Lamp and proximity switch assembly and method

Information

  • Patent Grant
  • 8878438
  • Patent Number
    8,878,438
  • Date Filed
    Friday, November 4, 2011
    13 years ago
  • Date Issued
    Tuesday, November 4, 2014
    10 years ago
Abstract
A lamp and proximity assembly is provided that includes a lens having a transparent window and a light source disposed to illuminate light through the transparent window of the lens. The lamp and proximity assembly further includes a proximity switch having one or more proximity sensors disposed near a perimeter of the transparent window of the lens and generating an activation field proximate to the transparent field of the lens to sense activation of the proximity switch to control activation of the light source.
Description
FIELD OF THE INVENTION

The present invention generally relates to lamps and switches therefor, and more particularly relates to a lamp assembly having a proximity switch.


BACKGROUND OF THE INVENTION

Automotive vehicles are typically equipped with various user actuatable switches for operating devices including powered windows, headlights, windshield wipers, moonroofs or sunroofs, interior lighting, radio and infotainment devices, and various other devices. Generally, these types of switches need to be actuated by a user in order to activate or deactivate a device or perform some type of control function. Proximity switches, such as capacitive switches, employ one or more proximity sensors to generate a sense activation field and sense changes to the activation field indicative of user actuation of the switch, typically caused by a user's finger in close proximity or contact with the sensor. Capacitive switches are typically configured to detect user actuation of the switch based on comparison of the sense activation field to a threshold.


Automotive lamp assemblies typically include a separate mechanical switch for activating the lighting device. Some lamp assemblies include a depressible lamp assembly that moves to activate a push switch to turn the light on and off. With the availability of proximity switches, a proximity switch may be employed to control activation of the light device. It would be desirable to provide for a proximity switch and lamp assembly which is easy to package and use and does not interfere with the lighting function.


SUMMARY OF THE INVENTION

According to one aspect of the present invention, a lamp and proximity switch assembly is provided. The lamp and proximity switch assembly includes a lens having a transparent window and a light source disposed to illuminate light through the transparent window. The lamp and proximity switch assembly also includes a proximity switch comprising one or more proximity sensors disposed near a perimeter of the transparent window and generating an activation field proximate to the transparent window to sense activation of the proximity switch to control activation of the light source.


According to another aspect of the present invention, a method of controlling a lamp with a proximity switch is provided. The method includes the steps of providing a lens having a transparent window and providing a proximity switch disposed about a perimeter of the transparent window. The method also includes the step of generating an activation field proximate to the transparent window with the proximity switch. The method further includes the step of controlling activation of a light source to illuminate light through the transparent window in response to activation of the proximity switch.


These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:



FIG. 1 is a perspective view of a passenger compartment of an automotive vehicle having an overhead console employing a pair of lamp and proximity switch assemblies, according to one embodiment;



FIG. 2 is an enlarged view of the overhead console and lamp and proximity switch assemblies shown in FIG. 1;



FIG. 3 is an enlarged view of one lamp and proximity switch assembly having a proximity switch arrangement, according to one embodiment;



FIG. 4 is a cross-sectional view taken through line IV-IV of FIG. 3 illustrating the lamp and switch assembly in relation to a user's finger;



FIG. 5 is a front view of a lamp and switch assembly having an alternate switch arrangement, according to another embodiment;



FIG. 6 is a cross-sectional view taken through line VI-VI of FIG. 5 showing the lamp and switch assembly in relation to a user's finger;



FIG. 7 is a front view of the lamp and switch assembly and proximity switch circuitry of the single proximity switch embodiment shown in FIG. 5;



FIG. 8 is a front view of a lamp and proximity switch assembly and proximity switch circuitry employing two proximity sensors, according to a second embodiment; and



FIG. 9 is a front view of a lamp and proximity switch assembly and proximity switch circuitry employing four proximity sensors, according to a third embodiment.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to a detailed design; some schematics may be exaggerated or minimized to show function overview. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.


Referring to FIGS. 1 and 2, the passenger compartment interior of an automotive vehicle 10 is generally illustrated having a pair of lamp and switch assemblies 20 and a plurality of proximity switches 24 assembled in an overhead console 12, according to one embodiment. The vehicle 10 generally includes the overhead console 12 assembled to the headliner on the underside of the roof or ceiling at the top of the vehicle passenger compartment, generally above the front passenger seating area. Each of the pair of lamp and switch assemblies 20 provides an integral assembly of a lamp and a proximity switch for activating a light source to turn the lamp on and off. Each lamp and proximity switch assembly 20 includes a lens having a light transparent window, a light source disposed behind the lens to illuminate light through the transparent window of the lens, and a proximity switch having one or more proximity sensors disposed near a perimeter of the transparent window of the lens and generating an activation field proximate to the transparent field of the lens to sense activation of the proximity switch to control activation of the light source.


A user may activate the light source by activating the proximity switch integrally provided with the lamp and switch assembly 20. The lamp may serve as an interior map or reading lamp to provide interior lighting to the vehicle 10, according to one embodiment. The lamp and switch assembly 20 may also serve as a dome lamp to provide lighting in the interior of the vehicle 10. It should be appreciated that the lamp may serve to provide lighting to the interior of the vehicle for other uses and the lamp and switch assembly 20 may be located elsewhere on the vehicle 10. For example, the lamp and switch assembly 20 may be located in the headliner, a visor, a grab handle, a center console, or elsewhere on the vehicle 10.


