The present invention relates to a lamp for vehicles. In particular, the present invention relates to a lamp for vehicles, which is capable of reliably attaching an attached member such as a lens holder or a reflector to an attachment member such as a heat sink member without using a screw or the like.
Conventionally, a lamp for vehicles of this type is conventionally known (for example, Patent Literature 1). Hereinafter, a conventional lamp for vehicles will be described. The conventional lamp for vehicles forms an engagingly locking protrusion at a lens holder; forms an engagingly locking hole in a heat sink; and engagingly locks the engagingly locking protrusion with the engagingly locking hole in one direction to thereby attach the lens holder to the heat sink.
Patent Literature 1: Japanese Unexamined Patent Application Publication No. 2012-119260
However, the conventional lamp for vehicles engagingly locks the engagingly locking protrusion with the engagingly locking hole in one direction and thus there may be a case in which any shuddering is generated in an opposite direction to one direction in which the engagingly locking protrusion and the engagingly locking hole engage with each other.
A problem to be solved by the present invention is that, in the conventional lamp for vehicles, there may be a case in which any shuddering is generated.
A lamp for vehicles according to first aspect of the invention, comprising: a light source; an attachment member; and an attached member, wherein at the attachment member and the attached member, attachment structures to attach the attached member to the attachment member are respectively provided, the attachment structures each are composed of: an attachment section which is provided at least at either one of the attachment member and the attached member, and which has an insertion space section; and an attachment hook section which is provided at least at another one of the attachment member and the attached member, and which is inserted into the insertion space section and then is moved in a direction crossing the insertion direction to thereby interpose the attachment section between the attachment hook section and at least said another one of the attachment member and the attached member and then attach the attached member to the attachment member.
The lamp for vehicles according to second aspect of the invention, wherein the attachment hook section is composed of: an interposing section which is provided to oppose to at least at said another one of the attachment member and the attached member, and which interposes the attachment section; and a positioning section which is provided in the movement direction between at least said another one of the attachment member and the attached member and the interposing section, and which abuts against an edge at the movement direction side of the insertion space section and then determines a position in the movement direction.
The lamp for vehicles according to third aspect of the invention, wherein, at said another one of the attachment member and the attached member, in a state in which the positioning section abuts against the edge at the movement direction side of the insertion space section, there is provided a slip stop section to abut against an opposite edge to the edge at the movement direction side and then determine an opposite position to the movement direction and then stop the attachment hook section from slipping off from the attachment section.
The lamp for vehicles, according to fourth aspect of the invention, wherein the positioning section and the edge at the movement direction side of the insertion space section against which the positioning section abuts are provided at least by two in a direction crossing the insertion direction and the movement direction.
The lamp for vehicles according to fifth aspect of the invention, wherein the movement direction is a direction crossing a gravitational direction.
A lamp for vehicles according to sixth aspect of the present invention, comprising: an attachment member to which a light source is attached; an attached member; and an attachment structure to attach the attached member to the attachment member, wherein the attachment structure is composed of: an attachment section which is provided at least at either one of the attachment member and the attached member, and which has an insertion space section; and an attachment hook section which is provided at least at another one of the attachment member and the attached member and which is inserted into the insertion space section, and which is moved in a direction crossing the insertion direction to thereby interpose the attachment section between the attachment hook section and at least said another one of the attachment member and the attached member and then attach the attached member to the attachment member, wherein the attachment structure is provided in plurality, wherein, in a front view, the light source is positioned inside of a plurality of the attachment structures, and wherein, in a front view, distances between the respective attachment structures and the light source are substantially equal to each other.
The lamp for vehicles, according to seventh aspect of the invention, wherein the attachment hook section is provided at least by one in a direction crossing the movement direction, and is composed of: a rising plate section which is provided to rise in the insertion direction from at least another one of the attachment member and the attached member; an interposing plate section which is extended from the rising plate section in the movement direction, and which interposes the attachment section between the interposing plate and at least said another one of the attachment member and the attached member; and a reinforcement plate section which is provided at one side of a respective one of the rising plate section and the interposing plate section, said one side being at a symmetrical position with respect to the movement direction.
In so far as the lamp for vehicles, of the present invention, is concerned, an attachment portion of at least either one of an attachment member and an attached member is interposed from both sides between another one of the attachment member and the attachment member (hereinafter, merely referred to as “another one of the attachment member and the attached member”) and an attachment hook section, and the attached member is attached to the attachment member. Thus, any shuddering in an opposite direction to a direction in which the attachment section and another one of the attachment member and the attached member abut against each other can be eliminated by way of a mutual abutment between the attachment section and an attachment hook section. On the other hand, any shuddering which is generated in the opposite direction to the direction in which the attachment section and the attachment hook section abut against each other can be eliminated by way of a mutual abutment between the attachment section and the another one of the attachment member and the attached member. Thus, the attached member can be reliably attached to the attachment member without using a screw or the like.
