1. Field of the Invention
The present invention relates generally to wood manufacturing systems, methods, and products and more particularly to wood and renewable product laminate manufacturing systems, methods, and durable, lightweight but strong articles of manufacture.
2. Background Art
A variety of products, including furniture, home décor, children's furniture, educational furniture, toys, and teaching aids in today's world markets, especially American and European and markets, and in particular the North American market, are often produced from artificial multi-birch plywood.
Birch is a key component and preferred product in fabricating many of the above referred to products, furniture, home décor, children's furniture, educational furniture, toys, and teaching aids, and as a result of the increased demand for these items, demand for birch has increased, pushing up prices, and stressing the environment, especially in light of birch's long growth cycle. Extensive logging has caused serious ecological damage and increased costs of manufacturing multi-birch plywood, while the demand for birch is ever increasing.
For the foregoing reasons, there is a need for a manufacturing system, method, and durable, lightweight, strong article of manufacture that reduces the demand for birch, and, thus, relieves some stress on the environment and ecosystem, while reducing costs of the ultimate product being manufactured. The manufacturing system, method, and article of manufacture should not only reduce the demand for birch and prevent damage to the world's ecological balance, use and reuse renewable materials, and use resource recovery to greatly reduce the demand for logs. The manufacturing system, method, and article of manufacture should greatly reduce the cost of production, and satisfy North American and European and American market demand for birch plywood products.
The manufacturing system, method, and article of manufacture should be capable of producing a durable, lightweight, strong laminated product that has the appearance of traditional birch plywood. The laminated article of manufacture should have an interior similar to that of particle board, but the laminated article of manufacture should have increased strength and lighter weight compared to that of other particle boards. Additionally, the laminated article of manufacture should be capable of having at least one or a plurality of thin or ultra-thin veneers placed on opposing surfaces and opposing edges, and be capable of being painted. The laminated article of manufacture should be capable of being manufactured from recycled biodegradable products.
Present day fireproof products are often coated with a fire retardant material on the exterior or the veneer of such product, which does not result in fully fireproofing the product through-and-through, nor do present methods result in a high degree of fireproofing The laminated article of manufacture should be capable of being fully fireproofed through-and-through and be capable of having wood preservatives added thereto to extend life of the product. Such laminated articles of manufacture that are fireproofed through-and-through should be capable of being used in fireproof doors, firewall supplies, and the like.
The manufacturing system, method, and article of manufacture should be inexpensive and capable of being fabricated in a quick, convenient, and efficient manner, and the laminated article of manufacture should be durable, light weight, strong, inexpensive, safe to use, attractive, sturdy, and of simple construction.
The present invention is directed to a manufacturing system, method, and article of manufacture that reduces the demand for birch, and, thus, relieves stress on the environment and ecosystem, while reducing costs of the ultimate product being manufactured. The manufacturing system, method, and article of manufacture is capable of not only reducing the demand for birch and preventing damage to the world's ecological balance, but uses and reuses renewable materials, and uses resource recovery to greatly reduce the demand for logs. The manufacturing system, method, and article of manufacture greatly reduces the cost of production, and satisfies North American and European and American market demand for birch plywood products.
The article of manufacture thus produced is a laminate panel of particle board of particular particle size and particle to glue ratios which provides a durable, lightweight and strong panel which gives the appearance of wood because its exterior veneer layer or layers are made from a thin wood veneer of approximately 0.35 to 0.70 millimeters in thickness. A preferable veneer thickness is 0.5 mm, although veneer thicknesses may range from 0.3 to 0.5 mm, although other suitable thicknesses may be used.