The proximity switch provided in each lamp and switch assembly 20 is shown and described herein as a capacitive switch, according to one embodiment. Each proximity switch includes one or more proximity sensors that provide a sense activation field to sense contact or close proximity of an object, such as a user's finger, in close relation to the one or more proximity sensors, such as a tap or swiping motion by a user's finger. Thus, the sense activation field generated by the proximity sensor of each proximity switch is a capacitive field in the exemplary embodiment, and the user's finger has electrical conductivity and dielectric properties that cause a change or disturbance in the sense activation field as should be evident to those skilled in the art. However, it should also be appreciated by those skilled in the art that additional or alternative types of proximity sensors can be used, such as, but not limited to, inductive sensors, optical sensors, temperatures sensors, resistive sensors, the like, or a combination thereof. Exemplary proximity sensors are described in the Apr. 9, 2009, ATMEL® Touch Sensors Design Guide, 10620 D-AT42-04/09, the entire reference hereby being incorporated herein by reference.


A plurality of proximity switches 24 are also shown arranged close to one another in the overhead console 12. The various proximity switches 24 may control any of a number of vehicle devices and functions, such as controlling movement of a sunroof or moonroof 16, controlling movement of a moonroof shade 18, controlling activation of one or more lighting devices, and controlling various other devices and functions. However, it should be appreciated that the proximity switches 24 may be located elsewhere on the vehicle 10, such as in the dash panel, on other consoles such as a center console, integrated into a touch screen display for a radio or infotainment system such as a navigation and/or audio display, or located elsewhere onboard the vehicle 10 according to various vehicle applications.


The proximity switches 24 are shown and described herein as capacitive switches, according to one embodiment. Each proximity switch 24 includes one or more proximity sensors that provide a sense activation field to sense contact or close proximity of a user in close relation on to the one or more proximity sensors, such as a tap or swiping motion by a user's finger. Thus, the sense activation field of each proximity switch 24 is a capacitive field in the exemplary embodiment and the user's finger has electrical conductivity and dielectric properties that cause a change or disturbance in the sense activation field as should be evident to those skilled in the art.


Referring to FIGS. 3 and 4, the lamp and switch assembly 20 is generally illustrated having a lens 32 made of a transparent material integrally molded as part of the overhead console 12. The transparent window 32 of the lens is light transmissive to allow visible light waves to pass through the transparent window 32. A lamp or light source 34 is disposed above the transparent window of the lens 32 to illuminate light through the transparent window 32 of the lens. The light source 34 may include a light emitting diode (LED) mounted to a circuit board 36, according to one embodiment. Other light sources such as an incandescent bulb or combination of one or more light sources may be employed, according to other embodiments. The lens 32 may be integrally formed as part of the overhead console 12 and having the transparent window formed therein, according to one embodiment. In this embodiment, the transparent window 32 may be molded as part of or into a polymeric material forming the overhead console 12. According to other embodiments, the lens 32 may be formed as a separate component and assembled to the overhead console 12. In such embodiments, the lens 32 may be fixedly mounted to the overhead console 12 via fasteners, adhesive or other mounting connection and generally does not move relative to the overhead console 12.


The lamp and proximity switch assembly 20 includes a proximity switch 22 disposed near a perimeter of the transparent window 32 of the lens. The proximity switch 22 has one or more proximity sensors 40 for generating an activation field 44 proximate to the transparent window 32 to sense activation of the proximity switch 22 to control activation of the light source 34. In the embodiment shown, the proximity switch 22 having a single proximity sensor 40 configured to substantially surround the transparent window 32 of the lens. In this embodiment, the proximity switch 22 substantially surrounds the lens 32 to generate an activation field 44 generally across substantially the entire bottom surface of the lens 32 as seen in FIG. 4.


According to one embodiment, the proximity sensor 40 is applied as a conductive ink onto a substrate shown as the upper side of the overhead console 12 about the perimeter of the lens 32. The conductive ink forms electrodes that serve to provide a capacitance which produces the activation field 44. It should be appreciated that other forms of capacitive sensors may be employed to generate the activation field 44. It should be appreciated that the activation field 44 generated by the proximity switch 22 extends below the transparent window 32 of the lens to enable an object, such as a user's finger 70, hand or other body part to enter the activation field 44 to activate the light source 34 on and off. When an object, such as finger 70 sufficiently engages the activation field 44, a disturbance in the activation field 44 is detected such that activation of the switch is initiated so as to either switch the light source 34 on or switch the light source 34 off.


It should be appreciated that the activation field 44 is generally constrained to the area below the transparent window 32 of the lens such that it does not interfere with adjacent proximity switches 24. The proximity switches 24 are shown assembled to the overhead console 12 near the lamp assembly 20. The proximity switches 24 each have a proximity sensor 25 that may be formed as a conductive ink applied onto a substrate such as the upper surface of the polymeric overhead console 12. It should be appreciated that proximity sensor 25 may be otherwise formed as a pre-assembled pad. The proximity switches 24 are disposed at a distance sufficiently away from the lamp and switch assembly 20.


Referring to FIGS. 5 and 6, a lamp and switch assembly 20 is illustrated according to another embodiment in which the proximity switch 22 is disposed within an area of the lens, near a perimeter of a transparent window 32 of the lens that does not interfere with the light transmission path from the light source 34 through the lens. In this embodiment, the proximity switch 22 is provided within the lens, as opposed to surrounding the perimeter of the lens. The light source 34 is disposed above the transparent window 32 of the lens to illuminate light through the transparent window of the lens 32. By mounting the proximity switch 40 on the lens, but outside of the transparent window 32, an integrally formed lens and proximity switch may be provided. The proximity switch 22 has a proximity sensor 40 that generates an activation field 44 in the region below the transparent window of the lens 32 to enable an object, such as a user's finger 70 or other body part, to activate the switch to turn the light source 34 on and off.


