surfaces and to minimize the need for reprocessing the fluid multiple times.


Applying liquid solvent to the surfaces could follow established state of the art approaches, e.g. spray nozzles, liquid extrusion. It also could be optimized using less conventional approaches. One aspect of this invention is directed to one specific approach where the apparatus includes a laminar flow design that exposes solvent covered surfaces to air streams.


The apparatus of this invention can be designed in various ways so long as it is able to perform the functions described herein. For example, designs could wet vertical surfaces near the top and let gravity run the fluid over the surface until the entire area is covered. Alternatively, the surfaces could be shaped as flat disks which are wetted as they rotate. The motion would distribute the liquid along these surfaces.


Examples of designs that are meant as illustration rather than an exhaustive description include


1) flat rectangular surfaces or plates aligned parallel to each other


2) Corrugated surfaces that are lined up parallel to each other


3) Flat disks rotating around a center axis with the air flowing at right angle to the axis of rotation. Liquid could be applied by the wheels dipping into fluid near the bottom of the motion. The standing liquid may only cover the outer rim of the disks or reach all the way to the axle. Alternatively liquid may be injected onto the rim by liquid wetting near the axle and flowing around the disk due to gravity and rotary motion.


4) Concentric tubes or similar shapes where air would be blowing along the tube axis.


5) Such tubes could be arranged vertically for counterflow designs with wetting initiated at the upper rim or,


6) nearly horizontally with liquid entering at one end and one point and getting distributed through a slow rotating motion of the tubes.


Referring now to FIGS. 1 and 2, there is illustrated a scrubber apparatus 10 comprising a plurality of substantially horizontal concentric tubes 12 each including first and second ends 14, 16. Ends 14, 16 are open so as to allow a flow of open air to pass through the tubes and directly contact the tube inner surfaces 18. The tubes are mounted for rotation around their center axis 20, driven by a drive mechanism 22. A CO2 solvent is applied to the surfaces 18 of the tubes, pumped from a supply by a pump 24 though a conduit 26. By arranging the tubes 12 nearly horizontal, a liquid may be introduced through one open end, at one point, and distributed over the inner surfaces 18 of the tube through a slow rotating movement of the tube, and finally drained out of the other end of the tube into catch tray 28.


If desired, air flow guides 30 may be provided to direct the air flow substantially horizontally through the tubes, and preferably for directing the air flow substantially parallel to the long axis of the tubes 18.


Also, if desired, a fluid collected in catch tray 28 may be recycled via conduit 32 to pump 24 and conduit 26.


If desired, surface 18 of tubes 12 may be provided with one or more grooves, dimples, bumps or other surface structures 34 so that air flowing through the tube is remained within the laminar boundary of air flow.


Solvents that absorb CO2 span a wide variety of options. Here we focus on aqueous hydroxide solutions. These would tend to be strong hydroxide solutions above 0.1 molar and up to the maximum possible level (around 20 molar).


Solvents must wet the surfaces of the scrubber. To this end we consider various means known in the art. These include surface treatments that increase hydrophilicity, surfactants in the solvent and other means.


Hydroxides could be of a variety of cations. Sodium hydroxide and potassium hydroxides are the most obvious, but others including organic sorbents like MEA, DBA etc. are viable possibilities.


Hydroxides need not be pure, they could contain admixtures of other materials that are added to change or modify various properties of the solvent. For example, additives may improve on the reaction kinetics of the hydroxide with the CO2 from the air. Such catalysts could be surfactants or molecules dissolved in the liquid. Additions of organic compounds like MEA are just one example. Other additives may help in reducing water losses by making the solution more hygroscopic. Yet other additives may be used to improve the flow or wettability characteristic of the fluid or help protect the surfaces from the corrosive effects of the hydroxide solution.


Wind Collection with Hydroxide Solvents


The rate of uptake of CO2 into a strong hydroxide solution has been well studied [REFS] and we are using the result of these studies to design a device that will pull CO2 directly out of a natural wind flow or out of a flow subject to a similar driving force, e.g. a thermally induced convection.


CO2 uptake into a strong hydroxide solution involves a chemical reaction that greatly accelerates the dissolution process. The net reaction is

CO2(dissolved)+2OH→CO3−−+H2O  (1)


There are several distinct pathways by which this reaction can occur. The two steps that are relevant at high pH are

CO2(dissolved)+OH→HCO3  (2)
followed by
HCO3+OH→CO3−−+H2O  (3)


The latter reaction is known to be very fast, the first reaction on the other hand proceeds at a relatively slow rate. The reaction kinetics for reaction (2) is described by
















t




[

CO
2

]


=


K


[

OH
-

]




[

CO
2

]






Hence the time constant describing the reaction kinetics is






τ
=

1

K


[

OH
-

]







The rate constant K has been measured. At 20° C. and infinite dilution,


κ=5000 liter mol−1s−1=5 m3mol−1s−1


The ionic strength correction is given by

κ=κ100.13A


At high concentration of CO2 in the gas, the rate of reaction (2) limits the rate of uptake, even though the time constant for a one molar solution at 0.14 ms is quite short.


