The invention relates to a laminate of mutually bonded adhesive layers and metal sheets with abutting and/or overlapping metal sheet edges, extending along a length direction within a splicing region of the laminate. The invention further relates to a method for obtaining such a laminate.
Laminates of mutually bonded adhesive layers and metal sheets are used for structural purposes, for instance in the aircraft industry. In order to obtain large panels of such laminates, and because metal sheets are available in limited widths only, typical laminates comprise abutting and/or overlapping metal sheet edges, extending along a length direction within a splicing region of the laminate.
A laminate comprising a splicing region is for instance known from U.S. Pat. No. 5,429,326, which discloses a laminated body panel for aircraft applications. The panel comprises at least two metal layers with a typical thickness of 0.3 mm, and an adhesive layer provided in between the metal layers. Some metal layers are composed of two or more metal sheets which are generally disposed coplanar in a layer and separated by a splice or splice line extending in a length direction of the laminate. Splices in a metal layer are typically staggered with respect to splices provided in other metal layers in order to prevent the laminate from weakening too much. Using splices in a laminate no longer restricts the maximum width of a laminate to a metal sheet width that is limited by present day metal sheet manufacturing technology.
In some laminates, the splice region of the laminate is covered with a splice strap or doubler to prevent exposure of the splices to environmental conditions, and to strengthen the laminate in a direction transverse to the length direction of the laminate.
The known laminate may suffer from internal stresses, for instance induced by their manufacturing process. The internal stresses may negatively affect strength and fatigue life of the laminate, which strength and fatigue life are an important design parameter, in particular for aircraft structures. The negative effects on strength and fatigue life may be worsened in laminates having relatively thick and/or stiff metal layers, in particular exceeding 0.3 mm for aluminum layers, and/or at relatively low temperatures below 0° C. and lower.
It is an object of the present invention to provide a laminate with an adequate strength and improved fatigue behavior, as well as a method for manufacturing such a laminate.
This and other objects are achieved by providing a laminate comprising a stack of mutually bonded adhesive layers and metal sheets, the laminate comprising abutting and/or overlapping metal sheet edges, extending along a length direction within a splicing region, wherein a splice strap is bonded to the laminate at an outer surface of the laminate and extends in the length direction across said splicing region, the splice strap having a smaller thickness than a thickness of a metal sheet, positioned adjacent to the splice strap in the stack. It has turned out that by providing the spliced laminate with a relatively thin splice strap improves fatigue life, probably by decreasing stress concentrations at critical locations in the laminate.
An improved fatigue life, in the context of the present application means a larger number of load cycles up to failure at a certain load. The splicing region in the laminate is defined as that region of the laminate wherein splice lines between abutting metal sheets and/or overlapping edge parts of metal sheets occur. The splicing region in a transverse direction (perpendicular to the length direction) of the laminate extends across abutting edges of metal sheets or across at least one edge of a metal sheet that overlaps with another metal sheet. The adhesive layer between metal sheets is preferably continuous through the splicing region and therefore bridges splice lines and the like. The adjacent metal sheet is the metal sheet positioned next to the splice strap within the stack in the thickness direction, the thickness direction extending perpendicular to the plane formed by the length and transverse directions. The wording ‘substantially’ in the context of the present inventions means at least 90% of the indicated variable or subject. The splice strap extends across the splicing region, by which is meant that the width of the splice strap covers the width of the splicing region or a part of the width of the splicing region.
Bonding of the splice strap to the laminate may be achieved by any adhesive, including the same adhesive as that used in the adhesive layers of the laminate. The strap bonding adhesive layer may be provided with reinforcing fibers, if desired. The reinforcing fibers in an embodiment have a smaller length than the width of the strap. This creates at each end of the strap an adhesive bonded region which is preferably larger than 5 times the thickness of the thinnest adjacent metal sheet and more preferably larger than 10 times said thickness. This may enhance the peel resistance of the edge of the strap significantly.
Another embodiment comprises reinforcing fibers having a larger length than the width of the strap, which promoters a smooth load introduction to the strap. The length of the reinforcing fibers is preferably such that they extend at each side of the strap by a length of at least 5 times the thickness of the strap and more preferably larger than 10 times the thickness of the strap.
