The present invention relates to a laminate-type gasket such as a cylinder head gasket which is held between a cylinder head and a cylinder block of an engine and seals therebetween, or an exhaust manifold gasket which is held between an exhaust manifold and an exhaust pipe and seals therebetween.
In an automobile engine, the laminate-type gasket such as the cylinder head gasket or the exhaust manifold gasket is used. The cylinder head gasket is held between engine members such as the cylinder head and the cylinder block (cylinder body) and the like, tightened by head belts, and seals fluid such as combustion gas, oil, coolant water and the like. The exhaust manifold gasket is held between the exhaust manifold and the exhaust pipe, and seals the combustion gas.
On the other hand, the laminate-type gasket includes secondary sealing-target holes such as bolt holes and the like for attaching the laminate-type gasket to an engine member besides main sealing-target holes such as cylinder bores and the like. In a conventional technology, the engine member was made of cast iron, so that a fastening force could increase without deforming the sealing-target holes. Also, pressure of the combustion gas of the engine was relatively low, and required sealing performance was low, so that even sealing performance around the bolt holes did not have any special problem.
However, due to a lightweight and high power engine, recently, the engine member is made of aluminum alloy, so that rigidity has declined and an indentation due to tightening can easily occur. Accordingly, high sealing performance is required. However, it is difficult to increase the fastening force. Moreover, when an unequal force is applied to a contact surface of the gasket, the sealing-target holes such as the cylinder bores and the like on an engine member side may be deformed.
Among the above-mentioned laminate-type gaskets, as shown in
In the above-described laminate-type gasket 1X, by applying a large pressing force near a bolt hole 3 by fastening a fastening bolt, the sealing performance of the bolt hole 3 which is the secondary sealing-target hole could be assured sufficiently. However, in a recent aluminum alloy engine, due to declined rigidity of the engine member, a large bolt fastening force cannot be applied. As a result, the sealing performance around the bolt hole 3 is difficult to be obtained. Moreover, the number of the metal structural plates on a sealing-target hole 2 side is greater than that around the bolt hole 3, so that a seal surface pressure on the sealing-target hole 2 side becomes larger than that around the bolt hole 3. As a result, the sealing-target hole 2 may be easily deformed.
The present invention is made in order to solve the problems described above, and an object of the present invention is to provide a laminate-type gasket such as the cylinder head gasket or the manifold gasket and the like, which are used for the engine, can improve the sealing performance of each sealing target hole, and can reduce deformation of members which hold the laminate-type gasket, such as the deformation of the cylinder bores.
Further objects and advantages of the invention will be apparent from the following description of the invention.
In order to achieve the object described above, a laminate-type gasket according to the invention forms a folded portion on the peripheral border portion of a first sealing-target hole of a first metal substrate. A second metal substrate is placed by inserting an inner-periphery side flat portion thereof inside the folded portion. In the second metal substrate, a first half bead is formed on the outer periphery side of the inner-periphery side flat portion. An outer-periphery side flat portion outside the first half bead is placed on a folded portion side relative to a plate thickness direction. Moreover, inside the folded portion, a bead plate including a first full bead, which projects to a first metal substrate side for the first sealing-target hole, is laminated between the inner-periphery side flat portion of the second metal substrate and the first metal substrate. Also, an intermediate plate is laminated between the outer-periphery side flat portion of the second substrate and the outer-periphery side flat portion on the outer periphery side of the first full bead of the bead plate.
In the laminate-type gasket, a second sealing-target hole is provided in the first metal substrate; the outer-periphery side flat portion of the second metal substrate; the outer-periphery side flat portion of the bead plate; and the intermediate plate. The bead plate is formed in such a way as to surround the first sealing-target hole and the second sealing-target hole.
Also, in the laminate-type gasket, the total plate thickness of the metal structural plates in a first full bead position and the total plate thickness of the metal structural plates around the peripheral border portion of the second sealing-target hole have substantially the same. In addition, in the laminate-type gasket, a second full bead or a second half bead is provided around the second sealing-target hole on the bead plate.
According to the laminate-type gasket of the invention, as compared to the surrounding of the first sealing-target hole and that of the second sealing-target hole, plate thicknesses of the laminated metal substrates are approximately or exactly the same. As a result, the sealing performance of the second sealing-target hole can be improved. Also, even when a large pressing force is applied, an unequal level of seal surface pressures generated around the respective first sealing-target hole and second sealing-target hole, can be controlled. Accordingly, the deformation around the sealing-target holes on the side of the members holding the laminate-type gasket, can be prevented.