To keep the wood lightweight, the particles should be more than 1.0 mm and less than 5.0 mm in length, depth and width, preferably about 3.0 mm in length, depth and width so that they are small enough to have sufficient density for strength, but large enough to provide air spaces therebetween, to be filled by resin glue at a weight lighter than natural wood. The ratio of wood particles to glue should be preferably 100:10 to 100:12, i.e. 100 kg of raw wood particle material to mix with 10-12 kg of glue. The maximum permitted is 100:28, i.e. 100 kg wood particle to 28 gms glue. With the aforementioned parameters, the finished particle board density is 0.8 g/cm3. To keep the panels smooth and flat, sanding should be applied to keep height deviation within 0.1 mm. Also, to have sufficient glue without undue buildup or air bubbles, glue should be applied in the ratio of 320 g/m2. To further keep the panels smooth, the thin veneer layers with glue are heat and pressure treated at 110 C and pressure of about 1 cm2 per 7-8 kg. On the edges, veneer strips of about 1.5 cm in with and 0.5 to about 1 mm in thickness, with lengths of 1 meter or more, are applied at a pressure of approximately 200 pounds with a glue at approximately 200 degrees C. heat. For fireproofing, insect proofing or water proofing, a thin layer of Wood Fire Resisting Liquid is applied by putting the panels in a tank full of liquid of pressure more than 1.2 Mp3P for at least 8 hours immersion, which will soak about 150 kg/cubic meter of product into the wood. At low ambient pressure, the wood must be soaked for at least 48 hours, as long as 80 to 100 kg/cubic meter is absorbed into the wood over the 48 hour period. Exterior brushing can also be applied in three layer coatings to a thickness of 0.5 kg/cubic meter. Although other fire resistant, water resistant and pest or mold resistant sealers can be applied, a typical fire resistant liquid wood sealer is described, for example, in U.S. Pat. No. 5,879,593, including a liquid composition of potassium hydroxide, sodium carbonate, silica and water.
The manufacturing system, method, and article of manufacture is capable of producing a laminated product that has the appearance of traditional birch plywood. The laminated article of manufacture has an interior similar to that of particle board, but the laminated article of manufacture should has increased strength and lighter weight compared to that of other particle boards. Additionally, the laminated article of manufacture is capable of having at least one or a plurality of thin or ultra-thin veneers placed on opposing surfaces and opposing edges, and is capable of being painted. The laminated article of manufacture is capable of being manufactured from recycled biodegradable products.
In the U.S. and Europe, the natural color of a natural wood surface having a clear coat with the texture of the wood showing through is highly desirable, especially that of Birch Wood grown in Northern Asia, (Northern China and Russia). Birch wood also has characteristics of surface hardness, beautiful texture, a minimum amount of scar marks, black lines, or mineral lines, does not easily break or change shape after having been cut in the format of veneer sheet (usually in the size of 4 feet by 8 feet, 0.3 mm to 0.5 mm in thickness), but these high quality veneers are becoming less and less available, because a 3 foot or larger diameter birch tree takes more than 60 years to grow, and there are only 3 to 5 sheets of 4 feet by 8 feet veneers in that tree. These 3 to 5 sheets of veneers, may be used on surfaces of 4 feet by 8 feet plywood, and used for the manufacture of 5 storage units for toys. One class room of furniture, however, needs at least 5 times of this amount of veneer, which means that a classroom's furniture needs five birch trees to manufacture the furniture.
The present invention's unique system may be used instead of using birch veneer. Chinese Cottonwood (called Chinese Birch or Chinese beech) which grows on tree farms and takes approximately 7-10 years to grow, and which grows into a one and half foot diameter tree may be used. Veneers from these trees, however, have soft surfaces that may scratch easily. However, such veneers may be hardened by methods of the present invention, resulting in finished products that look substantially the same as Russian Birch, or other highly desired woods.
By using the above wood materials and paint processes of the present invention, wood products can be made completely of recycled wood and veneers from fast growing Chinese trees, thus, minimizing impact to the environment.
Present day fireproof products are often coated with a fire retardant material on the exterior or the veneer of such product, which does not result in fully fireproofing the product through-and-through, nor do present methods result in a high degree of fireproofing The laminated article of manufacture is capable of being fully fireproofed through-and-through and is capable of having wood preservatives added thereto to extend life of the product. Such laminated articles of manufacture that are fireproofed through-and-through are capable of being used in fireproof doors, firewall supplies, and the like.