An embodiment (example) and a modification example of a lamp for vehicles, according to the present invention, will be described with reference to the drawings. It is to be noted that the present invention is limited by the embodiment. In the specification, the front, rear, top, bottom, left, and right are respectively equivalent to the front, rear, top, bottom, left, and right when the lamp for vehicles, according to the present invention, is mounted on a vehicle.
(Lamp 1 for Vehicles)
The lamp 1 for vehicles, as shown in
(Lamp Unit 2, 3, 4, 5)
The semiconductor-type light source 2, the lens 3, the lens holder 4, and the heat sink member 5 constitute a lamp unit. The lamp housing and the lamp lens partition a lamp room (not shown). The lamp unit formed by the constituent elements 2, 3, 4, 5 is disposed in the lamp room, and is attached to the lamp housing via an optical axis adjustment mechanism for vertical direction (not shown) and an optical axis adjustment mechanism for transverse direction (not shown).
(Semiconductor-Type Light Source 2)
The semiconductor-type light source 2, as shown in
The light emission surface of the light emitting chip is oriented to a front side of a reference optical axis (a reference axis) Z of the lens 3. A center of the light emission surface of the light emitting chip is positioned at or near a reference focal point of the lens 3, and is positioned on or near the reference optical axis Z of the lens 3.
In
The light source holder 21 is positioned and attached to a light source holder attachment section 51 of the heat sink member 5 by way of a screw 22. In the light source holder 21, a holder section to hold the semiconductor-type light source 2 at the heat sink member 5; and a terminal, a circuit, and a connector to supply power to the semiconductor-type light source 2 are respectively provided at their appropriate positions.
(Lens 3)
The lens 3, as shown in
In so far as the shape of the lens 3 is concerned, a thickness on or near the reference optical axis X is the largest, and its thickness becomes smaller as it is spaced from the reference optical axis Z. Thus, a gravity of the lens 3 is positioned on or near the reference optical axis X.
The lens 3 is positioned and retained at the lens holder 4. The lens 3 is positioned and attached to the heat sink member 5 via the lens holder 4. The lens 3 transmits light from the semiconductor-type light source 2 through transmit the lens section 30 and then the transmitted light is emitted to the outside.
The lens section 30 is composed of: an incidence surface 32 at a rear side of the lens 3; and an emission surface 33 at a front side of the lens 3. The incidence surface 32 forms a convex curved face which protrudes to the semiconductor-type light source 2 side, a concaved curved face which is recessed to an opposite side to the semiconductor-type light source 2, a face formed of a combination thereof, or a plane. The incidence surface 32 is composed of: a free curved face; a quadratic curved face, a composite quadratic curved face, or a face made of a combination thereof; or a plane. The emission surface 33 forms a convex curved face that protrudes to an opposite side to the semiconductor-type light source 2. The emission surface 33 is composed of a free curved face, a quadratic curved face, a composite quadratic curved face, or a face formed of a combination thereof.
The auxiliary lens section is integrally provided at a lower center part of a peripheral edge part of the lens section 30. The auxiliary lens section is composed of an incidence surface, a reflection surface, and an emission surface.
The flange section 31 is integrally provided at (all or part) of a peripheral edge part of a respective one of the lens section 30 and the auxiliary lens section. A rear face of the flange section 31 is made of a free curved face or a plane that is substantially similar to the incidence surface 32. A front face of the flange section 31 is made of a free curved face that is substantially similar to the emission surface 33. A shape in a front view of an edge (an end face or an exterior face) of the flange section 31 forms a noncircular shape like the shape in the front view of the lens section 30.
(Lens Holder 4)
The lens holder 4 is composed of a resin member having elasticity and a lower thermal conductivity thereof than that of the heat sink member 5 (having a large thermal resistance), for example, a resin member. The lens holder 4, as shown in
The lens holder 4 positions and holds the lens 3. The lens holder 4 is positioned and attached to the heat sink member 5. As a result, the lens 3 is positioned and attached to the heat sink member 5 via the lens holder 4.
The holding cylindrical section 41 forms a cylindrical shape. A shape in a front view of the holding cylindrical section 41 forms a noncircular shape like the shape in the front view of the lens 3. An inner circumferential face of the holding cylindrical section 41 forms a shape that is slightly larger than an outer circumferential face of an edge of the flange section 31 of the lens 3.
