The present invention is directed to a lamp that includes two sources of light within the lamp, and more particularly to a lamp with two sources of light where one of the sources is a light-emitting diode (LED) and the other is not.
A lamp with two sources of light where one of the sources is a LED and the other is an incandescent filament is disclosed in Hofmann et al. US 2005/0105302A1. This reference discloses that light from the LED is radiated inside a double-walled bulb element and is reflected between the double walls of the bulb element in a manner so that the bulb element itself emits light throughout its length. The double-walled light-emitting bulb element may enclose an incandescent filament. The LED and the incandescent filament are driven separately from one another.
While this type of lamp affords certain advantages, the present inventor has found that the structure and manner in which this lamp is operated are desirably improved.
In addition, LEDs (especially white light emitters) can emit poor quality light with a relatively low color rendering index. Further, LEDs use a current limiting power supply or, more commonly, a ballasting resistor to maintain a stable light output and avoid overheating. Supply voltage must be well above the LED voltage for reliable and safe operation, and a minimum of 20 percent of the voltage is dropped across the ballasting resistor so power losses can be substantial. The driver that includes the ballasting resistor can be expensive and bulky, thereby limiting the use of LEDs in some lighting applications. The quality of light emitted from LED lamps, and the size and cost of lamps that include LEDs are desirably improved.
Sizes of incandescent filaments are determined, at least in part, by the operating parameters of the filament. For example, a filament designed for operation at 24W and 80V is shorter than a 36W/120V filament. Shorter filaments have improved optics and provide better shock resistance. It would be advantageous to provide a lower voltage through the filament so as to be able to use a shorter filament.
The above-noted Hofmann et al. reference also notes that the two light sources can have different color temperatures to vary the overall color temperature of the lamp. The LEDs can be placed in rings at ends of a tubular fluorescent lamp that has an incandescent filament at each end, where the filament is aligned perpendicular to a longitudinal axis of the fluorescent lamp. While this arrangement may be suitable when the bulb element of the fluorescent lamp is double-walled and emits light reflected throughout its length as it does in Hofmann et al., this reference does not suggest a suitable arrangement of the LEDs to uniformly change a color temperature of light emitted from other lamps such as a parabolic aluminized reflector (PAR) lamp that uses an incandescent or halogen lamp as its primary light source.
Color temperature characterizes spectral properties of a light source and is measured in degrees Kelvin. Lower temperatures correspond to warm (“yellow”) light while higher temperatures denote a cooler (“blue”) light.
An object of the present invention is to provide a novel hybrid lamp that avoids the problems of the prior art.
A further object of the present invention is to provide a novel lamp with both a light-emitting filament and a LED, where the LED is connected to receive its operating current through the filament, thereby avoiding the need for a separate driver for the LED and reducing a voltage through the filament to reduce filament size.
A yet further object of the present invention is to provide a novel lamp that includes a lamp base, a reflector, an incandescent or halogen lamp attached to the lamp base where the incandescent or halogen lamp includes a filament inside a bulb and the filament is aligned substantially along a longitudinal axis of the reflector, and one or more LEDs on the lamp base outside the bulb and positioned symmetrically with respect to the longitudinal axis where the LEDs receive an operating current through the filament so that the filament is a ballasting resistor for the LEDs.
A still further object of the present invention is to provide a novel lamp that includes a lamp base, an incandescent or halogen lamp that includes a filament inside a bulb where the filament is aligned substantially along a longitudinal axis of the incandescent or halogen lamp, and one or more LEDs on said lamp base outside the bulb and that are positioned symmetrically with respect to the longitudinal axis.
Another object of the present invention is to provide a novel hybrid lamp that uses a filamented incandescent or halogen lamp as a primary light source and in which blue or white LEDs with a higher color temperature than the filament light source are arranged symmetrically with respect to the filament so as to uniformly increase a color temperature of light from the lamp.