Referring to FIG. 7, the single proximity switch and lamp assembly and associated circuitry are illustrated, according to the single sensor arrangement of the first embodiment. First and second conductive lines 56 and 58 provide electrical signals to first and second interdigitated capacitive fingers 52 and 54 which generate the capacitance for the activation field 44. First conductive line 56 may receive a pulsed drive signal while second conductive line 58 outputs a voltage proportional to the capacitance. The interdigitated capacitive fingers 52 and 54 form a capacitive sensor 40 that extends substantially around the perimeter of the transparent window 32 of the lens so as to provide an activation field 44 that substantially covers the transparent window 32 of the lens. The capacitive sensor 40 may be provided as a conductive pad formed using a conductive ink.


Referring to FIG. 8, a lamp and proximity switch assembly 20 is illustrated having two proximity switch sensors 40A and 40B, according to a second embodiment. In this embodiment, the first proximity switch sensor 40A is provided by electrodes 52 and 54 on one side of the transparent window 32 of the lens, while the second capacitive switch sensor 40B is provided by electrodes 52 and 54 on an opposite second side of the transparent window 32 of the lens. Each of the electrodes 52 and 54 is fed electrical signals from conductive lines 56 and 58 to generate capacitance. The first and second capacitive sensors 40A and 40B generate activation fields 44A and 44B, respectively. The capacitive sensors 40A and 40B may be formed as pads onto the lens, bezel or overhead console 12. The activation fields 44A and 44B may be generated in a desired pattern in an area substantially directed towards a center of the transparent window 32 of the lens. Activation of the proximity switch may occur when a user's finger or other object sufficiently enters one or both of the activation fields 44A and 44B. According to one embodiment, the switch assembly 20 may be configured to activate the lamp only when an object sufficiently enters both of the first and second activation fields 44A and 44B, thereby requiring that the object be applied in a region near the center of the transparent window 32 of the lamp.


Referring to FIG. 9, a lamp and proximity switch assembly 20 is illustrated according to a third embodiment employing four proximity switch sensors 40A-40D. The proximity sensors 40A-40D generate four activation fields 44A-44D, respectively in different quadrants of the transparent window 32 of the lens. Each of the activation fields 44A-44D may be generated to extend substantially towards the center of the transparent lens. As a result, the four activation fields 44A-44D substantially cover the transparent window 32 of the lens. By employing four sensor pads, enhanced flexibility is provided to tune the proximity sensors 40A-40D and thus the proximity switch 22 switches to avoid inadvertent actuations. For example, when further capacitive switches, such as switches 24 are located near the lens 32, the burst length of the charge signal applied to the adjacent sensors, such as sensor 40B may be adjusted to shorten the burst length to give a lessened measureable signal, while sensors not in close proximity to other switches may be increased in the signal burst length to give increased measurable signals thereby generating the activation field away from the adjacent switches 24. This has the effect of reducing the inadvertent actuations by lowering sensitivity of one or more sensors on the side closer to the other switches 24 for providing enough sensitivity to provide coverage to the entire lens 32. It should be appreciated that other means of adjusting the intensity or shape of the activation field(s) may be achieved to provide the desired activation signal without interference to adjacent switches 24.


Accordingly, the lamp and proximity switch assembly 20 advantageously provides for an integral proximity switch and lamp arrangement that is easy to use, particularly in an automotive vehicle. The proximity switch may easily be activated by contact or close proximity of an object, such as user's finger in relation to the proximity switch to turn a lamp on and off. The arrangement of the proximity switch around the perimeter of the transparent window of the lens allows for a transparent window to be free of switch assembly material in a cost-effective manner.


It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.