The holding edge part 42 forms a flange shape, and is integrally provided inside of the holding cylindrical section 41 from one end (a front side edge) of the holding cylindrical section 41. At a center part of the holding edge part 42, the opening section 40 is provided. A shape in a front view of the inner circumferential face of the holding edge part 42 (that is, an edge of the opening section 40) forms a noncircular shape like the shape in the front view of the lens section 30 of the lens 3. The inner circumferential face of the holding edge part 42 forms a shape which is slightly smaller than the outer circumferential face of the edge of the flange section 31 of the lens 3 and which is slightly larger than a boundary between the lens section 30 and the flange section 31.
The mounting plate section 43 forms a shape of a plate, and is integrally provided upper outside and lower outside of the holding cylindrical section 41 from an upper part and a lower part of another end (an edge of a rear side) of the holding cylindrical section 41. A shape in a front view of an external shape of the mounting plate section 43 forms a substantial rectangular shape. That is, an intermediate part of both of the left and right edges of the mounting plate section 43 is a part of both of the left and right side parts of the holding cylindrical section 41, and forms a curved shape.
The reinforcement rib section 44 forms a rib shape, and is integrally provided at a front side from four edges of the mounting plate section 43. A shape in a front view of the reinforcement rib section 44 forms a substantially rectangular shape that is substantially similar to the shape in the front view of the external shape of the mounting plate section 43. That is, the reinforcement rib section 44 of an upper side forms a U-shape of which lower side opens, and the reinforcement rib section 44 of a lower side forms a U-shape of which an upper side opens.
(Heat Sink Member 5)
The heat sink member 5 is a mounting member to which the semiconductor-type light source 2 and the lens holder 4 are mounted and to which the lens 3 is mounted via the lens holder 4. The heat sink member 5 radiates, to the outside, a heat that is generated at the semiconductor-type light source 2. The heat sink member 5 is made of an aluminum die-cast or a resin member having thermal conductivity, for example. The heat sink member 5, as shown in
At a center part of a mounting surface (a plane or a substantial plane) of another face (a front face) of the vertical plate section 52 of the heat sink member 5, a substantially cross-shaped recessed part 54 is provided. At a center part of a bottom face of the recessed part 54, the light source mounting section 50 is provided. On the bottom face of the recessed part 54 and at the periphery of the light source mounting section 50, the light source holder attachment section 51 is provided.
(Positioning Section)
At the lens 3 and the lens holder 4, positioning sections are respectively provided. The positioning sections each determine a position of the lens 3 with respect to the lens holder 4. The positioning sections each are composed of an XY-positioning section, a rotation positioning section, and a Z-positioning section.
(XY-Positioning Section)
The XY-positioning section determines positions of the X-axis direction and the Y-axis direction of the lens 3. The XY-positioning section, as shown in
The protrusion section 60 of the XY-positioning section is provided at a part of the lower right side of the inner circumferential face of the holding cylindrical section 41 of the lens holder 4. It is sufficient if the protrusion section 60 of the XY-positioning section is partially composed of a curved face part at which the contact surface 61 comes into contact with the two parts or the straight line. For example, this protrusion section may be a pin. The contact surface 61 of the XY-positioning section is provided to correspond to the protrusion section 60 at the part of the lower right side of the flange section 31 of the lens 3. The contact surface 61 of the XY-positioning section is made of two V-planes or one curved face.
(Rotation Positioning Section)
The rotation positioning section determines a position in a rotation direction on an XY-plane about the XY-positioning section of the lens 3 (about the curved face part of the protrusion section 60). The rotation positioning section, as shown in
The protrusion section 62 of the rotation positioning section is provided at a part of the lower right side of the inner circumferential face of the holding cylindrical section 41 of the lens holder 4. It is sufficient if the protrusion section 62 of the rotation positioning section is partially composed of a curved face part at which the contact surface 63 comes into contact with one point or comes into contact the straight line. For example, this protrusion section may be a pin. The contact surface 63 of the rotation positioning section is provided to correspond to the protrusion section 62 at a part of the lower left side of the flange section 31 of the lens 3. The contact surface 63 of the rotation positioning section forms a plane or a curved face.
(Z-Positioning Section)
The Z-positioning section determines a position in the Z-axis direction of the lens 3 (in the Z-axis direction of the reference optical axis). The Z-positioning section of the lens holder 4 is composed of a pressing section 70 and a positioning surface 71. On the other hand, the Z-positioning section of the lens 3 is composed of: a receiving-protrusion section 72 as a receiving section; and a positioning protrusion section 73 as a positioning abutment section.
The pressing section 70 is provided protrusively inside of the lens holder 4 at a respective one of three parts, an upper center and both of lower left and right sides of the holding cylindrical section 41 of the lens holder 4. At the both of the left and right sides and a front side of the pressing section 70 (a boundary between the holding cylindrical section 41 and the holding edge part 42), recess-shaped cutouts 74 are provided. As a result, the pressing section 70 has elasticity thereof in a perpendicular direction or in a substantially perpendicular direction with respect to the Z-axis direction of the reference optical axis of the lens 3 (the Z-axis direction). The pressing section 70 presses the lens 3 in the Z-axis direction.