The manufacturing system, method, and article of manufacture is inexpensive and capable of being fabricated in a quick, convenient, and efficient manner, and the laminated article of manufacture is durable, light weight, strong, inexpensive, safe to use, attractive, sturdy, and of simple construction.
A article of manufacture having features of the present invention comprises: a core of fresh or green wood and/or recycled wood products, processed down to a particle size of less than 5 mm, and preferably less than 3 mm, and bonded together with glue, opposing surface inner veneer bonded to opposing surfaces of the core with glue, opposing surface outer veneer bonded to opposing surface inner veneer with glue, opposing edge veneer bonded to opposing edges of the core with glue. Each of the veneers is preferably 0.5 mm thick, although suitable veneer thicknesses may range from 0.3 to 0.5 mm. The article of manufacture thus produced is a laminated wood product having a particle to glue ratios that provides a durable, lightweight, strong attractive product that gives the appearance of wood.
These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings where:
The preferred embodiments of the present invention will be described with reference to
El urea-formaldehyde glue having formaldehyde emission of less than or equal to 9 mg/100 g is preferably used to meet environmental and safety standards, particularly for the North American and European markets, and more particularly for furniture safety and children's furniture safety.
Now, in more detail, raw material for the core is obtained from waste, scrap wood, saw dust, various sawing, planing, scraping operations, plywood factories, and from tree branches, and sticks, which may be fresh wood and/or green wood. The raw material is placed in a wood chipper as shown at step 104 in
Optionally, or in addition to the wood chipping of
The chipped and scraped wood are then mixed as shown at step 108 in
The mixed wood chips and scrapings are then heated and dried to reduce moisture as shown at step 110 in
Upon heating and drying the mixed wood chips and scrapings and removing moisture from the mixed wood chips and scrapings to a moisture content of less than 12 percent, the resulting heated and dried particles are screened as shown at step 112 in
Particles larger than 5 mm are sent back to the wood chipper 204 and/or the planing machine 206, until the larger particles are reduced in size, and then collected and temporarily stored in the storehouse with other collected chipped wood and wood scrapings awaiting a large enough amount to become available for heating and drying.
The screened particles are then blended in a blender to blend and homogenize the particles as shown at step 114 in
The blended and homogenized particles are then collected as shown at step 116 in
The collected blended and homogenized particles are then mixed with bonding material, using glue as the bonding material, as shown at step 118 in
Typically, 10-12 kg of glue is mixed per 100 kg of blended and homogenized particles to bond the particles together. El urea-formaldehyde glue having formaldehyde emission of less than or equal to 9 mg/100 g is preferably used to meet environmental and safety standards, particularly for the North American and European markets, and more particularly for furniture safety and children's furniture safety.
The blended and homogenized particles having been mixed with glue as the bonding material is then spread in a slurry onto a rubber conveyer, the slurry being similar to that of a slurry of pavement spread on a road prior to compaction, and transported via an air-surfacing machine for pre-pressure molding in a roller-plate pre-press machine, as shown at step 120 in
The slurry of particles mixed with glue is then rolled and pre-pressed as shown at step 122 in
The rolled and pre-pressed particle board is then cut to size as shown at step 124 in
In a preferred embodiment, the core is based on imitation birch for children's furniture production, and as a result its must be highly compressed and have a high glue content. The finished core or board density must be above 0.8 g/cm3.
The heat pressed particle board is then cooled, as shown at step 128 of
The cooled particle board is then sanded at step 130 of
The surfaces of the core 12 of the laminated wood product 10 must be controlled within 0.1 mm, which is typically accomplished at the wood sander 230, using with 60 grit sand paper.