Claims
  • 1. A lamp and proximity switch assembly comprising: a lens having a transparent window;a light source disposed to illuminate light through the transparent window of the lens; anda proximity switch comprising one or more proximity sensors substantially surrounding or disposed on a perimeter of the transparent window and generating an activation field proximate to the transparent window to sense activation of the proximity switch to control activation of the light source.
  • 2. The assembly of claim 1, wherein the one or more proximity sensors are disposed substantially surrounding the perimeter of the transparent window.
  • 3. The assembly of claim 1, wherein the one or more proximity sensors comprises first and second proximity sensors generating first and second activation fields, wherein the first and second activation fields overlap.
  • 4. The assembly of claim 3, wherein control of the light source occurs when both the first and second activation fields are activated.
  • 5. The assembly of claim 1, wherein the assembly is employed on a vehicle.
  • 6. The assembly of claim 1, wherein the one or more proximity sensors comprise one or more capacitive sensors.
  • 7. The assembly of claim 1, wherein the light source comprises an LED.
  • 8. The assembly of claim 1, wherein the one or more proximity sensors comprises a plurality of proximity sensors disposed substantially around the perimeter of the lens.
  • 9. The assembly of claim 8, wherein each of the plurality of proximity sensors are individually controlled so as to control the activation field output of each of the proximity sensors.
  • 10. A method of controlling a lamp with a proximity switch assembly, said method comprising: providing a lens having a transparent window;providing a proximity switch substantially surrounding or disposed on a perimeter of the transparent window;generating an activation field proximate to the transparent window with the proximity switch; andcontrolling activation of a light source to illuminate light through the transparent window of the lens in response to activation of the proximity switch.
  • 11. The method of claim 10, wherein the step of providing the proximity switch comprises providing one or more proximity sensors substantially surrounding the perimeter of the transparent window.
  • 12. The method of claim 10, wherein the step of providing a proximity switch comprises providing first and second proximity sensors generating first and second activation fields, wherein the first and second activation fields overlap.
  • 13. The method of claim 12, wherein the control of the light source occurs when both the first and second activation fields are activated.
  • 14. The method of claim 10, wherein the step of providing a proximity switch comprises providing a plurality of proximity sensors disposed substantially around the perimeter of the lens.
  • 15. The method of claim 14 further comprising the step of individually controlling the activation field output of each of the proximity sensors.
  • 16. The method of claim 10, wherein the assembly is employed on a vehicle.
  • 17. The method of claim 10, wherein the proximity switch comprises a capacitive switch.
  • 18. The method of claim 10, wherein the light source comprises an LED.
  • 19. The method of claim 10, wherein the step of providing a proximity switch comprises applying a conductive ink onto a substrate to form a proximity sensor.
US Referenced Citations (423)
Number Name Date Kind
3382588 Serrell et al. May 1968 A
3544804 Gaumer et al. Dec 1970 A
3691396 Hinrichs Sep 1972 A
3707671 Morrow et al. Dec 1972 A
3826979 Steinmann Jul 1974 A
4204204 Pitstick May 1980 A
4205325 Haygood et al. May 1980 A
4232289 Daniel Nov 1980 A
4257117 Besson Mar 1981 A
4290052 Eichelberger et al. Sep 1981 A
4340813 Sauer Jul 1982 A
4374381 Ng et al. Feb 1983 A
4380040 Posset Apr 1983 A
4413252 Tyler et al. Nov 1983 A
4431882 Frame Feb 1984 A
4446380 Moriya et al. May 1984 A
4453112 Sauer et al. Jun 1984 A
4492958 Minami Jan 1985 A
4494105 House Jan 1985 A
4502726 Adams Mar 1985 A
4514817 Pepper et al. Apr 1985 A
4613802 Kraus et al. Sep 1986 A
4680429 Murdock et al. Jul 1987 A