The positioning surface 71 is provided to oppose to the pressing section 70 on a respective one of the interior faces (rear faces) of three parts, an upper center and both of lower left and right sides of the holding edge part 42 of the lens holder 4. The positioning surface 71 is a surface that is orthogonal to or substantially orthogonal to the Z-axis direction of the reference optical axis of the lens 3.
The positioning protrusion section 73 is provided to correspond to a surface which opposes to the positioning surface 71, of the flange section 31 of the lens 3, and to correspond to the positioning surface 71, at a respective one of the upper center and both of the lower left and right sides of the flange section 31. The positioning protrusion section 73 forms a minute conical trapezoidal shape. That is, an apex of the positioning protrusion section 73 is made of a minute plane that is perpendicular to or substantially perpendicular to the reference optical axis Z. As a result, the positioning protrusion section 73 abuts against the positioning surface 71 on the minute plane due to a pressing force of the pressing section 70 that is received on the receiving-protrusion section 72. It is to be noted that a shape of the positioning protrusion section 73 may be a shape other than the conical trapezoidal shape, for example, a columnar shape, or alternatively, may form a hemispheric shape and abut against the positioning surface 71 at a point.
The receiving-protrusion section 72 is provided to correspond to a surface which opposes to the pressing section 70 of the flange section 31 of the lens 3 and the pressing section 70 at a respective one of the three parts, the upper center and both of the lower left and right sides of the flange section 31. The receiving-protrusion section 72 forms a protrusion stripe shape along an edge of the flange section 31. An exterior face of the receiving-protrusion section 72 forms a curved face. As a result, the receiving-protrusion section 72 receives the pressing force of the pressing section 70 in a linear shape or in a substantially linear shape along the edge of the flange section 31.
Lower two of the three pressing section 70, the positioning surface 71, the receiving-protrusion section 72, and the positioning protrusion section 73 of the Z-positioning section are respectively positioned between the protrusion section 60 and the contact surface 61 of the XY-positioning section and between the protrusion section 62 and the contact surface 63 of the rotation positioning section. The three pressing section 70, the positioning surface 71, the receiving-protrusion section 72, and the positioning protrusion section 73 of the Z-positioning section are respectively disposed at positions which surround a gravity of the lens 3.
(Gap Narrowing Section)
At the lens 3 and the lens holder 4, gap narrowing sections are respectively provided. The gap narrowing sections narrow a gap between the protrusion section 60 and the contact surface 61 of the XY-positioning section and a gap between the protrusion section 62 and the contact surface 63 of the rotation positioning section. That is, the gap narrowing sections position the lens 3 reliably without any shuddering being generated, at a position which is determined by the XY-positioning section (the position in the X-axis direction and the Y-axis direction) and a position which is determined by the rotation positioning section (the position in the rotation direction on the XY-plane).
The gap narrowing section of the lens 3, as shown in
The gap narrowing section of the lens holder 4, as shown in
The protrusion section 60 and the contact surface 61 of the XY-positioning section; the protrusion section 62 and the contact surface 63 of the rotation positioning section; and the two receiving surfaces 64 and the protrusion sections 65 of the gap narrowing section are respectively disposed at positions which surround a gravity of the lens 3.
(Attachment Structure)
At the lens holder 4 and the heat sink member 5, attachment structures are respectively provided. The attachment structures reliably attach the lens holder 4 that holds the lens 3, to the heat sink member 5, without using a screw, without any shuddering being generated.
The attachment structure of the lens holder 4, as shown in
The attachment structure of the heat sink member 5, as shown in
The attachment structures, as shown in
(Attachment Hook Section 80)
The attachment hook section 80 is inserted into the attachment hole section 84 in an opposite direction to the Z-axis direction and then is moved in a direction crossing the insertion direction, that is, in an opposite direction to the X-axis direction, to thereby attach the lens holder 4 to the heat sink member 5. That is, the attachment hook section 80, between the mounting plate sections 43 of the lens holder 4, interposes the surface attachment section 83 and the back face attachment section 830 from both sides, that is, in the insertion direction (the opposite direction to the Z-axis direction) and in an opposite direction to the insertion direction (the Z-axis direction) to thereby attach the lens holder 4 to the heat sink member 5. The movement direction (the opposite direction to the X-axis direction and refer to the solid arrow in
The attachment hook section 80, as shown in
The rising plate section 802 rises in the insertion direction from an edge at the X-axis direction side of the opening section 803, and is integrally provided at the mounting plate section 43 of the lens holder 4.
