The invention relates to magnetic thin film media with laminated magnetic layers and more particularly to magnetic properties and selection of materials used for the plurality of thin films in such media.
A typical prior art head and disk from a magnetic disk drive 10 are illustrated in block form in
The conventional disk 16 includes substrate 26 of glass or AlMg with an electroless coating of Ni3P that has been highly polished. The thin films on the disk typically include a chromium or chromium alloy underlayer and at least one ferromagnetic layer based on various alloys of cobalt. For example, a commonly used magnetic alloy is CoPtCr. Additional elements such as tantalum and boron are often used in the magnetic alloy. A protective overcoat layer is used to improve wearability and corrosion resistance. Various seed layers, multiple underlayers and laminated magnetic films have all been described in the prior art. The laminated magnetic films have included multiple ferromagnetic layers that are separated by nonmagnetic spacer layers and more recently antiferromagnetic coupling has been proposed. It is known that substantially improved SNR can be achieved by the use of a laminated magnetic layer structure in which two magnetic layers are substantially decoupled. The reduced media noise is believed due to the reduced exchange coupling between the magnetic layers. The use of lamination for noise reduction has been extensively studied to find favorable spacer layer materials which include Cr, CrV, Mo and Ru, and spacer thicknesses from a few angstroms upward that result in the best decoupling of the magnetic layers and the lowest media noise.
Published US patent application 2005/0019609 by Kai Tang (Jan. 27, 2005) describes an embodiment of the invention which includes at least two laminated ferromagnetic layers with differing magnetic anisotropy. The independent magnetic layer farther away from the recording head is selected to have a lower magnetic anisotropy to allow magnetic switching of the multiple magnetic layers to occur at approximately the same head write current even though the recording head field is reduced with increased distance from the head. The improved switching yields improved magnetic recording performance. Laminated magnetic media according to the described invention can have a single peak in the normalized DC erase noise vs. head write current plot indicating that the magnetic transitions in the non-slave magnetic layers are written at the same head write current. As a result the magnetic pulse width (PW50) is reduced, overwrite (OW) is improved and media signal-to-noise ratio (S0NR) is improved.
Published US patent application 2002/0098390 by H. V. Do, et al. (Jul. 25, 2002) describes a laminated medium for horizontal magnetic recording that includes an antiferromagnetically (AF)-coupled magnetic layer structure and a conventional single magnetic layer. The AF-coupled magnetic layer structure has a net remanent magnetization-thickness product (Mrt) which is the difference in the Mrt values of its two ferromagnetic films. The type of ferromagnetic material and the thickness values of the ferromagnetic films are chosen so that the net moment in zero applied field will be low, but nonzero. The Mrt for the media is given by the sum of the Mrt of the upper magnetic layer and the Mrt of the AF-coupled layer stack.
The convention for alloy composition used in this application gives the atomic percentage (at. %) of an element as a subscript; for example, CoCr10 is 10 atomic percent Cr with balance being Co and CoPt11Cr20B7 is 11 atomic percent Pt, 20 atomic percent Cr and 7 atomic percent boron with the balance being Co.
An embodiment of the invention is a laminated magnetic recording medium comprising two magnetic layers that are substantially decoupled. The upper and lower magnetic layers are separated by a nonmagnetic spacer. In an embodiment of the invention the lower magnetic layer comprises two sublayers. The upper sublayer (nearest the air-bearing surface) is preferably a cobalt alloy having a lower chromium and a higher boron content than the lower sublayer. The upper sublayer is preferably a cobalt alloy having from 9-17 at. % platinum (Pt), 9-15 at. % chromium (Cr), and 11-17 at. % boron (B). The lower sublayer is preferably a cobalt alloy having higher chromium and lower boron content than the upper sublayer. The lower sublayer is preferably a cobalt alloy having from 9-17 at. % platinum (Pt), 20-28 at. % chromium (Cr), and 4-9 at. % boron (B). The compositions of the upper and lower sublayers are selected to have properties that are different from each other and which would make either one not useful if used alone. The different properties of the sublayers combine to provide improved recording performance according to the invention. The upper sublayer composition is selected to have higher coercivity (Hc), narrower PW50 and higher resolution. The lower sublayer composition is selected for higher SNR, thermal stability and better overwrite. The laminated structure can also be used in an embodiment which has a slave magnetic layer separated from the lower magnetic layer by an AFC spacer.
The layer structure shown in
The upper magnetic sublayer 38A is preferably a cobalt alloy having relatively lower chromium and higher boron content in relation to the lower sublayer. The upper magnetic sublayer is preferably a cobalt alloy having from 9-17 at. % platinum (Pt), 9-15 at. % chromium (Cr), and 11-17 at. % boron (B). Optionally from 1 to 4 at. % of copper can be added to upper sublayer to possibly improve the SNR. The additional copper, if used, will reduce the cobalt content. The preferred thickness of the upper sublayer 38A is from 40-100 angstroms.
The lower magnetic sublayer 38B is preferably a cobalt alloy having higher chromium and lower boron content than the upper magnetic sublayer. The lower sublayer is preferably a cobalt alloy having from 9-17 at. % platinum (Pt), 20-28 at. % chromium (Cr), and 4-9 at. % boron (B). Optionally from 1 to 2 at. % of tantalum can be added to the lower sublayer to possibly improve segregation of the grains. The additional tantalum, if used, will reduce the cobalt content. The preferred thickness of the lower sublayer 38B is from 60-110 angstroms. Preferably the ratio of the thickness of the upper sublayer divided by the thickness of the lower sublayer should be from 0.35 to 2.5.
The compositions of the upper and lower sublayers are selected to have properties that are different from each other and which would make either one not useful if used alone. The different properties of the sublayers combine to provide improved recording performance according to the invention. The upper sublayer composition is selected to have higher coercivity (Hc), narrower PW50 and higher resolution. The lower sublayer composition is selected for higher SNR, thermal stability and better overwrite.
A sample embodiment of the invention was prepared with the following structure:
A sample media according to the prior art using a laminated magnetic structure and an AFC coupled slave layer was used for comparison with the embodiment of the invention. The prior art sample had the following structure:
The S0NR for the samples described above were measured at different bit densities and the results as shown in
The sublayers as described above can also be used with an antiferromagnetically-coupled (AFC) slave layer. An embodiment of this alternative is shown in
The thin film structures described above can be formed using standard sputtering techniques. The films are sequentially sputter deposited with each film being deposited on the previous film. The upper and lower sublayers 38A, 38B in the composition ranges given are deposited using negative substrate bias from approximately −100 to −400 volts. The use of bias for these particular composition ranges improves the crystallographic structure and grain segregation.
The atomic percentage compositions given above are given without regard for the small amounts of contamination that invariably exist in sputtered thin films as is well known to those skilled in the art.
The invention has been described with respect to particular embodiments, but other uses and applications for the ferromagnetic structure according to the invention will be apparent to those skilled in the art.