4743895 Alexander May 1988 A
4748390 Okushima et al. May 1988 A
4758735 Ingraham Jul 1988 A
4821029 Logan et al. Apr 1989 A
4855550 Schultz, Jr. Aug 1989 A
4872485 Laverty, Jr. Oct 1989 A
4899138 Araki et al. Feb 1990 A
4901074 Sinn et al. Feb 1990 A
4905001 Penner Feb 1990 A
4924222 Antikidis et al. May 1990 A
4972070 Laverty, Jr. Nov 1990 A
5025516 Wilson Jun 1991 A
5033508 Laverty, Jr. Jul 1991 A
5036321 Leach et al. Jul 1991 A
5063306 Edwards Nov 1991 A
5108530 Niebling, Jr. et al. Apr 1992 A
5153590 Charlier Oct 1992 A
5159159 Asher Oct 1992 A
5159276 Reddy, III Oct 1992 A
5177341 Balderson Jan 1993 A
5215811 Reafler et al. Jun 1993 A
5239152 Caldwell et al. Aug 1993 A
5270710 Gaultier et al. Dec 1993 A
5294889 Heep et al. Mar 1994 A
5329239 Kindermann et al. Jul 1994 A
5341231 Yamamoto et al. Aug 1994 A
5403980 Eckrich Apr 1995 A
5451724 Nakazawa et al. Sep 1995 A
5467080 Stoll et al. Nov 1995 A
5477422 Hooker et al. Dec 1995 A
5494180 Callahan Feb 1996 A
5512836 Chen et al. Apr 1996 A
5548268 Collins Aug 1996 A
5566702 Philipp Oct 1996 A
5572205 Caldwell et al. Nov 1996 A
5586042 Pisau et al. Dec 1996 A
5594222 Caldwell Jan 1997 A
5598527 Debrus et al. Jan 1997 A
5670886 Wolff et al. Sep 1997 A
5681515 Pratt et al. Oct 1997 A
5730165 Philipp Mar 1998 A
5747756 Boedecker May 1998 A
5760554 Bustamante Jun 1998 A
5790107 Kasser et al. Aug 1998 A
5796183 Hourmand Aug 1998 A
5825352 Bisset et al. Oct 1998 A
5864105 Andrews Jan 1999 A
5867111 Caldwell et al. Feb 1999 A
5874672 Gerardi et al. Feb 1999 A
5917165 Platt et al. Jun 1999 A
5920309 Bisset et al. Jul 1999 A
5942733 Allen et al. Aug 1999 A
5963000 Tsutsumi et al. Oct 1999 A
5973417 Goetz et al. Oct 1999 A
5973623 Gupta et al. Oct 1999 A
6010742 Tanabe et al. Jan 2000 A
6011602 Miyashita et al. Jan 2000 A
6031465 Burgess Feb 2000 A
6035180 Kubes et al. Mar 2000 A
6037930 Wolfe et al. Mar 2000 A
6040534 Beukema Mar 2000 A
6157372 Blackburn et al. Dec 2000 A
6172666 Okura Jan 2001 B1
6215476 Depew et al. Apr 2001 B1
6219253 Green Apr 2001 B1
6231111 Carter et al. May 2001 B1
6275644 Domas et al. Aug 2001 B1
6288707 Philipp Sep 2001 B1
6292100 Dowling Sep 2001 B1
6310611 Caldwell Oct 2001 B1
6320282 Caldwell Nov 2001 B1
6323919 Yang et al. Nov 2001 B1
6369369 Kochman et al. Apr 2002 B2
6377009 Philipp Apr 2002 B1
6379017 Nakabayashi et al. Apr 2002 B2
6380931 Gillespie et al. Apr 2002 B1
6415138 Sirola et al. Jul 2002 B2
6427540 Monroe et al. Aug 2002 B1
6452138 Kochman et al. Sep 2002 B1
6452514 Philipp Sep 2002 B1
6456027 Pruessel Sep 2002 B1
6457355 Philipp Oct 2002 B1
6464381 Anderson, Jr. et al. Oct 2002 B2
6466036 Philipp Oct 2002 B1
6485595 Yenni, Jr. et al. Nov 2002 B1
6529125 Butler et al. Mar 2003 B1
6535200 Philipp Mar 2003 B2
6537359 Spa Mar 2003 B1
6559902 Kusuda et al. May 2003 B1
6587097 Aufderheide et al. Jul 2003 B1
6607413 Stevenson et al. Aug 2003 B2
6614579 Roberts et al. Sep 2003 B2
6617975 Burgess Sep 2003 B1
6639159 Anzai Oct 2003 B2
6652777 Rapp et al. Nov 2003 B2
6654006 Kawashima et al. Nov 2003 B2
6661410 Casebolt et al. Dec 2003 B2
6664489 Kleinhans et al. Dec 2003 B2
6713897 Caldwell Mar 2004 B2
6734377 Gremm et al. May 2004 B2
6738051 Boyd et al. May 2004 B2
6740416 Yokogawa et al. May 2004 B1
6756970 Keely, Jr. et al. Jun 2004 B2
6773129 Anderson, Jr. et al. Aug 2004 B2
6774505 Wnuk Aug 2004 B1
6794728 Kithil Sep 2004 B1
6795226 Agrawal et al. Sep 2004 B2
6809280 Divigalpitiya et al. Oct 2004 B2
6812424 Miyako Nov 2004 B2
6819316 Schulz et al. Nov 2004 B2
6819990 Ichinose Nov 2004 B2
6825752 Nahata et al. Nov 2004 B2
6834373 Dieberger Dec 2004 B2
6841748 Serizawa et al. Jan 2005 B2
6847018 Wong Jan 2005 B2
6854870 Huizenga Feb 2005 B2
6879250 Fayt et al. Apr 2005 B2
6884936 Takahashi et al. Apr 2005 B2
6891114 Peterson May 2005 B2
6891530 Umemoto et al. May 2005 B2
6897390 Caldwell et al. May 2005 B2
6929900 Farquhar et al. Aug 2005 B2
6930672 Kuribayashi Aug 2005 B1
6940291 Ozick Sep 2005 B1
6960735 Hein et al. Nov 2005 B2
6964023 Maes et al. Nov 2005 B2
6966225 Mallary Nov 2005 B1
6967587 Snell et al. Nov 2005 B2
6977615 Brandwein, Jr. Dec 2005 B2
6987605 Liang et al. Jan 2006 B2
6993607 Philipp Jan 2006 B2
6999066 Litwiller Feb 2006 B2
7030513 Caldwell Apr 2006 B2