The interposing plate section 800 is an interposing section, and is integrally protruded from the rising plate section 802 in the movement direction. The interposing plate section 800 and the rising plate section 802 each form an L-shape, that is, a hook shape.
The interposing plate section 800 is provided to oppose to an edge of the opening section 803. The interposing plate section 800, as shown in
The reinforcement plate section 801 is one side of a respective one of the rising plate section 802 and the interposing plate section 800, and is integrally provided at one side which is a symmetrical position with respect to the movement direction, in this example, at the outside. That is, the reinforcement plate section 801 at an upper side is provided between an outside edge in the Y-axis direction of the opening section 803 and the interposing plate section 800. The reinforcement plate section 801 at a lower side is provided between an outside edge in the opposite direction to the Y-axis direction of the opening section 803 and the interposing plate section 800.
The reinforcement plate section 801 integrally communicates with the rising plate section 802 in an L-shape. The reinforcement plate section 801 reinforces rigidities of the interposing plate section 800 and the rising plate section 802. The reinforcement plate section 801, as shown in
(Slip Stop Section 81)
At three sides other than the attachment hook section 80 side of the slip stop section 81, U-shaped cutouts 810 are provided. As a result, the slip stop section 81 has elasticity thereof in the Z-axis direction and the opposite direction to the Z-axis direction. A tip end part of the slip stop section 81 (an end part which is opposite to the attachment hook section 80) forms a lance shape.
The slip stop section 81, as shown in
(Mounting Hole Section 84)
The attachment hole section 84, as shown in
The reinforcement plate section 801 and the edge 840 at the movement direction side are provided at least by two in a direction crossing the insertion direction and the movement direction, that is, in the Y-axis direction and the opposite direction to the Y-axis direction. In this example, two of which are provided on the top and bottom of the left side part of a respective one of the lens holder 4 and the heat sink member 5 and the remaining two of which are provided on the top and bottom of the right side part thereof.
(Positioning Hole 82 and Positioning Pin 85)
The positioning hole 82, as shown in
At the mounting plate section 43 of the lens holder 4 and at an edge of one side of the communication section of the positioning hole 82, an elongated hole 820 is provided. A portion between the communication section of the positioning hole 82 and the elongated hole 820 constitutes an elastic section 822 having elasticity thereof in the Y-axis direction and the opposite direction to the Y-axis direction. Both end parts of the elastic section 822 each are connected to the mounting plate section 43 of the lens holder 4 via a connection section 821. That is, the elastic section 822 forms a doubly-supported beam structure by way of the connection sections 821 at both end parts.
(Attachment Method)
The lamp 1 for vehicles, according to the embodiment, is made of the constituent elements as described above, and hereinafter, a description of assembling will be given.
First, the semiconductor-type light source 2 is set to the light source mounting section 50 of the heat sink member 5. Also, the light source holder 21 is attached to the light source holder attachment section 51 of the heat sink member 5 by way of the screw 22. As a result, the semiconductor-type light source 2 is attached to the heat sink member 5 via the light source holder 21.
Next, the emission surface 33 of the lens 3 is positioned at a front side, and the holding edge part 42 of the lens holder 4 is positioned at a front side. This lens 3 is inserted into the holding cylindrical section 41 of the lens holder 4 in the Z-axis direction. Then, the receiving-protrusion section 72 and the positioning protrusion section 73 of the Z-positioning section at the lens 3 side are interposed between the pressing section 70 and the positioning surface 71 of the Z-positioning section at the lens holder 4 side, and are fixed in the Z-axis direction by way of the pressing force of the pressing section 70. As a result, the lens 3 is fixed and held at the lens holder 4 in the Z-axis direction and the opposite direction to the Z-axis direction in a state in which positions in the Z-axis direction and the opposite direction to the Z-axis direction are determined.
In this state, as shown in
Subsequently, as shown in
Afterwards, the lens holder 4 holding the lens 3 is moved (slid) in the opposite direction to the X-axis direction with respect to the heat sink member 5. Then, as shown in
As a result, the lens holder 4 holding the lens 3 is fixed to the heat sink member 5 in the X-axis direction and the opposite direction to the X-axis direction, in the Y-axis direction and the opposite direction to the Y-axis direction, and in the Z-axis direction and the opposite direction to the Z-axis direction. In this manner, the lamp 1 for vehicles, according to the embodiment, is assembled.
The lamp 1 for vehicles, according to the embodiment, is made of the constituent elements as described above, and hereinafter, a description of functions thereof will be given.
