The present invention is generally related to lamination devices, and more particular to a lamination device providing fast thermal sealing.
For a conventional lamination device, an object to be laminated, usually a piece of paper or a picture, is first sandwiched in a plastic wrapping and then fed through the lamination device, where the object is thermally sealed in the plastic wrapping by heating element of the lamination device for protection and preservation.
Usually, there is a pair of adjacent rollers, and the object is delivered between the rollers and then into the lamination device. Heaters are, therefore, configured besides the rollers for thermal sealing.
This type of thermal sealing requires that the lamination device be turned on in advance for a while for pre-heating. In other words, if the lamination device is used immediately, the thermal sealing may not be satisfactory, as its heater does not have a high enough temperature.
A major objective of the present invention is to achieve fast thermal sealing through efficient pre-heating by heating elements and pre-heat pieces.
To achieve the objective, the lamination device includes a main member, an input slot on the main member, an output slot on the main member opposite to the input slot, a left plate inside the main member, a right plate inside the main member, a first input shaft inside the main member whose two ends are pivotally joined to the left plate and the right plate, a second input shaft inside the main member whose two ends are pivotally joined to the left plate and the right plate, a first output shaft inside the main member whose two ends are pivotally joined to the left plate and the right plate, a second output shaft inside the main member whose two ends are pivotally joined to the left plate and the right plate, a power element inside the main member coupling and engaging the first output shaft and second output shaft, a first transmission belt surrounding the first input shaft and the first output shaft, a second transmission belt surrounding the second input shaft and second output shaft, and a number of heater members respectively surrounded by the first transmission belt and the second transmission belt, where each heater member includes a heating element and a pre-heat piece wrapping the heating element.
A to-be-laminated object is inserted into the main member through the input slot. In the meantime, the power element spins the first output shaft and the second output shaft, which in turn drive the first transmission belt and the second transmission belt to roll, thereby carrying the object to move. The first transmission belt and the second transmission belt also engages the first input shaft and second input shaft to spin, and the thermally sealed object is delivered out from the output slot.
To achieve thermal sealing, the heater members are turned on so that the heating elements produce heat for sealing. The heat is also conducted to the pre-heat pieces, the first transmission belt, and the second transmission belt. As the to-be-laminated object is carried between the first transmission belt and the second transmission belt, it first reaches the pre-heat pieces and as such pre-heated. The object then reaches the heating elements for thermal sealing. Therefore, the lamination device provides effective pre-heating without turning on the lamination device in advance.
Through the above-described design, the disclosed lamination device overcomes the problem of inferior efficiency suffered by conventional lamination devices
The foregoing objectives and summary provide only a brief introduction to the present invention. To fully appreciate these and other objects of the present invention as well as the invention itself, all of which will become apparent to those skilled in the art, the following detailed description of the invention and the claims should be read in conjunction with the accompanying drawings. Throughout the specification and drawings identical reference numerals refer to identical or similar parts.
Many other advantages and features of the present invention will become manifest to those versed in the art upon making reference to the detailed description and the accompanying sheets of drawings in which a preferred structural embodiment incorporating the principles of the present invention is shown by way of illustrative example.
The following descriptions are exemplary embodiments only, and are not intended to limit the scope, applicability or configuration of the invention in any way. Rather, the following description provides a convenient illustration for implementing exemplary embodiments of the invention. Various changes to the described embodiments may be made in the function and arrangement of the elements described without departing from the scope of the invention as set forth in the appended claims.
As shown in
The operation of the lamination device is described as follows.
As shown in
To conduct thermal sealing, the heating elements 61 of the heater members 6 are turned on while the elastic support elements 7 push the heater members 6 against the first transmission belt 51 and the second transmission belt 52, respectively. As such, the heat produced from the heating elements 61 is conducted to the first transmission belt 51, the second transmission belt 52, and the pre-heat pieces 62.
As the object 8 runs between the first transmission belt 51 and the second transmission belt 52, the object 8 first reaches the pre-heat pieces 62 and is, as such, pre-heated by the pre-heat pieces 62. The object 8 then reaches the heating elements 61 where the object 8′s thermal sealing is achieved. The thermally sealed object 8 is then delivered out through the output slot 12. The object 8 is carried by the first transmission belt 51 and the second transmission belt 52, thereby moving a longer distance for heating. Together with the pre-heating offered by the pre-heat pieces 62, the heating elements 61 may achieve faster thermal sealing without wasting time in pre-heating, thereby enhancing the efficiency of the lamination device.
As shown in
During the operation of the lamination device, the first input shaft 31 and the second input shaft 32 are pressed by the left stretching element 911 of the left elastic member 91 and the right stretching element 921 of the right elastic member 92 as they are pushed by the expansion of the left elastic elements 912 and the right elastic elements 922. As such, the first transmission belt 51 and the second transmission belt 52 are stretched and tightened, thereby increasing contact area between the object 8 and the first and second transmission belts 51 and 52, and making the movement of the object 8 more reliable and smoother. When the object 8 is too thick or has bulges, the object 8 may deform the first transmission belt 51 and the second transmission belt 52. In the present embodiment, the first input shaft 31 and the second input shaft 32 may compress the left elastic member 91 and the right elastic member 92 in response to the object 8′s thickness or unevenness so that the first transmission belt 51 and the second transmission belt 52 may still be completely attached to the object 8.
While certain novel features of this invention have been shown and described and are pointed out in the annexed claim, it is not intended to be limited to the details above, since it will be understood that various omissions, modifications, substitutions and changes in the forms and details of the device illustrated and in its operation can be made by those skilled in the art without departing in any way from the claims of the present invention.