In an embodiment of the laminate according to the invention the splice strap thickness is less than 90% of said adjacent metal sheet thickness, and more preferably ranges from 10% to 75% of said adjacent metal sheet thickness, even more preferably from 20 to 60% of said adjacent metal sheet thickness. In an embodiment wherein the metal sheet thickness in the laminate is 0.4 mm, the thickness of the splice strap ranges from 0.04 to 0.3 mm in a preferred embodiment.
In useful embodiments, the thickness of the splice strap is defined as the total thickness of the splice strap. When referring to the thickness of a splice strap, metal sheet or adhesive layer, a constant thickness is generally understood. However, splice straps, metal sheets and/or adhesive layers may be tapered for instance, in which case the thickness means the average thickness across the splicing region.
The splice strap extends in the transverse direction of the laminate across at least a part of the splicing region. However, in some embodiments, the splice strap may extend across the splicing region or even beyond the splicing region. In further embodiments, the splice strap may even extend in the transverse direction of the laminate over substantially the complete laminate width.
Another embodiment of the invention provides a laminate wherein an outer surface of the splice strap protrudes from the outer surface of the laminate by an off-set thickness ranging from 0% to more than 100% of the splice strap thickness. When the off-set thickness is 0 (zero), the splice strap is embedded in the laminate and a substantially smooth outer surface of the laminate ensues. In embodiments having a non-zero off-set thickness, the splice strap protrudes from an outer surface of the laminate in the splicing region and a discontinuous outer surface of the laminate ensues in the splicing region. This will in particular embodiments provide a ridge that extends in the length direction of the laminate. In an embodiment wherein the off-set thickness differs from zero, the thickness of the splice strap is defined as the largest off-set thickness occurring. In such embodiments therefore the actual thickness of the splice strap may be larger than or as large as the adjacent metal sheet thickness.
Another embodiment of the invention provides a laminate wherein the off-set thickness ranges from 10% to 60% of the splice strap thickness. In an embodiment wherein the metal sheet thickness in the laminate is 0.3 mm, the off-set thickness of the splice strap ranges from 0.003 to 0.18 mm in a preferred embodiment. It has turned out that an off-set thickness of 0.1 mm at most is particularly preferred.
An improved embodiment of the invention relates to a laminate that further comprises a bonded second splice strap extending in the length direction across said splicing region and positioned within the stack. The thickness of the second splice strap is not subject to any limitation, but the sum of the first and second splice strap thicknesses is preferably at most 120% of the thickness of the metal sheets in the laminate, and, in a more preferred embodiment less or equal to the thickness of said adjacent metal sheet.
A preferred embodiment provides a laminate wherein the second splice strap is positioned adjacent to said adjacent metal sheet and at a side of said adjacent metal sheet that is opposite to the outer surface of the laminate carrying the splice strap.
The splice strap in useful embodiments comprises a metal strip, for instance made from the same metal as the laminate metal sheets. In accordance with another embodiment of the invention, a laminate is provided wherein the splice strap comprises stacked splice strap layers, preferably of fiber-reinforced adhesive, more preferably of metal sheets and most preferably of a combination of metal sheets and fibre-reinforced adhesive for which the first layer of the strap adjacent to the laminate is having a thickness less than the adjacent outer metal layer of the laminate, more preferably that the average thickness of the stacked splice strap is less than the thickness of the adjacent outer metal sheet of the laminate. The stacking sequence of the splice strap can be provided outside-in or, preferably, inside-out; meaning respectively that the smallest layer is adjacent to the laminate, or the widest strap layer is adjacent to the laminate
A particularly useful embodiment offers a laminate wherein the splice strap layers each have a width across the splicing region and the width of the layers decreases in the thickness direction of the laminate from the outer laminate surface towards an inner laminate surface.
The laminate according to the invention in some embodiments needs to accommodate a splice strap and/or overlapping metal sheet edges in the thickness direction. In order to provide a smooth continuous outer surface of the laminate, some metal sheets need to have a lower thickness or need to be deformed. A useful embodiment of the invention therefore provides a laminate wherein the splicing region comprises deformed metal sheets. A method in which the metal sheets are deformed will be described further below.
In embodiments wherein the splice strap extends substantially parallel to the length direction of the laminate, the deformed metal sheets are preferably bend along a line parallel to the length direction.