In the lamp 1 for vehicles, assembled as described above, a light emitting chip of the semiconductor-type light source 2 is lit and light-emitted. Then, a major part of the light that radiated from the light emitting chip is directly made incident into the lens section 30 from the incidence surface 32 of the lens section 30 of the lens 3. At this time, the incident light is controlled to be optically distributed in the incidence surface 32. The incident light having been made incident into the lens section 30 is emitted from the emission surface 33 of the lens section 30. At this time, the emitted light is controlled to be optically distributed in the emission surface 33. The emitted light from the lens section 30 is emitted toward a forward direction of a vehicle, as a predetermined light distribution pattern, for example, a low-beam light distribution pattern or a high-beam light distribution pattern.
In addition, a minor part of the light that is radiated from the light emitting chip is directly made incident into the auxiliary lens section from the incidence surface of the auxiliary lens section of the lens 3. At this time, the incident light is controlled to be optically distributed in the incidence surface. The incident light having been made incident into the auxiliary lens section is reflected on a reflection surface of the auxiliary lens section. At this time, the reflected light is controlled to be optically distributed in the reflection surface.
Further, a heat which is generated in the light emitting chip of the semiconductor-type light source 2 is radiated to the outside via the heat sink member 5.
The lamp 1 for vehicles, according to the embodiment, is made of the constituent elements and functions as described above, and hereinafter, advantageous effect thereof will be described.
The lamp 1 for vehicles, according to the embodiment, interposes the surface attachment section 83 and the back face attachment section 830 of the heat sink member 5 between the mounting plate section 43 of the lens holder 4 and the interposing plate section 800 of the attachment hook section 80 and then attaches the lens holder 4 to the heat sink member 5. Thus, any shuddering which is generated in the opposite direction to the direction in which the surface attachment section 83 and the mounting plate section 43 of the lens holder 4 abut against each other can be eliminated by way of a mutual abutment between the back face attachment section 830 and the interposing plate section 800 of the attachment hook section 80. On the other hand, any shuddering which is generated in the opposite direction to the direction in which the back face attachment section 830 and the interposing plate section 800 of the attachment hook section 80 abut against each other can be eliminated by way of a mutual abutment between the surface attachment section 83 and the mounting plate section 43 of the lens holder 4. Thus, the lens holder 4 can be reliably attached to the heat sink member 5 without any shuddering being generated in the Z-axis direction and the opposite direction to the Z-axis direction without using a screw or the like. Moreover, the positions in the Z-axis direction and the opposite direction to the Z-axis direction can be determined by way of interposing.
In particular, in so far as the lamp 1 for vehicles, according to the embodiment, is concerned, four sets of attachment structures are provided, and in a front view, the semiconductor-type light source 2 is positioned inside of the four sets of attachment structures (that is, inside of a rectangle connecting the four sets of attachment structures to each other). On the other hand, a gravity of the lens 3 is positioned on or near the reference optical axis Z, that is, at or near the semiconductor-type light source 2. Thus, a load that is generated by vibration or impact or the like is dispersed to be substantially equal to the four sets of attachment structures. As a result, the lens holder 4 at which the lens 3 is fixed and held can be held to be stable at the heat sink member 5. That is, the lens 3 can be held to be stable.
Moreover, in so far as the lamp 1 for vehicles, according to the embodiment, is concerned, in a planar view, distances between the respective attachment structures and the semiconductor-type light source 2 are substantially equal to each other. Thus, the load that is generated by the vibration or impact or the like is dispersed to be reliable and substantially equal to the four sets of attachment structures. As a result, the lens 3 can be held to be reliable and stable.
Moreover, in so far as the lamp 1 for vehicles, according to the embodiment, is concerned, the respective attachment structures are on a same plane or on a substantially same plane which is orthogonal to or is substantially orthogonal to the reference optical axis Z of the lens 3 (the face of the mounting plate section 43 and the face of the vertical plate section 52). Thus, the load that is generated by the vibration or impact or the like is dispersed to be further reliable and substantially equal to the four sets of attachment structures. As a result, the lens 3 can be held to be further reliable and stable.
In particular, in so far as the lamp 1 for vehicles, according to the embodiment, is concerned, in the attachment hook section 80, the reinforcement plate section 801 is integrally provided at one side of a respective one of the rising plate section 802 of an L-shape (a hook shape) and the interposing plate section 800. Thus, rigidity of the attachment hook section 80 can be enhanced. As a result, the lens holder 4 at which the lens 3 is fixed and held can be held to be stable at the heat sink member 5. That is, the lens 3 can be held to be stable.