The sanded core is then transported to a heat press veneering machine at step 132 of
Glue is applied to the core 12 of the laminated wood product at step 134 of
The opposing surface inner veneers 14 are then pre-pressed onto the opposing surfaces 16 of the core 12 at step 136, using a pre-press machine 236 as shown in the industrial process drawing of
The core is then inserted into a pre-press machine to be molded and pre-pressed for a preferred time duration of approximately 30 minutes, subject to temperature. Usually, a shorter time duration is required in summer than in winter, the time duration depending on the ambient air temperature, longer time durations being required for lower ambient temperatures and shorter time durations being required for higher ambient temperatures.
The particle board is placed on an adhesive machine after sanding to apply adhesive. Usually the glue must be controlled to 320 g/m2. If the core panel is covered with excess glue when applied, its color will be too dark. To ensure the veneer's color is similar to that of original birch color, and if the birch veneer's production thickness is not thick enough, the veneer will be too thin to screen out viewable particles. But if the birch veneer has a thickness of 0.35 mm, it may still be translucent and can not be fully achieved the desired opacity effect, but opacity can be achieved with the application of two layers of veneer onto the particle board surface, through two layers of birch veneer, which makes the board of the present invention appear substantially similar to natural birch board. Glue must be controlled to reduce excess glue, otherwise a bead shadow will appear when the second veneer is applied.
The opposing surface inner veneers 14 are then heat pressed onto the core 12 at step 138 of
Edges of the opposing surface inner veneers 14 may then be cut at step 140 as shown in
For first time heat pressing and veneering, pressing temperature is controlled at 110 c-120 c, pressing time has a duration of 5 minutes, during the molding process. After natural cooling, 80 grit sand paper is used to sand the surface of the birch panel and manual repair is done for imperfections which exist, to prevent overlap of joints and cracking. If this happens, then the panel should be repaired with strong glue, otherwise it may negatively affect the application of the second layer of veneer.
Glue is then applied to the opposing surface inner veneers 14 at step 142 of
Then again, glue is applied for a second glue coating, the glue used should be controlled at 300 g/m3, to ensure that no excess overglue appears, if this happens the surface of the board will have water-soaked spots and plaque, which may affect the quality of the board.
The opposing surface outer veneers 20 are then pre-pressed onto the opposing surface inner veneers 14 at step 144 of
The opposing surface outer veneers 20 are then pressed onto the opposing surface inner veneers 14 at step 146 of
Edges of the opposing surface outer veneers 20 are then cut at step 148 of
To ensure that the panel's length and width meet production requirements, length and width are typically 2440 mm by 1220 mm with a diagonal tolerance error of less than 3 mm. Manual repair may be made with 180 grit sand paper, using a normal sanding machine to polish and obtain a smooth surface, after which a quality birch panel is achieved. This product may be uses as a substitute for birch board used in the fabrication of children's furniture, the molding panel whose cut-off edge up to the required size, may be used by manufacturers to produce furniture and other items. Birch veneer of less than 1.0 mm to 1.22 mm thickness may be applied to the core, using the method of the present invention. Semi-finished products may be sealed and/or edge sealed, using a high-quality edge-sealing machine. Adhesives may be used to apply the veneers and other products with hot melt glue, to achieve a truly similar appearance, touch, and feel of birch wood.
Opposing edge inner veneers 24 and opposing edge outer veneers 30 may be applied to the core 12 and cut in steps similar to the steps used to apply the opposing surface inner veneers 14 to the core 12 and the opposing surface outer veneers 20 onto the opposing surface inner veneers 14 and cut each, as required, which is shown at step 150 of
The laminated core is then sanded at step 152 of
The laminated wood product 10 may then be optionally painted at step 154 of
Edge veneers may added to the core, as shown in the
As shown in
Flame retardants and preservatives are poured into a pool “P”, into which the core 10 is immersed for approximately two hours, and after which time the core 10 is substantially fully soaked in the flame retardants and preservatives. The core 10 is then removed from the pool of flame retardants and preservatives and dried to a moisture content of less than 14 percent to make the core 10 ready for use to make plywood.