These and other objects and advantages of the invention will be apparent to those of skill in the art of the present invention after consideration of the following drawings and description of preferred embodiments.
With reference now to
Although LEDs operate efficiently on filtered DC, they also work with full wave rectified 60Hz AC provided the peak current is within specified limits. To this end, a bridge rectifier B may be added to the circuit. The bridge rectifier and filament can be selected to draw the correct current for the specified LED. In this manner, the lamp of the present invention may be operated on 100V to 240V AC mains M without a costly power supply and without an inefficient ballasting resistor. In a further embodiment, the diodes in the bridge rectifier can be LEDs themselves. The circuit may also include other components (not shown), such as a metal oxide varistor surge protector and an NTC varistor to protect the LED from turn-on current. Alternatively, a DC supply can be used without the bridge rectifier.
The pairing of the LED and filament improves the performance of the filament when current is unchanged. Each LED typically has a voltage drop of 3 to 7 volts so a filament connected in series with one or more LEDs will operate at lower than normal line voltage. As noted above, lower filament voltages at constant current permit the use of shorter filaments, which have improved optics and provide better shock resistance. At equal filament wattage, current increases along with filament diameter providing improved life or efficay
In addition, incandescent and tungsten halogen lamps have excellent color rendering and thus the combination of the filament lamp with the LED provides a better quality light than possible with LEDs alone.
With reference to the embodiment of
One electrical lead 12 from the capsule 2 is connected by a wire 13 to a lamp base center contact 14 and supplies current to the lamp. The other electrical lead from the capsule 2 is connected by a wire 11 to an AC input of a bridge rectifier 17 mounted on circuit board 8. The LEDs in the LED array 7 are connected in series by conductive traces on circuit board 8 and form a continuous circuit between the positive and negative leads of bridge rectifier 17. The remaining bridge rectifier input is connected to the lamp base screw shell 15 by a wire 10. The skirt 16 is attached to reflector 3 by a mechanical connection and is electrically isolated from the screw shell 15.
The embodiment of
While the array 7 or the LED 7′ may be located in other positions on the lamp, mounting on the lamp base is preferred because the location provides a better match for the beam patterns of the LED(s) and filament and because a location on the lamp base facilitates electrical connection and heat sinking.
Further, the array 7 of LEDs in
The one or more LEDs may be included in the hybrid lamp to change the color temperature of light from the lamp. By way of explanation, a tungsten halogen PAR lamp typically has a correlated color temperature (CCT) of about 2900° K. However, fluorescent and or metal halide lamps may have a CCT of about 3500° K. When the halogen PAR lamp is used as an accent with the fluorescent or metal halide lamps (for example, in retail stores), studies have shown that the preferred CCT is above 3100° K at typical illuminance levels recommended for a retail environment. In order to increase the CCT of conventional tungsten halogen PAR lamps, a region of the orange spectrum must be filtered out. However, this reduces the number of lumens by more than 20 percent and causes the color rendering index (CRI) to be near 70, which is unacceptably low.
Accordingly, one of the features of the present invention is to add one or more LEDs, such as blue or white LEDs that have a cooler CCT (higher temperature) than that of light emitted by the filament of the primary light source. When a blue LED is added to a tungsten halogen PAR lamp as described above (e.g., as LED 7′), the light from the hybrid lamp has a higher CCT without lumen loss or poor CRI.
During operation of the lamp in
By way of comparison, a low cost driver with resistive ballasting can consume 50 percent of system power, or more, so a 36W LED lighting system using the same LED source is capable of only about 450 lumens. A 36W/120V hybrid lamp of the present invention can achieve 650 lumens, or about 18Lm/W without the need for the expensive and bulky driver. This is equivalent to a typical 50W/120V PAR lamp (filament only) but with almost 30 percent energy savings.
While embodiments of the present invention have been described in the foregoing specification and drawings, it is to be understood that the present invention is defined by the following claims when read in light of the specification and drawings.