Following standard chemical, engineering models, e.g. Dankwert or Astarita, one can describe the transfer process in which a gas component is dissolved or chemically absorbed into a solvent with a standard model that combines a gas-side flow transfer coefficient and a liquid side transfer coefficient to describe the net flow through the interface, The total flux is given by

F=κG(ρ(χ=−∞)−ρ(χ=0))=κL(ρ′(χ=0)−ρ′(χ=∞))

where ρ and ρ′ are the molar concentrations of CO2 in the gas and in the solution respectively. The parameter x characterizes the distance from the interface. Distances into the gas are counted negative. At the boundary Henry's law applies hence

σ(0)=K(0)

Expressed as a dimensionless factor, KH=0.71.


For the gas side the transfer constant can be estimated as







K
G

=


D
G

Λ






where A is the thickness of the laminar sublayer that forms on the surface of the interface. The thickness of this layer will depend on the geometry of the flow and on the turbulence in the gas flow. For purposes of this discussion we consider it as given. Our goal is to determine the optimal choice for A.


For a fluid package, the standard approach to estimating the transfer coefficient assumes a residence time τD for the parcel on the surface of the fluid. This time results from the flow characteristic of the solvent and it includes surface creation and surface destruction as well as turbulent liquid mixing near the surface.


Since diffusion in the time τD can mix the dissolved CO2 into a layer of thickness λ√{square root over (DτD)}, the flux from the surface is given by






F
=


D
L






ρ





χ







Approximating the gradient by









ρ



χ


=




ρ




(
0
)


-


ρ




(

)



λ






Shows that for a diffusion driven absorption process 1 Note that typically, Henry's constant has dimensions, as concentrations on the gas side are measured as partial pressure, i.e., in units of Pascal or units of atmospheres (atm), whereas the liquid side concentrations are typically measured as moles per liter. Thus a typical unit would be liter/mol/atm.







K
L

=



D
L

λ

=



D
L


τ
D








Here DL is the diffusion rate of CO2 in the solvent.


In the presence of a fast chemical reaction where the reaction time τR<<τD, the layer that absorbs CO2 is characterized by this shorter time, hence the transfer coefficient is given by







K
L

=



D
L


τ
R







In the presence of a chemical the transfer coefficient is increased therefore by a factor








τ
D


τ
R






However, this enhancement can only be maintained if the supply of reactant in the solvent is not limited. In the case of carbon dioxide neutralizing a hydroxide solution, it is possible to deplete the hydroxide in the boundary layer. The layer thickness λ contains an areal density of hydroxide ions of ρOH−λ. and the rate of depletion is 2KLρ′co2. Thus for the fast reaction limit (eqn. x) to apply,








ρ

OH
-



2






ρ

CO
2








τ
R


τ
D




<<
1





In our case,








ρ

OH
-




τ
R


=

1
K





Hence the condition can be rewritten as

2ρ′CO2′ετD>I


The critical time for transitioning from fast reaction kinetics to instantaneous reaction kinetics is approximately 10 sec for ambient air. The transition does not dependent on the hydroxide concentration in the solution. However, once past the transition, the rate of uptake is limited by the rate at which hydroxide ions can flux to the surface. It is therefore lower than in the fast limit, and the CO2 flux is given by






F
=


1
2





D

OH
-



τ
D






ρ

OH
-



2






ρ

CO
2










By forcing F into the form in equation x, we find that







K
L

=




D

OH
-



D
L






ρ

OH
-



2






ρ

CO
2













K
L
0

=




D

OH
-



τ
D






ρ

OH
-



2






ρ

CO
2










Here KL0 is the transfer coefficient in the absence of chemical reactions. In the instantaneous regime the flux is independent of the CO2 concentration in the boundary layer.


The flux can be characterized by an effective transfer coefficient, which can be written as

F=κeffCO2−ρ′CO2/KH


Here the molar concentrations are for the asymptotic values in the far away gas and far away liquid. In the case of hydroxide solutions, the latter is zero. Hence,






F
=


κ
eff



ρ

CO
2








and






κ
eff

=


(

1

K
G


)

+


(

1


K
L



K
H



)


-
1







An optimal design is close to the border between gas side limitation and liquid side limitation. Therefore, we establish a design value for the air side boundary thickness A.