The dried core is then placed in an adhesive coating machine 260 after cooling, the adhesive coating machine 260 shown in
The fire retardant core may alternatively be fabricated by coating the core fire retardant materials and preservatives by spraying or painting the fire retardant materials and preservatives onto the core, using a paint spray gun or a paint brush to reach an immersion depth of at least 2 mm.
If the wood is to be additionally waterproofed or protected from germs, viruses, insect bugs, the wood core 10 is immersed in a fluid which is waterproof, anti-germ, anti-viral and/or anti-insects, in the same pool dipping manner as was done with the fire proof liquid immersion of
In the U.S. and Europe, the natural color of a natural wood surface having a clear coat with the texture of the wood showing through is highly desirable, especially that of Birch Wood grown in Northern Asia, (Northern China and Russia). Birch wood also has characteristics of surface hardness, beautiful texture, a minimum amount of scar marks, black lines, or mineral lines, does not easily break or change shape after having been cut in the format of veneer sheet (usually in the size of 4 feet by 8 feet, 0.3 mm to 0.5 mm in thickness), but these high quality veneers are becoming less and less available, because a 3 foot or larger diameter birch tree takes more than 60 years to grow, and there are only 3 to 5 sheets of 4 feet by 8 feet veneers in that tree. These 3 to 5 sheets of veneers, may be used on surfaces of 4 feet by 8 feet plywood, and used for the manufacture of 5 storage units for toys. One class room of furniture, however, needs at least 5 times of this amount of veneer, which means that a classroom's furniture needs five birch trees to manufacture the furniture.
The present invention's unique system may be used instead of using birch veneer. Chinese Cottonwood (called Chinese Birch or Chinese beech) which grows on tree farms and takes approximately 7-10 years to grow, and which grows into a one and half foot diameter tree may be used. Veneers from these trees, however, have soft surfaces that may scratch easily. However, such veneers may be hardened by methods of the present invention, resulting in finished products that look substantially the same as Russian Birch, or other highly desired woods.
By using the above wood materials and paint processes of the present invention, wood products can be made completely of recycled wood and veneers from fast growing Chinese trees, thus, minimizing impact to the environment.
The present invention's unique system may be used instead of using birch veneer. Chinese Cottonwood (called Chinese Birch or Chinese beech) which grows on tree farms and takes approximately 7-10 years to grow, and which grows into a one and half feet wide tree may be used. These veneers, however, have soft surfaces, which are easy to scratch easily, which may be hardened by methods of the present invention.
The painting method and system of the present invention overcomes the aforementioned problems, as follows:
Sand the surface of Chinese Birch veneer first, then use special formula PU (Polyurethane) paint model 1301A, or other suitable paint, as primer or bottom paint; then sand it smooth; apply special formula NC (Nitrocellulose) paint model V1802NC, or other suitable paint, primer or bottom paint; dry it; sand it again; finally apply special formula NC paint finishing model V2104-07, or other suitable paint; dry it; and finish. Paints manufactured by “Shanghai Vision Chemical Co., Ltd.” or other suitable manufacturers may be used.
Using the PU primer can make the surface of Cotton Tree (Chinese Birch or Beech) as hard as that of solid Russian Birch, by painting it with NC bottom paint and once with NC finishing paint, after which process, the finished product looks substantially the same as Russian Birch, since Chinese Birch has a similar surface texture to that of Russian Birch, and it looks very similar to Russian Birch.
Again, by using the above wood materials and paint processes of the present invention, wood products can be made completely of recycled wood and veneers from fast growing Chinese trees, thus, minimizing impact to the environment.
Various steps in the process, results achieved at certain steps of the process, and various pieces of equipment that may be used in the industrial process for manufacturing the laminated wood product are shown in
Although the present invention has been described in considerable detail with reference to certain preferred versions thereof, other versions are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of the preferred versions contained herein.
This application is based in part upon provisional application Ser. No. 61/068,156, filed Mar. 4, 2008, which application is incorporated by reference herein. Applicant claims benefit of 25 U.S.C, § 119 (e) and priority therefrom.
Number | Date | Country | |
---|---|---|---|
61068156 | Mar 2008 | US |