The subject matter of the present disclosure relates to lamps and lighting devices and, in particular, to embodiments of a lamp that combines a high-efficiency light source with thermal management using an active cooling device, e.g., a synthetic jet ejector.
Incandescent light bulbs have been available for over 100 years. Other types of light sources for lamps, however, show promise as commercially viable alternatives to the incandescent light bulb. Lamps that utilize high-efficiency light devices (e.g., light-emitting diode (LED) devices) are attractive because these devices save energy through high-efficiency light output. Moreover, LED devices and other solid-state lighting technologies offer performance that is superior to incandescent lamps. For example, the useful lifetime (e.g., lumen maintenance and reliability over time) of incandescent lamps is typically in the range about 1000 to 5000 hours. Lamps that utilize LED devices, on the other hand, may operate in excess of 25,000 hours and, perhaps, as long as 100,000 hours or more.
Several factors can affect the quality of performance of lamps that utilize LED devices as the light source. For example, many LED devices use a direct current (DC) input. Lamps with LED devices must generate a DC input from the alternating current (AC) input, which is the common power supply in home and/or office settings. This feature can affect operation of the LED devices. For example, ripple and other anomalies that might prevail in the DC input due, at least in part, to conversion of the AC input to the DC input as well as in connection with other operational components in the lamp. Such anomalies can affect performance of the LED devices.
LED devices are also sensitive to high temperatures, which can affect both performance and reliability as compared with incandescent or halogen lamps. However, LED devices are known to convert a significant portion of the DC input to thermal energy. Lamps that use LED devices often include an efficient thermal management system that dissipates heat to maintain the light source at an acceptable operating temperature and to achieve adequate lifetime. Physical constraints on size and packaging of the lamp, however, further complicate the task of heat dissipation. For example, regulatory limits define the maximum dimensions for an envelope in which all the lamp components must fit. This envelope limits choices for the design and layout of features and devices that would otherwise dissipate heat properly from the lamp.
To this end, thermal management devices that dissipate heat in lamps that deploy LED devices are known. Some of these devices use conventional fans, piezoelectric elements, and synthetic jet ejectors. The latter type, i.e., synthetic jet ejectors, utilize a diaphragm that flexes, e.g., in response to an AC input. Flexing of the diaphragm propagates airflow over the LED devices and/or throughout the lamp. This configuration of elements offers efficient and versatile cooling at a local level, e.g., the light source. However, although packaging of the synthetic jet ejector particularly suits the envelope and other construction of lamps with LED devices, this type of cooling mechanism typically utilizes expensive components. These components may sometimes fail to meet cost and sustainability requirements necessary to make lamps with LED device and solid state technology a robust alternative to incandescent and halogen-based bulb technology.
This disclosure describes, in one embodiment, a lighting device that comprises a light source and a field generator electrically coupled with the light source. The field generator generates a magnetic field in response to a first input signal that energizes the light source. The lighting device also comprises an actuator magnetically coupled with the field generator via the magnetic field.
This disclosure also describes, in one embodiment, a lighting device that comprises a light emitting diode device. The lighting device also comprises an active cooling device forming a series circuit with the light emitting diode device and a ground. The active cooling device generates a magnetic field in response to a first input signal that energizes the light emitting diode device.
This disclosure further describes, in one embodiment, a lighting device that comprises a drive circuit generating a first input signal and a second input signal that is different from the first input signal. The lighting device also comprises a light emitting diode device coupled with the drive circuit to receive the first input signal and a first inductor coupled in series with the light emitting diode device to conduct the first input signal to ground; and a diaphragm magnetically coupled with the first inductor, wherein the diaphragm comprises material that flexes between a first position and a second position in response to the second input signal from the drive circuit.
Other features and advantages of the disclosure will become apparent by reference to the following description taken in connection with the accompanying drawings.
Reference is now made briefly to the accompanying drawings, in which:
Where applicable like reference characters designate identical or corresponding components and units throughout the several views, which are not to scale unless otherwise indicated.
