1. Field of the Invention
The present invention relates to laminates. More particularly, the invention relates to high pressure laminates (“HPLs”) and low pressure laminates (“LPLs”) comprising a décor surface layer characterized by superior clarity, and improved abrasion resistance, scratch resistance, scuff resistance, and mar resistance, and to a novel process for forming the inventive laminates.
2. Background
LPLs and HPLs are well known and used as covering materials for walls, cabinet liners, desktops, tabletops, for other furniture, and for flooring. LPLs are often made from a single paper décor sheet pressed onto a core layer. The décor sheet is often impregnated with a melamine formaldehyde or urea formaldehyde resin, and the core layer often consists of medium or high-density particleboard. However, typically such LPLs have very low abrasion/wear resistance as there is nothing on the surface layer of the LPL to protect the ink on the décor sheet from wearing off when exposed to wear conditions.
HPLs, on the other hand, are often made of two or more paper sheets impregnated with a phenol formaldehyde resin, a décor paper sheet impregnated with a melamine formaldehyde resin, and an overlay sheet comprising an alpha-cellulose substrate impregnated with a melamine formaldehyde resin. The overlay sheet of the HPL product serves to protect the décor sheet from abrasion. Accordingly, the overlay sheet of the HPL offers a level of protection not found in LPLs.
A conventional process of forming the overlay sheet comprises impregnating a continuous paper or a paper sheet with a thermosetting resin. At least one side of the continuous paper or paper sheet is then coated with a slurry containing aluminum oxide and a thermosetting resin. Thereafter, the slurry and the resin are dried, after which the particle coated, impregnated paper, the so-called prepreg, is cut into sheets. To form the HPL, at least one such prepreg sheet is placed as a surface layer on a core layer and bonded thereto.
The overlay formed by this process, however, though an improvement over overlays formed in other conventional fashions, still lacks an optimum degree of clarity and abrasion-, scuff-, and mar-resistance. Accordingly, what is needed is a laminate surface layer that can be formed on both HPLs and LPLs to achieve a desired degree of clarity and with improved abrasion and wear resistance.
The above-described deficiencies of the prior art are overcome by a décor layer formed by impregnating a décor sheet with a thermosetting resin composition and coating the impregnated décor sheet with a slurry comprising a thermoset resin composition and a mix of abrasion resistant particles, wherein the mix of abrasion resistant particles comprises a percentage of elliptical, platelet-like shaped abrasion resistant particles, wherein the percentage is based on a desired clarity. The décor layer may be laminated to a core layer to form a laminate having superior properties of clarity, scratch resistance, mar resistance, and abrasion resistance.
When the décor layer formed by the process disclosed herein is used to form a LPL, the resulting LPL has increased abrasion/wear resistance where previously there was very little. When the décor layer is used to form a HPL, the resulting laminate obviates the need for an overlay layer, and, therefore, improves the overall clarity exhibited by the laminate. Clarity is a highly desirable characteristic because it allows the color and/or the pattern of the décor sheet to show through clearly.
Disclosed herein is a novel process for the formation of a décor layer for a laminate, wherein the décor layer imparts improved characteristics onto the laminate over prior art laminates, wherein such improvements include, without limitation, improved clarity, and improved abrasion resistance, scuff resistance, and mar resistance. The décor layer comprises a décor sheet impregnated with a thermoset resin composition and coated with a slurry as will be discussed in greater detail below. Such a décor layer is ideally used in the formation of HPLs and LPS, wherein such laminates comprise a core layer, wherein the core layer may comprise any conventionally used core layer material, such as, for example, particleboard or fiberboard.
The novel process of the present inventive method includes forming a décor layer, wherein such process comprises impregnating a décor sheet with a thermoset resin composition, and then coating the impregnated décor sheet with a slurry. The resulting décor layer is then cured and dried. The process may further comprise applying at least one or more additional thermoset resin layers to the cured décor layer.
The décor sheet used to form the décor layer may comprise décor sheets conventionally used in the laminate arts. Accordingly, in an exemplary embodiment, the décor sheet may comprise monochromatic or patterned sheets of paper.