7046129 Regnet et al. May 2006 B2
7053360 Balp et al. May 2006 B2
7063379 Steuer et al. Jun 2006 B2
7091886 DePue et al. Aug 2006 B2
7098414 Caldwell Aug 2006 B2
7105752 Tsai et al. Sep 2006 B2
7106171 Burgess Sep 2006 B1
7135995 Engelmann et al. Nov 2006 B2
7146024 Benkley, III Dec 2006 B2
7151450 Beggs et al. Dec 2006 B2
7151532 Schulz Dec 2006 B2
7154481 Cross et al. Dec 2006 B2
7180017 Hein Feb 2007 B2
7186936 Marcus et al. Mar 2007 B2
7205777 Schulz et al. Apr 2007 B2
7215529 Rosenau May 2007 B2
7218498 Caldwell May 2007 B2
7232973 Kaps et al. Jun 2007 B2
7242393 Caldwell Jul 2007 B2
7245131 Kurachi et al. Jul 2007 B2
7248151 Mc Call Jul 2007 B2
7248955 Hein et al. Jul 2007 B2
7254775 Geaghan et al. Aug 2007 B2
7255466 Schmidt et al. Aug 2007 B2
7255622 Stevenson et al. Aug 2007 B2
7269484 Hein Sep 2007 B2
7295168 Saegusa et al. Nov 2007 B2
7295904 Kanevsky et al. Nov 2007 B2
7339579 Richter et al. Mar 2008 B2
7342485 Joehl et al. Mar 2008 B2
7355595 Bathiche et al. Apr 2008 B2
7361860 Caldwell Apr 2008 B2
7385308 Yerdon et al. Jun 2008 B2
7445350 Konet et al. Nov 2008 B2
7479788 Bolender et al. Jan 2009 B2
7489053 Gentile et al. Feb 2009 B2
7521941 Ely et al. Apr 2009 B2
7521942 Reynolds Apr 2009 B2
7531921 Cencur May 2009 B2
7532202 Roberts May 2009 B2
7535131 Safieh, Jr. May 2009 B1
7535459 You et al. May 2009 B2
7567240 Peterson, Jr. et al. Jul 2009 B2
7583092 Reynolds et al. Sep 2009 B2
7643010 Westerman et al. Jan 2010 B2
7653883 Hotelling et al. Jan 2010 B2
7688080 Golovchenko et al. Mar 2010 B2
7701440 Harley Apr 2010 B2
7705257 Arione et al. Apr 2010 B2
7708120 Einbinder May 2010 B2
7714846 Gray May 2010 B1
7719142 Hein et al. May 2010 B2
7728819 Inokawa Jun 2010 B2
7737953 Mackey Jun 2010 B2
7737956 Hsieh et al. Jun 2010 B2
7777732 Herz et al. Aug 2010 B2
7782307 Westerman et al. Aug 2010 B2
7791594 Dunko Sep 2010 B2
7795882 Kirchner et al. Sep 2010 B2
7800590 Satoh et al. Sep 2010 B2
7821425 Philipp Oct 2010 B2
7834853 Finney et al. Nov 2010 B2
7839392 Pak et al. Nov 2010 B2
7876310 Westerman et al. Jan 2011 B2
7881940 Dusterhoff Feb 2011 B2
RE42199 Caldwell Mar 2011 E
7898531 Bowden et al. Mar 2011 B2
7920131 Westerman Apr 2011 B2
7924143 Griffin et al. Apr 2011 B2
7957864 Lenneman et al. Jun 2011 B2
7977596 Born et al. Jul 2011 B2
7978181 Westerman Jul 2011 B2
7989752 Yokozawa Aug 2011 B2
8026904 Westerman Sep 2011 B2
8050876 Feen et al. Nov 2011 B2
8054296 Land et al. Nov 2011 B2
8054300 Bernstein Nov 2011 B2
8077154 Emig et al. Dec 2011 B2
8090497 Ando Jan 2012 B2
8253425 Reynolds et al. Aug 2012 B2
8283800 Salter et al. Oct 2012 B2
8330385 Salter et al. Dec 2012 B2
8339286 Cordeiro Dec 2012 B2
8454181 Salter et al. Jun 2013 B2
8508487 Schwesig et al. Aug 2013 B2
8575949 Salter et al. Nov 2013 B2
20010019228 Gremm Sep 2001 A1
20010028558 Rapp et al. Oct 2001 A1
20020040266 Edgar et al. Apr 2002 A1
20020084721 Walczak Jul 2002 A1
20020093786 Maser Jul 2002 A1
20020149376 Haffner et al. Oct 2002 A1
20020167439 Bloch et al. Nov 2002 A1
20020167704 Kleinhans et al. Nov 2002 A1
20030002273 Anderson, Jr. et al. Jan 2003 A1
20030122554 Karray et al. Jul 2003 A1
20040056753 Chiang et al. Mar 2004 A1
20040145613 Stavely et al. Jul 2004 A1
20040160072 Carter et al. Aug 2004 A1
20040160713 Wei Aug 2004 A1
20040197547 Bristow et al. Oct 2004 A1
20040246239 Knowles et al. Dec 2004 A1
20050052429 Philipp Mar 2005 A1
20050068712 Schulz et al. Mar 2005 A1
20050088417 Mulligan Apr 2005 A1
20050110769 DaCosta et al. May 2005 A1
20050137765 Hein et al. Jun 2005 A1
20050242923 Pearson et al. Nov 2005 A1
20050275567 DePue et al. Dec 2005 A1
20060022682 Nakamura et al. Feb 2006 A1
20060038793 Philipp Feb 2006 A1
20060044800 Reime Mar 2006 A1
20060082545 Choquet et al. Apr 2006 A1
20060244733 Geaghan Nov 2006 A1
20060262549 Schmidt et al. Nov 2006 A1
20060267953 Peterson, Jr. et al. Nov 2006 A1
20060279015 Wang Dec 2006 A1
20060287474 Crawford et al. Dec 2006 A1
20070008726 Brown Jan 2007 A1
20070023265 Ishikawa et al. Feb 2007 A1
20070051609 Parkinson Mar 2007 A1
20070068790 Yerdon et al. Mar 2007 A1
20070096565 Breed et al. May 2007 A1
20070103431 Tabatowski-Bush May 2007 A1
20070226994 Wollach et al. Oct 2007 A1
20070232779 Moody et al. Oct 2007 A1