Deforming metal sheets in the laminate may produce a laminate wherein, in an embodiment, the outer surface of the laminate is substantially smooth and a second outer surface opposite said outer surface is curved. The outer surface is then typically used as outbound surface of an aircraft component for instance, whereas the curved second outer surface is used as inbound surface of the aircraft component. The inbound surface may typically be covered with interior cladding and the like.
The adhesive layers in the laminate of the invention may be used as such. Preferred embodiments of the invention however provide a laminate wherein the adhesive layers comprise reinforcing fibers to form a fiber-metal laminate.
The laminates according to the present invention preferably comprise from 2 to 20 metal layers and about 1 to 19 adhesive layers. The metal layers may have any thickness such as the relatively thin metal layers of the prior art spliced laminates. Metal sheet thicknesses of between 0.1 and 0.5 mm may be used. The metal sheets in the present invention preferably have a thickness of more than 0.2 mm, more preferably more than 0.6 mm, and most preferably more than 1.0 mm.
The metal sheets are preferably made from a metal having a tensile strength of more than 200 MPa. Examples of suitable metals are aluminum alloys, steel alloys, titanium alloys, copper alloys, magnesium alloys, and aluminum matrix composites. Aluminum-copper alloys of the AA2000 series, aluminum manganese alloys of the AA3000 series, aluminum-magnesium alloys of the AA5000 series, aluminum-zinc alloys of the AA7000 series, and aluminum-magnesium-silicon alloys of the AA6000 series are preferred. Some particularly preferred alloys are AA2024 aluminum-copper, AA5182 aluminum alloy, AA7075 aluminum-zinc, and AA6013 aluminum-magnesium-silicon. When improved corrosion resistance is desired, a sheet of AA5052 alloy or AA5024, AA5083 or AA5182 alloy may be included in the laminate. The laminates may also comprise metal sheets of a different alloy. Other useful alloys comprise aluminum-lithium alloys, such as AA2090, AA2098, and AA2198 alloys.
The adhesive layers are in preferred embodiments provided with reinforcing fibers, which fibers preferably bridge the splice lines and metal sheet edge overlaps and therefore are continuous across the splicing region. The reinforcing fibers may be oriented in one direction or in several different directions, depending on the loading conditions of the laminate structure. At least half of the reinforcing fibers preferably extend perpendicular to splice lines and/or lines of overlapping metal sheet edges. Preferred reinforcing fibers comprise continuous fibers made of glass, aromatic polyamides (“aramids”) and copolymers, carbon, and/or polymeric fibers such as PBO for instance. Preferred glass fibers include S-2, S-3 and/or R-glass fibers, as well as carbonized silicate glass fibers, although E-glass fibers are also suitable. Preferred fibers have a modulus of elasticity of between 60 and 650 GPa, and an elongation at break of between 0.1 and 8%, preferably above 1.6%, more preferably above 2.0%, and most preferably above 3.0%
The adhesive layers preferably comprise synthetic polymers. Suitable examples of thermosetting polymers include epoxy resins, unsaturated polyester resins, vinyl ester resins, and phenolic resins. Suitable thermoplastic polymers include polyarylates (PAR), polysulphones (PSO), polyether sulphones (PES), polyether imides (PEI), polyphenylene ethers (PEE), polyphenylene sulphide (PPS), polyamide-4,6, polyketone sulphide (PKS), polyether ketones (PEK), polyether ether ketone (PEEK), polyether ketoneketone (PEKK), and others. The laminate may be provided with additional adhesive in certain areas, apart from the adhesive present in the adhesive layers. The thickness of the adhesive layers may be similar to that of the metal sheets but adhesive layers in the laminate are preferably thinner. The adhesive layers between the metal layers are preferably thinner than 1.5 mm, more preferably have a thickness between 0.1 and 0.9 mm, and most preferably between 0.1 and 0.6 mm.
The reinforcing fibers may be provided in prepregs, an intermediate product of reinforcing fibers embedded in a partly cured thermosetting resin or in a thermoplastic polymer. Typically fiber volume fractions range from 25 to 75%, and more preferably from 30 to 65% of the total volume of adhesive and reinforcing fiber in the adhesive layers. The effective fiber volume fraction in an adhesive layer may be lowered by adding plain adhesive layers to reinforced adhesive layers.