The thermoset resin composition used to impregnate the décor sheet may comprise one or more of a wide variety of thermoset resins, wherein one or more of such thermoset resins may be those which are conventional in the laminate industry, and which may comprise, for example, at least one of phenol-melamine, melamine-formaldehyde, phenol-urea-formaldehyde-melamine, polyester-melamine, urea-formaldehyde, polyurethane, epoxy-melamine, and the like. Accordingly, the thermoset resin composition may include low pressure thermoset resin formulations and high pressure thermoset resin formulations depending on whether LPLs or HPLs are desired. In general, high pressure formulations have a low mole ratio and low pressure formulations have a high mole ratio, wherein the mole ratio may vary widely and constitutes the proportion between the concentration of the cross linking agent, for e.g., the formaldehyde, and the concentration of the thermoset agent, e.g., the melamine, in the thermoset resin, wherein the mole ratio is selected to confer certain desired characteristics onto the laminate.
Additionally, the thermoset resin composition may comprise certain additives to increase preferable properties. For example, the additives may comprise at least one of plasticizers which control the flexibility of the décor layer, saturation agents which promote clarity, catalysts which control flexibility and aid in the curing of the décor layer, release agents which assist in production, antiblock agents which reduce blocking or sticking, and anti-mar and scuff additives which reduce friction on the surface of the décor layer. The additives may be added at various points in the process disclosed herein.
The slurry, which is coated on the impregnated décor sheet, comprises a thermoset resin composition and abrasion resistant particles. The thermoset resin composition in the slurry may comprise those thermoset resins described above, wherein the thermoset resin composition that impregnates the décor sheet may comprise a composition that is identical to or different from the thermoset resin composition in the slurry with regards to both the specific agents used in the composition and the quantities of agents used in the composition. Other additives, such as cellulose and/or glass beads may be added to the slurry to further protect the press plates from wear.
In addition to the thermoset resin composition, the slurry comprises a mixture of abrasion resistant particles. The abrasion resistant particles can comprise many different materials, wherein exemplary materials include, for example, at least one of silica, aluminum oxide, and silicon carbide. The size of the abrasion resistant particles is important for the final result. If the abrasion resistant particles are too big, the surface of the décor layer will be rough and unpleasant. On the other hand, too small particles can give too low abrasion resistance. Accordingly, in an exemplary embodiment, the abrasion resistant particles have particle sizes ranging from about 1 micrometer to about 100 micrometers.
In addition to the importance of size, the geometrical shape of the abrasion resistant particles is also critical to achieving clarity and mar-, scruff-, and abrasion resistance in the final laminate. To achieve this end, it is important that a certain percentage of abrasion resistant particles used to coat the impregnated décor sheet have an elliptical, platelet like shape, such as that, for example, depicted in
When used in conventionally formed overlays, the abrasion resistant particles are jagged, crystalline and spherical in shape (see, for example,
In addition to providing superior clarity, the geometrical shape of the abrasion resistant particles can also have an impact on press plate life. The standard spherical particles used in conventional overlays have more potential to cause premature press plate wear when the overlay is pressed as the abrasion resistant particles can act like sandpaper. The abrasion resistant particles in the décor layer of the present invention, however, because they are relatively small, i.e., within the range of about 1 micrometer to about 100 micrometers, and are platelet shaped, have less potential to cause premature plate wear.
Despite the benefits of having platelet shaped abrasion resistant particles, if additional wear resistance is desired, in addition to the relatively flat, elliptical, platelet shaped abrasion resistant particles discussed above, the slurry may further comprise crystalline-shaped abrasion resistant particles, wherein it is contemplated that an unlimited matrix of combinations of shapes, sizes and concentrations of abrasion resistant particles may be used to obtain the desired characteristics in the final product. However, in an exemplary embodiment, and as stated above, it is contemplated that the slurry comprises at least about 5 percent of platelet shaped abrasion resistant particles, wherein the percentage is based on the total number of abrasion resistant particles contained in the slurry.
Exemplary processes used to form the inventive décor layers and laminates of the present invention is discussed with reference to
The way in which the slurry is applied to the impregnated décor sheet may be varied. However, in an exemplary embodiment, the method may comprise spraying the slurry to the impregnated décor layer under pressure, as is customarily done in a fountain ARP system, and/or using a receptacle containing the slurry and a rotating doctor-roll with an uneven surface placed within or above the receptacle, as is customarily done in a Gravure system. In the Gravure system, the impregnated décor layer passes through or within the receptacle and the slurry is distributed evenly on the impregnated décor layer which is continuously fed through the doctor-roll.
