There is no cross-reference to a related application.
This invention was not made under any government contract and the United States Government has no rights under this invention.
This invention relates to lamps and more particularly to lamps having an appealing lighted appearance together with flexible styling possibilities. More particularly, it relates to lamps having light emitting surfaces that form perimeter shapes that can be used, for example, as brake or stoplight or taillight assemblies for motor vehicles.
Industry trends often require lamps having distinguishing shapes. Such requirements frequently arise in the automotive industry where a distinctive appearance is to be coupled with sufficient illumination to meet safety standards. In this regard, shapes that have corners, e.g., square, and/or are non-rotationally symmetrical, e.g., rectangular, are particularly difficult to execute using typical optical designs.
It is known in published United States patent application US2008/0042867 (Swantner et al.) to have an indicator lamp with an opaque base and a translucent cover. A vehicle lamp light guide is known in U.S. Pat. No. 6,871,988 (Gebauer).
It is an object of the invention to enhance light sources.
Yet another object of the invention is the improvement of peripheral light sources for automotive vehicles.
These objects are accomplished, in one aspect of the invention, by a lamp assembly having a housing, preferably a housing that is non-rotationally symmetrical and including a base, with an upstanding wall surrounding the base. The upstanding wall has a first portion extending from the base at an angle of less than 90 degrees and a second portion that makes an angle of 90 degrees with the base. At least one light source extends into the base; and a cover closes the housing, the cover having a hollow, illuminable, translucent periphery and, preferably, an opaque center.
With this design the emitting surface is believed to have a uniform lit appearance reminiscent of a light guide “blade”-like exit surface. An emitting surface that covers a relatively large frontal area while maintaining a small package depth can be provided and such a structure is suited to use for automotive signal functions, including stoplight, taillight, turn or backup signals. The light source can be supplied by a light emitting diode (LED), such as a side-emitting LED, by plural LEDs, or an incandescent or other source. If desired, combinations of different light sources can be used.
For purposes of this application it is to be understood that when an element or layer is referred to as being “on,” “connected to” or “coupled to” another element or layer, it can be directly on, connected to or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly connected to” or “directly coupled to” another element or layer, there are no intervening elements or layers present. Like numbers refer to like elements throughout. The term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms “first,” “second,” “third” etc. may be used to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections are not to be limited by theses terms as they are used only to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, a first element, component, region, layer or section could be termed a second element, component, region, layer or section without departing from the scope and teachings of the present invention.
Spatially relative terms, such as “beneath,” below,” “upper,” “lower,” “above” and the like may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the drawings. These spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation shown in the drawings. For example, if the device in the drawings is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the exemplary term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. For example, as used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms, “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
For a better understanding of the present invention, together with other and further objects, advantages and capabilities thereof, reference is made to the following disclosure and appended claims taken in conjunction with the above-described drawings.
Referring now to the drawings with greater particularity there is shown in
The lower base 14 comprises reflector optics 32 mounted thereon on or formed therein between the first light-receiving conduit 38 and the second light-receiving conduit 40 and the optics are positioned to direct light received from the first light-receiving conduit 38 upwards from the lower base 14 to the light transmissive peripheral region 26, whereby light exits the upper cover 24.
The upstanding wall 16 has a first portion 18 extending from the base 14 at an angle of less than 90 degrees, e.g., 45 degrees, and a second portion 20 that makes an angle of 90 degrees with the base 14 and, preferably, has an extended flat surface, as shown in
The cover 24 has a hollow, illuminable, translucent periphery 26 and, preferably, an opaque center 28. In a preferred embodiment, the inside surface 30 of the opaque center 28 of the cover 24 is reflective, for example, by metallization of a plastic, as shown in
The hollow, illuminable, translucent periphery 26 of the cover 24 is spaced from the opaque center 28 along a longitudinal axis 35, thus allowing the sides 29 of the cover 24, as well as the leading surface 31, to be illuminated if desired. The sides 29 are elongated relative to the leading surface 31.
In the embodiment shown in
In an alternate embodiment of the invention, shown in
Referring specifically to
As shown in
Yet another embodiment is shown in
Of course, should a different function be provided by any additional apparatus fitted to aperture 36, necessary modifications to the opaque center 28 can be made to accommodate the additional feature or features. In all embodiments it is desirable for the base 14 to be reflective also.
For example, referring now to
Suitable materials for the base include polycarbonates, acyrlonitrile butadiene styrene (ABS) or other thermosetting plastics, and suitable materials for the cover include glass or transparent or translucent plastics, such as polycarbonates.
Thus there is provided a light source that is easy and inexpensive to manufacture and that can be used with non-rotationally symmetrical displays. When used with the latter types of displays it does not require the use of solid waveguides that were frequently employed in the prior art; however, as noted above, solid light guides may be used if desired.
While there have been shown and described what are at present considered to be the preferred embodiments of the invention, it will be apparent to those skilled in the art that various changes and modifications can be made herein without departing from the scope of the invention as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
6086227 | O'Connell et al. | Jul 2000 | A |
6846100 | Imazeki et al. | Jan 2005 | B2 |
6871988 | Gebauer et al. | Mar 2005 | B2 |
6883947 | Sarabia | Apr 2005 | B1 |
7021806 | Ovenshire | Apr 2006 | B2 |
7377676 | Thomas et al. | May 2008 | B2 |
7575343 | Li et al. | Aug 2009 | B2 |
7600890 | Swantner et al. | Oct 2009 | B2 |
7607808 | Birman et al. | Oct 2009 | B2 |
7665237 | Swantner et al. | Feb 2010 | B2 |
7753540 | Swantner et al. | Jul 2010 | B2 |
20060291214 | Tessnow et al. | Dec 2006 | A1 |
20080042867 | Swantner et al. | Feb 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20120075849 A1 | Mar 2012 | US |