20070247429 Westerman Oct 2007 A1
20070255468 Strebel et al. Nov 2007 A1
20070257891 Esenther et al. Nov 2007 A1
20070296709 GuangHai Dec 2007 A1
20080012835 Rimon et al. Jan 2008 A1
20080018604 Paun et al. Jan 2008 A1
20080023715 Choi Jan 2008 A1
20080030465 Konet et al. Feb 2008 A1
20080074398 Wright Mar 2008 A1
20080111714 Kremin May 2008 A1
20080136792 Peng et al. Jun 2008 A1
20080142352 Wright Jun 2008 A1
20080143681 XiaoPing Jun 2008 A1
20080150905 Grivna et al. Jun 2008 A1
20080158146 Westerman Jul 2008 A1
20080196945 Konstas Aug 2008 A1
20080202912 Boddie et al. Aug 2008 A1
20080231290 Zhitomirsky Sep 2008 A1
20080238650 Riihimaki et al. Oct 2008 A1
20080257706 Haag Oct 2008 A1
20080272623 Kadzban et al. Nov 2008 A1
20090066659 He et al. Mar 2009 A1
20090079699 Sun Mar 2009 A1
20090108985 Haag et al. Apr 2009 A1
20090115731 Rak May 2009 A1
20090120697 Wilner et al. May 2009 A1
20090135157 Harley May 2009 A1
20090225043 Rosener Sep 2009 A1
20090235588 Patterson et al. Sep 2009 A1
20090236210 Clark et al. Sep 2009 A1
20090251435 Westerman et al. Oct 2009 A1
20090309616 Klinghult et al. Dec 2009 A1
20100001974 Su et al. Jan 2010 A1
20100007613 Costa Jan 2010 A1
20100007620 Hsieh et al. Jan 2010 A1
20100013777 Baudisch et al. Jan 2010 A1
20100026654 Suddreth Feb 2010 A1
20100039392 Pratt et al. Feb 2010 A1
20100090712 Vandermeijden Apr 2010 A1
20100090966 Gregorio Apr 2010 A1
20100102830 Curtis et al. Apr 2010 A1
20100103139 Soo et al. Apr 2010 A1
20100110037 Huang et al. May 2010 A1
20100125393 Jarvinen et al. May 2010 A1
20100156814 Weber et al. Jun 2010 A1
20100177057 Flint et al. Jul 2010 A1
20100188356 Vu et al. Jul 2010 A1
20100188364 Lin et al. Jul 2010 A1
20100194692 Orr et al. Aug 2010 A1
20100207907 Tanabe et al. Aug 2010 A1
20100212819 Salter et al. Aug 2010 A1
20100214253 Wu et al. Aug 2010 A1
20100241431 Weng et al. Sep 2010 A1
20100241983 Walline et al. Sep 2010 A1
20100245286 Parker Sep 2010 A1
20100250071 Pala et al. Sep 2010 A1
20100277431 Klinghult Nov 2010 A1
20100280983 Cho et al. Nov 2010 A1
20100286867 Bergholz et al. Nov 2010 A1
20100289754 Sleeman et al. Nov 2010 A1
20100289759 Fisher et al. Nov 2010 A1
20100296303 Sarioglu et al. Nov 2010 A1
20100302200 Netherton et al. Dec 2010 A1
20100315267 Chung et al. Dec 2010 A1
20100321214 Wang et al. Dec 2010 A1
20100321321 Shenfield et al. Dec 2010 A1
20100321335 Lim et al. Dec 2010 A1
20100328261 Woolley et al. Dec 2010 A1
20100328262 Huang et al. Dec 2010 A1
20110001707 Faubert et al. Jan 2011 A1
20110001722 Newman et al. Jan 2011 A1
20110007021 Bernstein et al. Jan 2011 A1
20110007023 Abrahamsson et al. Jan 2011 A1
20110012623 Gastel et al. Jan 2011 A1
20110018744 Philipp Jan 2011 A1
20110018817 Kryze et al. Jan 2011 A1
20110022393 Waller et al. Jan 2011 A1
20110031983 David et al. Feb 2011 A1
20110034219 Filson et al. Feb 2011 A1
20110037725 Pryor Feb 2011 A1
20110037735 Land et al. Feb 2011 A1
20110039602 McNamara et al. Feb 2011 A1
20110043481 Bruwer Feb 2011 A1
20110050251 Franke et al. Mar 2011 A1
20110050587 Natanzon et al. Mar 2011 A1
20110050618 Murphy et al. Mar 2011 A1
20110050620 Hristov Mar 2011 A1
20110055753 Horodezky et al. Mar 2011 A1
20110062969 Hargreaves et al. Mar 2011 A1
20110063425 Tieman Mar 2011 A1
20110074573 Seshadri Mar 2011 A1
20110080365 Westerman Apr 2011 A1
20110080366 Bolender Apr 2011 A1
20110080376 Kuo et al. Apr 2011 A1
20110082616 Small et al. Apr 2011 A1
20110083110 Griffin et al. Apr 2011 A1
20110095997 Philipp Apr 2011 A1
20110115732 Coni et al. May 2011 A1
20110115742 Sobel et al. May 2011 A1
20110134047 Wigdor et al. Jun 2011 A1
20110134054 Woo et al. Jun 2011 A1
20110141006 Rabu Jun 2011 A1
20110141041 Parkinson et al. Jun 2011 A1
20110148803 Xu Jun 2011 A1
20110157037 Shamir et al. Jun 2011 A1
20110157079 Wu et al. Jun 2011 A1
20110157080 Ciesla et al. Jun 2011 A1
20110157089 Rainisto Jun 2011 A1
20110161001 Fink Jun 2011 A1
20110169758 Aono Jul 2011 A1
20110187492 Newman et al. Aug 2011 A1
20110279276 Newham Nov 2011 A1
20110279409 Salaverry et al. Nov 2011 A1
20120007821 Zaliva Jan 2012 A1
20120037485 Sitarski Feb 2012 A1
20120043976 Bokma et al. Feb 2012 A1
20120062247 Chang Mar 2012 A1
20120062498 Weaver et al. Mar 2012 A1
