There is no cross-reference to a related application.
This invention was not made under any government contract and the United States Government has no rights under this invention.
This invention relates to lamp sockets and more particularly to an electrical contact for use in such sockets.
The mounting and connection of high-power lamps in ceramic sockets has presented many problems over the years. The use of ceramic materials, which have greater tolerances than counterpart plastic materials, has necessitated great complexity in the contacts employed in order to ensure both adequate electrical contact as well as mechanical holding ability. Often, in high-power lamps, the electrical lead-ins extend in a direction normal to the lamp axis and, this, too, has presented problems in the maintenance of good electrical contact and in holding ability. Known in the art are PCT Publications WO 03/056237 (Tiesler-Wittig et al.) and WO 2005/025014 (Verspaget et al.).
In one aspect, there is provided improved electrical contacts in sockets that receive lamps having electrical lead-ins projecting away from, such as perpendicular to, the lamp's longitudinal axis.
The electrical contact comprises a first electrically conductive segment that includes a first segment leading to a first reentrant portion, a first beam extending from the first reentrant portion to an electrical lead-in engager, a second reentrant portion connecting to a second beam that at least partially extends over the electrical lead-in engager, and a back-up spring having a configuration substantially conforming to the electrical contact and having a spring first segment leading to a first spring reentrant portion, a first spring beam extending from the first spring reentrant portion to a position adjacent the electrical lead-in engager, and a second spring reentrant portion connecting to a second spring beam that abuts the second beam.
The electrically conductive contact and the back-up spring, being in laminate relation, can use two different materials, wherein the contact material can be chosen for its, conductivity and the back-up spring can be chosen for its tension-providing qualities.
For purposes of this application it is to be understood that when an element or layer is referred to as being “on,” “connected to” or “coupled to” another element or layer, it can be directly on, connected to or coupled to the other element or layer or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly connected to” or “directly coupled to” another element or layer, there are no intervening elements or layers present. Like numbers refer to like elements throughout. The term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms “first,” “second,” “third,” “proximal” or “distal,” etc. may be used to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections are not to be limited by theses terms as they are used only to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, a first element, component, region, layer or section could be termed a second element, component, region, layer or section without departing from the scope and teachings of the present invention.
Spatially relative terms, such as “beneath,” “below,” “upper,” “lower,” “above” and the like may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the drawings. These spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation shown in the drawings. For example, if the device in the drawings is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the exemplary term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. For example, as used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms, “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
For a better understanding of the present invention, together with other and further objects, advantages and capabilities thereof, reference is made to the following disclosure and appended claims taken in conjunction with the above-described drawings.
Referring now to the drawings with greater particularity, there is shown in
Referring to
Referring to
A plurality of gaps exist, each defined at various places between the conductive segment 110 and the back-up spring 220, to prevent binding and to ensure that the load location is generally always at the same location. A first gap 350 is present between a portion of the first electrically conductive segment 110 and a portion of the back-up spring 220 at the region of the first reentrant portion 130; a second gap 351 is present between a portion of the electrical lead-in engager 150 of the electrically conductive segment 110 and a portion of the junction 261 of the back-up spring 220; and a third gap 352 is present between a portion of the second beam 170 and a portion of the second spring re-entrant portion 270 at the region of the second reentrant portion 160 of the conductive segment 110. It is understood that in order to modulate the loading behavior, the contact 100 and spring 220 can be so formed as to have any one of these first, second and third gaps and not the others, or any two of the gaps and not the other.
The first spring beam 260 is formed to provide a pre-selected force to the back-up spring 220 and can take any one of several forms. For example, as shown in
In the embodiment of
In the embodiment of
The contact 100 has a proximal portion 102 including a first locating tab 103 and a distal portion 104 including a second locating tab 105 which tabs are used to located the contact 100 within a socket, as will be explained hereinafter.
In a preferred embodiment of the invention, the first conductive segment 110 is constructed from nickel or a nickel alloy that can be, and preferably is, silver-plated and the back-up spring 220 is a material other than nickel or a nickel alloy, preferably, stainless steel. The dual-material contact 100 thus takes advantage of the excellent electrically conductive qualities of the silver-plated nickel and/or nickel alloy and the consistent force providing capabilities of the stainless steel back up spring which, as taught herein, can have the spring beam portion 260 tailored to provide a desired force upon the electrically conductive segment 110.
While the contact 100 can be employed in many situations, it is suited for use with lamps of high power that utilize sockets of high temperature resistant materials, such as ceramics.
For example, such a construction is shown in
An elongated slot 146 is formed in the second body portion 147 and electrical contacts 100 are positioned in the contact receiving areas 340 between the first socket body portion 141 and the second socket body portion 147. The proximal portion 102 of the electrical contact 100 has first locating tab 103 positioned in the slot 145 and the distal portion 104 has its second locating tab 105 positioned in the elongated slot 146.
The second socket body portion 147 includes a member 106 that extends from an inner surface thereof and has an end 107 in engagement with the first segment 102 of the contact 100. The member 106 and the first locating tab 103 and slot 145 serve to maintain the contact 100 in position. This latter arrangement is best seen in
The elongated slot 146 allows for movement of the distal portion 104 and the second locating tab 105 when a lamp 10 is inserted, thus preventing any binding.
Thus, there is provided an electrical contact for high power lamps that includes a first material to provide excellent electrical conductivity and a second material to provide tension. Additionally, the configuration of the second back-up spring 220 allows for the first spring beam 260 to take any of multiple forms that can be selected to provide specific tensioning requirements.
While there have been shown and described what are at present considered to be the preferred embodiments of the invention, it will be apparent to those skilled in the art that various changes and modifications can be made herein without departing from the scope of the invention as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2459647 | Hodgkins | Jan 1949 | A |
2663852 | Kershaw | Dec 1953 | A |
3678174 | Ganzhorn | Jul 1972 | A |
3880494 | Reed et al. | Apr 1975 | A |
3897124 | Pagnotta et al. | Jul 1975 | A |
4256989 | Trutner et al. | Mar 1981 | A |
4729073 | Klaus | Mar 1988 | A |
4885435 | Dix et al. | Dec 1989 | A |
5568009 | Gandhi | Oct 1996 | A |
5767617 | Wharmby et al. | Jun 1998 | A |
6932491 | Esakoff | Aug 2005 | B2 |
7025634 | Swantner et al. | Apr 2006 | B1 |
7441939 | Scholeno | Oct 2008 | B2 |
7731545 | Scholeno | Jun 2010 | B1 |
20080094856 | Garcia et al. | Apr 2008 | A1 |
20080136307 | Garcia et al. | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
850069 | Sep 1960 | GB |
03056237 | Jul 2003 | WO |
2005025014 | Mar 2005 | WO |