Moreover, in so far as the lamp 1 for vehicles, according to the embodiment, is concerned, the reinforcement plate section 801 is integrally provided at one side of the respective one of the rising plate section 802 and the interposing plate section 800, such one side being at a symmetrical position with respect to the movement direction, in this example, at the outside. Thus, when the load that is generated by the vibration or impact or the like is applied to the four sets of attachment structures and then the attachment hook section 80 elastically deforms (slackens), the resistance forces thereof are cancelled to each other as indicated by the solid arrow in the vertical direction in
Thus, the lamp 1 for vehicles, according to the embodiment, is capable of holding the lens 3 to be stable and thus the position precision of each part is improved. Also, an area of the vertical plate section 52 of the heat sink member 5 (an area in which the mounting plate section 43 of the lens holder 4 at which the lens 3 is fixed and held is to be attached) can be restrained to the minimum. In this manner, weight reduction and inexpensiveness of manufacturing costs can be achieved.
In so far as the lamp 1 for vehicles, according to the embodiment, is concerned, the reinforcement plate section 801 that is provided in the movement direction between the mounting plate section 43 of the lens holder 4 and the interposing plate section 800 is guided by way of the edge 840 at the movement direction side of the attachment hole section 84 of the heat sink member 5. Thus, the movement direction is guided; and therefore, the lens holder 4 can be easily (smoothly) attached to the heat sink member 5 in the movement direction.
In so far as the lamp 1 for vehicles, according to the embodiment, is concerned, in a state in which the reinforcement plate section 801 is guided by way of the edge 840 at the movement direction side of the attachment hole section 84, the slip stop section 81 of the lens holder 4 is positioned, and abuts against the edge 841 that is opposite to the attachment hole section 84 of the heat sink member 5. Thus, it is possible to restrain movement (sliding) of the lens holder 4 in the X-axis direction with respect to the heat sink member 5. That is, the lens holder 4 can be reliably attached to the heat sink member 5 without using a screw or the like without any shuddering being generated in the X-axis direction and opposite direction to the X-axis direction.
In so far as the lamp 1 for vehicles, according to the embodiment, is concerned, the reinforcement plate section 801 and the edge 840 at the movement direction side are provided by a total of four, two of which are provided at the top and bottom of the left side part of a respective one of the lens holder 4 and the heat sink member 5 and two of which are provided at the top and bottom of the right side part, in the direction crossing the insertion direction and the movement direction, that is, in the Y-axis direction and the opposite direction to the Y-axis direction. Thus, two reinforcement plate sections 801 at the top and bottom in the Y-axis direction and the opposite direction to the Y-axis direction are respectively guided by the two edges 840 at the top and bottom at the movement direction side in the Y-axis direction and the opposite direction to the Y-axis direction. As a result, the lens holder 4 can be attached to the heat sink member 5 without using a screw or the like without any shuddering being generated in the Y-axis direction and the opposite direction to the Y-axis direction.
In particular, in so far as the lamp 1 for vehicles, according to the embodiment, is concerned, the positioning pin 85 of the heat sink member 5 is positioned to cut into the communication section of the positioning hole 82 of the hens holder 4. At this time, as shown in
The lamp 1 for vehicles, according to the embodiment, moves (slides) and attaches the lens holder 4 to the heat sink member 5 in the opposite direction to the X-axis direction. Thus, the movement direction of the lens holder 4, that is, the opposite direction to the X-axis direction is a gravitational direction, that is, the direction crossing (orthogonal to or substantially orthogonal to) the opposite direction to the Y-axis direction. Thus, the lens holder 4 can be reliably attached to the heat sink member 5 without any shuddering being generated with respect to the vibration or impact in the Y-axis direction and the opposite direction to the Y-axis direction of the vehicle.
The lamp 1 for vehicles, according to the embodiment, in the attachment hook section 80, provides the rising plate section 802 between the edge of the opening section 803 and the interposing plate section 800 or the reinforcement plate section 801, and reinforces rigidities of the interposing plate section 800 and the reinforcement plate section 801. Thus, interposition of the interposing plate section 800 and abutment of the reinforcement plate section 801 can be reliably carried out. In this manner, the lens holder 4 can be reliably attached to the heat sink member 5 without any shuddering being generated.
In so far as the lamp 1 for vehicles, of the foregoing embodiment, is concerned, as shown in
The embodiment and modification example are examples in which a low-beam light distribution pattern and a high-beam light distribution pattern are used in a headlamp for vehicles, such as a headlamp to emit light toward the forward direction of the vehicle. However, in the present invention, these light distribution patterns can also be used in an auxiliary headlamp such as a fog lamp or a lamp for vehicle such as an additional lamp, a tail lamp, a stop lamp, or a tail stop lamp.
In addition, in the embodiment and modification example, the semiconductor-type light source 2 is used as a light source. However, in the present invention, a light source other than the semiconductor-type light source 2 (a light emitting body, a light emitting element, a light emitting member, or a light emitting device) may be used as a light source.