The invention further relates to a method for manufacturing a laminate in accordance with the invention, The method comprises the steps of providing a forming substrate with an upper surface; providing a splice strap on the upper surface of the forming substrate, the splice strap extending over part of the forming substrate in a length direction across a splicing region; providing a stack of at least one adhesive layer and metal sheets, of which edges extend along the length direction and abut and/or overlap within the splicing region, the stack extending beyond the boundaries of the splice strap; the splice strap having a smaller thickness than a thickness of a metal sheet, positioned adjacent to the splice strap in the stack; and applying heat and pressure to the thus obtained stack.
In an embodiment of the method, metal sheets deform across the splicing region during the application of heat and pressure, and the deformed shape is consolidated. The shape may be consolidated by curing the thermosetting resin in the adhesive layers, or by lowering the temperature below the melt temperature of a thermoplastic polymer in case such polymer is used in the adhesive layers. According to a preferred embodiment, the metal sheets will bend towards the splice strap. The metal sheets may be deformed elastically (below the elastic limit) and/or may be deformed plastically (beyond the plastic limit) Which type of deformation prevails depends on the type of metal used, on shape and dimensions, on manufacturing conditions, and more.
The method advantageously exploits the relatively low bending stiffness of the laminate in unconsolidated state, i.e. in the state prior to the application of heat and pressure. According to embodiments of the method, a metal sheet is forced to take on the shape of a part of the stack adjacent to said metal sheet. Typically, metal sheets are deformed in the splicing region over a distance in the thickness direction of about the same order of magnitude as the thickness of the splice strap and/or the thickness of an adhesive layer and a metal sheet in case of overlapping metal sheet edges.
According to another embodiment of the invention, the upper surface of the forming substrate comprises a recess across the splicing region for accommodating the splice strap, and the splice strap is provided in said recess, whereby a thickness of the recess ranges from 0% to more than 100% of the splice strap thickness. In an embodiment wherein the recess thickness is larger than 100% of the splice strap thickness, the larger part of the thickness preferably comprises adhesive.
Other preferred embodiments of the method are provided wherein the thickness of the recess ranges from 10% to 60% of the splice strap thickness, and/or wherein the recess has a thickness that varies in a cross direction perpendicular to the length direction. A more preferred embodiment provide a method wherein the thickness of the recess varies in a continuous fashion from 0 outside the splicing region to the thickness of the splice strap within the splicing region. In the latter embodiment, the splice strap thickness may be equal to or even larger than the (adjacent) metal sheet thickness.
Further preferred embodiments relate to methods wherein a second splice strap is provided in the stack, the second splice strap extending in the length direction across said splicing region and/or wherein the second splice strap is positioned adjacent to said adjacent metal sheet and at a side of said adjacent metal sheet that is opposite to the side facing the forming substrate.
Another useful embodiment of the method according to the invention provides a splice strap comprising stacked layers of fiber-reinforced adhesive. Several of such layers are preferably applied to the forming substrate on top of each other to build up thickness, with the proviso that the total build up thickness in this embodiment is defined as the thickness of the splice strap.
Another aspect of the invention finally relates to a structural component for a vehicle, spacecraft, or aircraft, comprising a laminate according to one of the described embodiments, and in particular to an aircraft comprising such a laminate.
The invention will now be further elucidated on the basis of the exemplary embodiments shown in the figures, without however being limited thereto. The same or similar elements in the figures may be denoted by the same or similar reference signs. In the figures:
With reference to
As shown in
Referring now to
As shown in
Another useful embodiment of a fiber-metal laminate 10 is shown in
Yet another useful embodiment of a fiber-metal laminate 10 is shown in
Another embodiment of the invention finally is shown in
Embodiments of the method for making a laminate 10 in accordance with the present invention is illustrated in
In the embodiment of
Heating and applying pressure may be achieved in a press or alternatively using an autoclave. Conventional pressure and heat levels may be used, for instance 4-10 bar at 120-175° C. The splice straps 12 and metal sheets (1a, 1b) may if desired be subjected to a degreasing treatment followed by etching or anodizing, and a primer may be applied onto the surface of the forming substrate. Although the forming substrate in the examples has a substantially flat upper surface, it does not need to be flat, and may for instance be shaped as the mirror image of a single- or double-curved body panel for an aircraft, or may have other shapes. The laminate is in particular applied in structural components for a vehicle spacecraft, or aircraft.
Number | Date | Country | Kind |
---|---|---|---|
2012458 | Mar 2014 | NL | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/NL2015/050169 | 3/16/2015 | WO | 00 |