Hereunder, embodiments of laminate-type gaskets according to the present invention will be described with reference to the attached drawings as examples of exhaust manifold gaskets. Incidentally,
As shown in
These metal structural plates 10, 20, 40 are manufactured in accordance with a shape of the engine member such as the exhaust manifold or the exhaust pipe and the like. Also, the metal structural plates 10, 20, 40 form first sealing-target holes 2 and bolt holes (second sealing-target holes) 3 for fastening bolts. On the other hand, as shown in
The first and second metal substrates 10, 20, the bead plate 30 and the intermediate plate 40 are made of soft steel, annealed stainless (annealed material), or stainless thermal refining material (spring steel). Especially, the first metal substrate (first surface plate) 10 is made of annealed material which is excellent for heat resistance or corrosion resistance. Also, the bead plate 30 is made of spring material which is excellent for elasticity.
As shown in
Additionally, inside the folded portion 12, the bead plate 30 is laminated between the second metal substrate 20 and the first metal substrate 10 and includes a first full bead 31 which projects to the first metal substrate 10 side for the first sealing-target hole 2. Also, the intermediate plate 40 is laminated between the outer-periphery side flat portion 23 of the second metal substrate 20 and an outer-periphery side flat portion 32 on the outer periphery side of the first full bead 31 of the bead plate 30. The second sealing-target holes 3 are provided in the first metal substrate 10, the outer-periphery side flat portion 23 of the second metal substrate 20, the outer-periphery side flat portion 30 of the bead plate 30, and the intermediate plate 40. More specifically, around the second sealing-target hole 3, the first metal substrate 10; the outer-periphery side flat portion 30 of the bead plate 30; the intermediate plate 40; and the outer-periphery side flat portion 23 of the second metal substrate 20 are laminated in order.
According to the structure, the folded portion 12 can prevent the combustion gas from contacting the second metal substrate 20 or the bead plate 30, so that the first metal substrate 10 is required to be made of material which is excellent for heat resistance or corrosion resistance. However, the second metal substrate 20 or the bead plate can be made of materials which are excellent for elasticity. Accordingly, the gasket 1 can be made by the combination wherein characteristics of each material are applied. Therefore, with the structure, a gasket has various kinds of excellent performances such as sealing performance, heat resistance, corrosion resistance, durability and the like.
Also, since the first half bead 22 is provided in the second metal substrate 20, the inner-periphery side flat portion 21 of the first half bead 22 can be easily housed inside the folded portion 12, so that the portion 21 of the second metal substrate 20 can be easily inserted into the folded portion 12. As a result, the elasticity of the folded portion 12 can be improved and due to a stopper function of the insertion portion 21, cracking can be prevented.
As shown in
Next, a second embodiment will be explained. As shown in
According to the structure, in addition to the above-mentioned operational effect of the first embodiment, due to the second full beads 33, sealing performance around the bolt holes 3 can be improved. This structure is especially effective when the laminate-type gasket is the cylinder head gasket and the like, and the second sealing-target holes 3 require the sealing performance such as a water hole and the like.
Incidentally, in the second sealing-target holes 3, when a high seal surface pressure is not required, in place of the second full beads 33, as shown in
The disclosure of Japanese Patent Application No. 2007-036436, filed on Feb. 16, 2007, is incorporated in the application.
While the invention has been explained with reference to the specific embodiments of the invention, the explanation is illustrative and the invention is limited only by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2007-036436 | Feb 2007 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
1472133 | Oven | Oct 1923 | A |
4468044 | Ulmer et al. | Aug 1984 | A |
4807892 | Udagawa | Feb 1989 | A |
4898396 | Udagawa | Feb 1990 | A |
5169163 | Udagawa et al. | Dec 1992 | A |
5277433 | Ishikawa et al. | Jan 1994 | A |
5435575 | Udagawa | Jul 1995 | A |
5511796 | Udagawa | Apr 1996 | A |
5899462 | Udagawa | May 1999 | A |
6105971 | Hasegawa | Aug 2000 | A |
6139024 | Yakushiji et al. | Oct 2000 | A |
6378876 | Matsushita | Apr 2002 | B1 |
6431554 | Miyamoto et al. | Aug 2002 | B1 |
6478302 | Nakamura | Nov 2002 | B1 |
6758479 | Miyaoh | Jul 2004 | B2 |
6827352 | Ueta et al. | Dec 2004 | B2 |
7290770 | Kasuya | Nov 2007 | B2 |
7377520 | Imai | May 2008 | B2 |
20030085530 | Miyaoh et al. | May 2003 | A1 |
20050179210 | Sueda | Aug 2005 | A1 |
20070090607 | Ueta et al. | Apr 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20080197579 A1 | Aug 2008 | US |