Further, in the embodiment and modification example, the attachment hook section 80 and the slip stop section 81 are provided at the lens holder 4, and the surface attachment section 8, the back face attachment section 830, and the attachment hole section 84 are provided at the heat sink member 5. However, in the present invention, it may be that the surface attachment section 83, the back face attachment section 830, and the attachment hole section 84 are provided at the lens holder 4, and the attachment hook section 80, whereas the attachment hook section 80 and the slip stop section 81 are provided at the heat sink member 5. Also, it may be that the attachment hook section 80, the slip stop section 81, the surface attachment section 83 and the back face attachment section 830, and the attachment hole section 84 are provided at the lens holder 4, whereas the surface attachment section 83 and the back face attachment section 830, the attachment hole section 84, the attachment hook section 80, and the slip stop section 81 are respectively provided so as to correspond to each other.
Furthermore, in the embodiment and modification example, four attachment hook sections 80, four slip stop sections 81, four surface attachment sections 83 and four back face attachment sections 830, and four attachment hole sections 84 are provided. However, in the present invention, the attachment hook section 80, the slip stop section 81, the surface attachment section 83 and the back face attachment section 830, and the attachment hole section 84 may be provided solely or in plurality.
Still furthermore, in the embodiment and modification example, the surface attachment section 83 and the back face attachment section 830 are provided. However, the surface attachment section 83 and the back face attachment section 830 may not be provided.
Yet furthermore, in the embodiment and modification example, the positioning hole 82 and the positioning pin 85 are provided. However, in the present invention, the positioning hole 82 and the positioning pin 85 may not be provided.
Furthermore, in the embodiment and modification example, a uniquely shaped lens 3 which is formed in an elliptical shape in a front view is used. However, in the present invention, a circular lens formed in a front view may be used. In this case, a direction in which the lens holder is moved (slid) to the heat sink member may be a circular direction. Of course, the movement direction may be a longitudinal direction or a transverse direction.
Still furthermore, in the embodiment and modification example, the interposing section and the positioning section of the attachment hook section 80 are respectively composed of the interposing plate section 800 and the reinforcement plate section 801, each of which forms a plate shape. However, in the present invention, the interposing section and the positioning section of the attachment hook section may be composed of anything but the interposing plate section 800 and the reinforcement plate section 801, each of which forms a plate shape.
Yet furthermore, in the embodiment and modification example, four sets of attachment structures are provided; the semiconductor-type light source 2 is positioned inside of the four sets of attachment structures (that is, inside of a rectangle connecting the four sets of attachment structures to each other); and in a planar view, distances between the respective attachment structures and the semiconductor-type light source 2 are substantially equal to each other. However, in the present invention, it may be that: the attachment structures are provided in two sets, three sets, or five sets or more; in a planar view, the semiconductor-type light source 2 is positioned inside of two sets, three sets, and five sets or more of the attachment structures (that is, on the straight line connecting two sets of the attachment structures to each other or inside a triangle or a pentagon or more connecting three sets or five sets of the attachment structures); and in a planar view, distances between the respective attachment structures and the semiconductor-type light source 2 are substantially equal to each other.
Furthermore, in the embodiment and modification example, the reinforcement plate section 801 is integrally provided at one side of a respective one of the rising plate section 802 and the interposing plate section 800, at the outside that is at symmetrical position with respect to the movement direction. However, in the present invention, it may be that the reinforcement plate section 801 is integrally provided at one side of the respective one of the rising plate section 802 and the interposing plate section 800, at the inside that is a symmetrical position with respect to the movement direction, that is, at a respective one of the inside and the outside. In addition, it may be that the reinforcement plate section 801 is integrally provided at one side of the respective one of the rising plate section 802 and the interposing plate section 800, at a nonsymmetrical position with respect to the movement direction, that is, at a respective one of the inside and outside.
Number | Date | Country | Kind |
---|---|---|---|
2013-105405 | May 2013 | JP | national |
2013-170574 | Aug 2013 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/063046 | 5/16/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/185512 | 11/20/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1334762 | Kuen | Mar 1920 | A |
6382818 | Iwama et al. | May 2002 | B1 |
20060013000 | Coushaine et al. | Jan 2006 | A1 |
20100321947 | Hamashima | Dec 2010 | A1 |
20120236563 | Breidenassel | Sep 2012 | A1 |
Number | Date | Country |
---|---|---|
2006-032348 | Feb 2006 | JP |
2010-040315 | Feb 2010 | JP |
2012-119260 | Jun 2012 | JP |
2013-513197 | Apr 2013 | JP |
2013-082354 | May 2013 | JP |
WO-2012007902 | Jan 2012 | WO |
Number | Date | Country | |
---|---|---|---|
20160084470 A1 | Mar 2016 | US |