The invention also relates to a process for the production of a decorative thermosetting resin with an abrasion-resistant surface layer where a special method of applying the particles to the paper is used. The method may comprise spraying under pressure the slurry to the paper or using a receptacle containing the slurry of small hard particles and a rotating doctor-roll with uneven surface placed within or above the receptacle. The paper passes through or within the receptacle and particles are distributed evenly on a paper web continuously fed through the doctor-roll. The paper web is impregnated with a thermosetting resin which has not been dried before the application of the particles. Particles may be applied by one of the following systems or by a combination of features of both systems.
More particularly, in the fountain ARP system, a fountain continuously sprays the slurry and utilizing an adjacent set of smooth, rotating rolls. The impregnated décor layer comes in contact with the slurry as it is sprayed out of the fountain. The impregnated décor layer then passes through the smooth rotating rolls where excess slurry is metered away.
The Gravure system utilizes a rotating roll which is engraved with open cells. The rotating roll has the slurry which is continuously pumped into the cells. As the décor layer passes under the rotating roll, the slurry is deposited onto the impregnated décor layer.
A combination of the two systems, namely a device utilizing a fountain, rolls and open cells is contemplated by this disclosure. The device may also comprise a scraper plate intended to give an even feeding of the slurry along the surface of the doctor-roll. An exemplary embodiment of this application is depicted in
Other devices can be used for application of the slurry to the wet substrate. For instance, electrostatic coating can be used, as well as, for example, reverse roll technology. It is also possible to charge the abrasion resistant particles by means of friction and then apply the slurry to the thermoset resin layer on the wet impregnated décor layer. This charge can be brought about, for example, by rubbing the particles against a Teflon surface.
Once the décor layer, comprising the thermoset resin-impregnated décor sheet coated with the slurry, is formed, the resulting décor layer is dried and cured. After cure, the concentration of the abrasion resistant particles on the décor layer comprises about 0.1 gsm to about 50 gsm. After dry and cure, the cured décor layer may be cut for use as a surface layer in the formation of a laminate.
Referring to
An exemplary method of forming the décor layer comprising one or more additional thermoset resin layers comprises impregnating a décor sheet with about a 5 to about a 250 gsm coating of a thermoset resin composition, and then coating the impregnated décor sheet with about a 5 to about a 250 gsm coating of slurry. The coated and impregnated décor layer is then dried and cured with sufficient time and temperature (about 80 degrees Celsius to about 200 degrees Celsius) to achieve a volatile content of about 2 percent to about 10 percent (as measured at 165 degrees Celsius for 5 minutes). This drying process forms a cured décor layer. After or partway through the drying process, one or more additional thermoset resin composition layers and/or slurry layers may be added to the décor layer, wherein such additional thermoset resin composition layers and/or slurry layers may be directly added to the dried slurry layer, directly to the décor sheet, and/or directly to an adjacently placed additional resin layer. After the additional layers are added, the décor layer is dried with sufficient time and temperature (about 80 degrees Celsius to about 200 degrees Celsius) to achieve a volatile content of about 2 percent to about 10 percent (as measured at 165 degree Celsius for 5 minutes).
Exemplary décor sheets formed from the process set forth in
Referring to
Referring to
Referring to
In addition to the production of a novel décor layer, the invention also relates to a process for the production of a decorative thermosetting laminate having an abrasion-resistant surface layer, wherein the surface layer is formed according to the above-described methods. That is, referring to
Referring to
Although the present invention has been described with reference to the figures, it is to be understood that the invention is not limited thereto. Rather, the invention shall include all obvious modifications and variations to the present disclosure as would occur to one of ordinary skill in the art. Additionally, it is evident that the process according to the invention is not restricted to laminates made of paper sheets containing melamine-formaldehyde resin, phenol-formaldehyde resin and phenol-urea-formaldehyde resin. Also other thermosetting resins such as polyester resins are possible.
This application claims the benefit of U.S. Provisional Application No. 60/976,870 filed on Oct. 2, 2007.
Number | Date | Country | |
---|---|---|---|
60976870 | Oct 2007 | US |