Λ



D
G




D
L

/

τ
R








This is approximately 4 mm for air based extraction of CO2.


These constraints together very much limit a practical design. For a 1 molar solution, the total flow has been measured as 6×10−5 mol M−2S−1, which translates into an effective value of 0-4 cm/s which is close to the theoretical value.


All patent applications, published patent applications, issued and granted patents, texts, and literature references cited in this specification are hereby incorporated herein by reference in their entirety to more fully describe the state of the art to which the present invention pertains.


As various changes can be made in the above methods and compositions without departing from the scope and spirit of the invention as described, it is intended that all subject matter contained in the above description, shown in the accompanying drawings, or defined in the appended claims be interpreted as illustrative, and not in a limiting sense.

Claims
  • 1. A scrubber apparatus for capturing carbon dioxide from open air, comprising: substantially horizontal concentric tubes each including first and second ends and surfaces therebetween and including a center tube axis, wherein said first and second ends are not closed so as to allow a flow of open air to pass through the tubes and directly contact the surfaces; A mechanism for continuously rotating each tube around its center tube axis;A pump in fluid communication with a source of carbon dioxide solvent;A conduit in fluid communication with the pump for introducing the solvent to the surface of the tubes via one of the first and second ends; andA catch tray for collecting the solvent flowing from one of the first and second ends.
  • 2. An apparatus according to claim 1, further comprising airflow guides for directing the air flow so that it is substantially parallel to the center axis of the tubes.
  • 3. An apparatus according to claim 2, wherein the airflow guides are configured so as to cause the air to flow substantially horizontally through the tubes.
  • 4. An apparatus according to claim 1, wherein the solvent is adapted to remove carbon dioxide from open air under ambient conditions.
  • 5. An apparatus according to claim 4, wherein the solvent is a hydroxide solution having a hydroxide concentration of from about 0.1 molar to about 20 molar.
  • 6. An apparatus according to claim 1, wherein the conduit and the pump are configured to recycle solvent from the catch tray to one of the first and second ends of the tubes.
  • 7. An apparatus according to claim 1, wherein the surfaces include one or more of grooves, dimples, bumps, and other surface structures that are configured so that air flowing through the tubes remains within the laminar boundary of air flow.
CROSS REFERENCE TO PRIOR APPLICATION

This application claims the benefit of U.S. Provisional Application No. 60/603,121, filed Aug. 20, 2004, and U.S. Nonprovisional application Ser. No. 11/207,236, filed Aug. 19, 2005, now abandoned, both of which are incorporated by reference as if disclosed herein in their entirety.