20120068956 Jira et al. Mar 2012 A1
20120154324 Wright et al. Jun 2012 A1
20120217147 Porter et al. Aug 2012 A1
20120312676 Salter et al. Dec 2012 A1
20120313648 Salter et al. Dec 2012 A1
20130036529 Salter et al. Feb 2013 A1
20130076121 Salter et al. Mar 2013 A1
20130093500 Bruwer Apr 2013 A1
20130113544 Salter et al. May 2013 A1
20130126325 Curtis et al. May 2013 A1
20130270896 Buttolo et al. Oct 2013 A1
20130270899 Buttolo et al. Oct 2013 A1
20130271157 Buttolo et al. Oct 2013 A1
20130271159 Santos et al. Oct 2013 A1
20130271182 Buttolo et al. Oct 2013 A1
20130271202 Buttolo et al. Oct 2013 A1
20130271203 Salter et al. Oct 2013 A1
20130271204 Salter et al. Oct 2013 A1
20130291439 Wuerstlein et al. Nov 2013 A1
20130307610 Salter et al. Nov 2013 A1
20130321065 Salter et al. Dec 2013 A1
20130328616 Buttolo et al. Dec 2013 A1
20140002405 Salter et al. Jan 2014 A1
Foreign Referenced Citations (46)
Number Date Country
4024052 Jan 1992 DE
1152443 Nov 2001 EP
1327860 Jul 2003 EP
1562293 Aug 2005 EP
2133777 Oct 2011 EP
2133777 Oct 2011 EP
2071338 Sep 1981 GB
2158737 Nov 1985 GB
2279750 Jan 1995 GB
2409578 Jun 2005 GB
2418741 Apr 2006 GB
61188515 Aug 1986 JP
4065038 Mar 1992 JP
04082416 Mar 1992 JP
07315880 Dec 1995 JP
08138446 May 1996 JP
11065764 Mar 1999 JP
11110131 Apr 1999 JP
11260133 Sep 1999 JP
11316553 Nov 1999 JP
2000047178 Feb 2000 JP
2000075293 Mar 2000 JP
2001013868 Jan 2001 JP
2006007764 Jan 2006 JP
2007027034 Feb 2007 JP
2008033701 Feb 2008 JP
2010139362 Jun 2010 JP
2010165618 Jul 2010 JP
2010218422 Sep 2010 JP
2010239587 Oct 2010 JP
2010287148 Dec 2010 JP
2011014280 Jan 2011 JP
20040110463 Dec 2004 KR
20090127544 Dec 2009 KR
20100114768 Oct 2010 KR
9636960 Nov 1996 WO
9963394 Dec 1999 WO
2006093398 Sep 2006 WO
2007022027 Feb 2007 WO
2008121760 Oct 2008 WO
2009054592 Apr 2009 WO
2010111362 Sep 2010 WO
2012032318 Mar 2012 WO
2012032318 Mar 2012 WO
2012169106 Dec 2012 WO
2012169106 Dec 2012 WO
Non-Patent Literature Citations (14)
Entry
U.S. Appl. No. 13/609,390, filed Sep. 11, 2012, entitled “Proximity Switch Based Door Latch Release,” (14 pages of specification and 4 pages of drawings) and Official Filing Receipt (3 pages).
U.S. Appl. No. 13/665,253, filed Oct. 31, 2012, entitled Proximity Switch Assembly Having Round Layer, (15 pages of specification and 7 pages of drawings) and Official Filing Receipt (3 pages).
U.S. Appl. No. 13/799,413, filed Mar. 13, 2013, entitled “Proximity Interface Development System Having Replicator and Method,” (29 pages of specification and 20 pages of drawings) and Official Filing Receipt (3 pages).
U.S. Appl. No. 13/799,478, filed Mar. 13, 2013, entitled “Proximity Interface Development System Having Analyzer and Method,” (29 pages of specification and 20 pages of drawings) and Official Filing Receipt (3 pages).
U.S. Appl. No. 14/168,614, filed Jan. 30, 2014, entitled “Proximity Switch Assembly and Activation Method Having Virtual Button Mode,” (30 pages of specification and 15 pages of drawings) and Official Filing Receipt (3 pages).
Van Ess, Dave et al., “Capacitive Touch Switches for Automotive Applications,” 7 pages, Published in Automotive DesignLine, www.automotiedesignline.com, Feb. 2006.
“Introduction to Touch Solutions, White Paper, Rivision 1.0 A,” Densitron Corporation, 14 pages, Aug. 21, 2007.
Kliffken, Marksu G. et al., “Obstacle Detection for Power Operated Window-Lift and Sunroof Actuation Systems,” Paper No. 2001-01-0466, 1 page, © 2011 SAE International, Published Mar. 5, 2001.
NXP Capacitive Sensors, 1 page, www.nxp.com, copyrighted 2006-2010, NXP Semiconductors.
“Moisture Immunity in QuickSense Studio,” AN552, Rev. 0.1 Oct. 2010, 8 pages, Silicon Laboratories, Inc., © 2010.
“Clevios P Formulation Guide,” 12 pages, www.clevios.com, Heraeus Clevios GmbH, no date provided.
“Charge-Transfer Sensing-Based Touch Controls Facilitate Creative Interfaces,” www.ferret.com.au, 2 pages, Jan. 18, 2006.
“Orgacon EL-P3000, Screen printing Ink Series 3000,” 2 pages, AGFA, last updated in Feb. 2006.
“Touch Sensors Design Guide” by Atmel, 10620 D-AT42-04/09, Revised Apr. 2009, 72 pages, Copyrighted 2008-2009 Atmel Corporation.
Related Publications (1)
Number Date Country
20130113397 A1 May 2013 US