Broadly, the discussion below focuses on embodiments of a lamp with a light source, e.g., one or more light-emitting diode (LED) device. These embodiments also incorporate an active cooling device to dissipate heat from the light source. This active cooling device generates movement of air (or other fluid) within the lighting device. The resulting airflow facilitates heat transfer, e.g., from the light source to other structures of the lighting device and/or out of the lighting device altogether. However, as set forth more below, the active cooling device uses components that are not only more cost effective as compared to conventional synthetic jet technology, but also integrate into the circuitry of the lamp to alleviate problems with ripple and other anomalies and variations in input signals that drive the LED devices. These variations can diminish the performance of the lamp.
Embodiments of the lamp 100 also have a base assembly 110 with a body 112 and a connector 114, both of which may house a variety of electrical elements and circuitry that drive and control the light source 102 and the active cooling module 108. Examples of the connector 114 are compatible with Edison-type lamp sockets found in U.S. residential and office premises as well as other types of sockets and connectors that can conduct electricity to the components of the lamp 100. These types of connectors outfit the lamp 100 to replace existing light-generating devices, e.g., incandescent light bulbs, compact fluorescent bulbs, etc. For example, the lamp 100 can substitute for any one of the variety of A-series (e.g., A-19) incandescent bulbs often used in light-emitting devices.
During operation of the lamp 200, the power source 218 provides a power input signal 226 to the drive circuit 216. The power input signal 226 can arise, for example, from a socket in a light fixture in which the lamp 200 secures. In response to the power input signal 226, the drive circuit 216 generates a first input signal 228 and a second input signal 230. The first input signal 228 energizes the light source 202 and the field generator 220. This configuration causes the light source 202 to generate light and the field generator 220 to generate the magnetic field 224. The second input signal 230 stimulates the actuator 222. In one example, the magnetic field 224 works in conjunction with rapid movement of the actuator 222 to propagate airflow for cooling the light source 202.
Examples of the field generator 220 become magnetized under electrical stimulation. This component generates the magnetic field 224 with the same characteristics as rare earth permanent magnets, but at much lower costs. To this end, use of the field generator 220 can replace the rare-earth permanent magnets that are used in connection with conventional synthetic jet devices. This feature may reduce or eliminate the costs of the rare-earth permanent magnet with components (e.g., the field generator 224) that are much less expensive. Moreover, as set forth below, coupling the field generator 220 with the light source 202 can smooth variations in the first input signal 228 that can effect operation of the light source 202.
Examples of the LED driver circuit 356 and the actuator driver circuit 358 (collectively, “driver circuits”) generate signals that energize the LED device 332, the inductor 336, and the diaphragm 348. These driver circuits can comprise various combinations of discrete and/or integrated electrical elements (e.g., transistors, resistors, capacitors, diodes, etc.). In one embodiment, the elements of the driver circuits can operate on an alternating current (AC) input (e.g., the power input signal 326). For example, the elements of the actuator driver circuit 358 can tune the waveform of the alternating current (AC) input so the resulting AC input (e.g., the second input signal 330) has parameters (e.g., current, voltage, waveform, etc.) that cause the diaphragm 348 to move (and/or oscillate) between the first position 352 and the second position 354 at a desired frequency. In one construction, the parameters of the resulting AC input determine the frequency and/or speed at which the movement of the diaphragm 348 occurs.
On the other hand, elements of the LED driver circuit 356 can convert the alternating current (AC) input to a direct current (DC) input (e.g., the first input signal 328). This DC input can have parameters (e.g., current, voltage, waveform, etc.) that comport with operation of the LED device 332. Moreover, as set forth above, although the conversion of the AC input to DC input may inject (or cause) ripple in the DC input, coupling the inductor 336 in series with the LED device 332 helps to smooth out the variations to improve performance of the LED device 332.
Form factors for the body 340 can include the “E” structure shown in
As shown in
Moreover,
In the example of
As shown in
In light of the foregoing discussion, embodiments of the lamps (e.g., lamps 100, 200, 300, 400, 500, 600 of
As used herein, an element or function recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural said elements or functions, unless such exclusion is explicitly recited. Furthermore, references to “one embodiment” of the claimed invention should not be interpreted as excluding the existence of additional embodiments that also incorporate the recited features.
This written description uses examples to disclose embodiments of the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.