US Referenced Citations (99)
Number Name Date Kind
1031799 MacKay Jul 1912 A
2922489 Lee Jan 1960 A
3063195 Ravich Nov 1962 A
3466019 Priestley Sep 1969 A
3466138 Spiegler et al. Sep 1969 A
3489506 Galstaun et al. Jan 1970 A
3498026 Messinger et al. Mar 1970 A
3627478 Tepper Dec 1971 A
3645072 Clapham Feb 1972 A
3712025 Wallace Jan 1973 A
3727375 Wallace Apr 1973 A
3833710 Deschamps et al. Sep 1974 A
3865924 Gidaspow et al. Feb 1975 A
3876738 Marinaccio et al. Apr 1975 A
3907967 Filss Sep 1975 A
3948627 Schwarz et al. Apr 1976 A
4047894 Kuhl Sep 1977 A
4239515 Yanagioka et al. Dec 1980 A
4321410 Ono et al. Mar 1982 A
4340480 Pall et al. Jul 1982 A
4497641 Brown et al. Feb 1985 A
4528248 Galbraith et al. Jul 1985 A
4566221 Kossin Jan 1986 A
4711645 Kumar Dec 1987 A
4770777 Steadly et al. Sep 1988 A
4906263 Von Blucher et al. Mar 1990 A
4941898 Kimura Jul 1990 A
4957519 Chen Sep 1990 A
4980098 Connery Dec 1990 A
5070664 Groh et al. Dec 1991 A
5215662 Johnson et al. Jun 1993 A
5277915 Provonchee et al. Jan 1994 A
5318758 Fujii et al. Jun 1994 A
5328851 Zaromb Jul 1994 A
5385610 Deerer et al. Jan 1995 A
5414957 Kenney May 1995 A
5454189 Graham et al. Oct 1995 A
5535989 Sen Jul 1996 A
5682709 Erickson Nov 1997 A
5711770 Malina Jan 1998 A
5756207 Clough et al. May 1998 A
5779767 Golden et al. Jul 1998 A
5797979 Quinn Aug 1998 A
5887547 Caveny et al. Mar 1999 A
5914455 Jain et al. Jun 1999 A
5917136 Gaffney et al. Jun 1999 A
5934379 Ostlyngen et al. Aug 1999 A
5972080 Nagata Oct 1999 A
5980611 Kumar et al. Nov 1999 A
6004381 Rohrbach et al. Dec 1999 A
6117404 Mimura et al. Sep 2000 A
6136075 Bragg et al. Oct 2000 A
6180012 Rongved Jan 2001 B1
6237284 Erickson May 2001 B1
6279576 Lambert Aug 2001 B1
6316668 King et al. Nov 2001 B1
6334886 Barnes, Jr. et al. Jan 2002 B1
6503957 Bernatowicz et al. Jan 2003 B1
6582498 Sass et al. Jun 2003 B1
6617014 Thomson Sep 2003 B1
6716888 Bernatowicz et al. Apr 2004 B2
6890497 Rau et al. May 2005 B2
7132090 Dziedzic et al. Nov 2006 B2
7343341 Sandor et al. Mar 2008 B2
7384621 Stevens et al. Jun 2008 B2
7415418 Zimmerman Aug 2008 B2
7420004 Hardy et al. Sep 2008 B2
20010004895 Preiss Jun 2001 A1
20010022952 Rau et al. Sep 2001 A1
20020083833 Nalette et al. Jul 2002 A1
20020178925 Mimura et al. Dec 2002 A1
20030145726 Gueret et al. Aug 2003 A1
20030167692 Jewell et al. Sep 2003 A1
20040031424 Pope Feb 2004 A1
20040134353 Gillingham et al. Jul 2004 A1
20040195115 Colombo Oct 2004 A1
20040213705 Blencoe et al. Oct 2004 A1
20040219090 Dziedzic et al. Nov 2004 A1
20050011770 Katsuyoshi et al. Jan 2005 A1
20050063956 Bernklau et al. Mar 2005 A1
20050095486 Hamamoto et al. May 2005 A1
20050204915 Sammons et al. Sep 2005 A1
20050252215 Beaumont Nov 2005 A1
20050269094 Harris Dec 2005 A1
20060013963 Thomson Jan 2006 A1
20060042209 Dallas et al. Mar 2006 A1
20060051274 Wright et al. Mar 2006 A1
20060186562 Wright et al. Aug 2006 A1
20060249020 Tonkovich et al. Nov 2006 A1
20070004023 Trachtenberg Jan 2007 A1
20070187247 Lackner et al. Aug 2007 A1
20070199448 Yates et al. Aug 2007 A1
20070217982 Wright et al. Sep 2007 A1
20080008793 Forsyth et al. Jan 2008 A1
20080031801 Lackner et al. Feb 2008 A1
20080087165 Wright et al. Apr 2008 A1
20090120288 Lackner et al. May 2009 A1
20090232861 Wright et al. Sep 2009 A1
20090294366 Wright et al. Dec 2009 A1
Foreign Referenced Citations (31)
Number Date Country
4 130 837 Apr 1992 DE
19521678 Jun 1995 DE
195 21 678 Dec 1996 DE
20001385 Jan 2000 DE
200 01 385 Aug 2000 DE
0020055 May 1980 EP
0 020 055 Dec 1980 EP
0 254 137 Jan 1988 EP
2 029 424 Oct 1970 FR
1 031 799 Jun 1966 GB
1109439 Apr 1968 GB
1 204 781 Sep 1970 GB
1296889 Nov 1972 GB
58-122022 Jul 1983 JP
61 072 035 Apr 1986 JP
63012323 Jan 1988 JP
63012324 Jan 1988 JP
63-69525 Mar 1988 JP
2000-107895 Apr 2000 JP
1 828 406 Jul 1993 RU
WO 9816296 Apr 1998 WO
WO 9817388 Apr 1998 WO
WO 0050154 Aug 2000 WO
WO 0076633 Dec 2000 WO
WO 0121269 Mar 2001 WO
WO 2005108297 Nov 2005 WO
WO 2006009600 Jan 2006 WO
WO 2006036396 Apr 2006 WO
WO 2006084008 Aug 2006 WO
WO 2007016274 Feb 2007 WO
WO 2009149292 Dec 2009 WO
Related Publications (1)
Number Date Country
20090320688 A1 Dec 2009 US
Provisional Applications (1)
Number Date Country
60603121 Aug 2004 US
Continuations (1)
Number Date Country
Parent 11207236 Aug 2005 US
Child 12555874 US