The present invention relates to the technical field of illumination, and in particular to a lamp.
A lamp, the source of illumination that emits heat and glows through electricity, was invented by Henrys Goebbels (Edison actually found the suitable material, i.e. a practical incandescent lamp, whereas the lamp appears earlier in 1854). The traditional lamps only have lighting function. Although they can provide illumination for the life of people, some specific display effects may not be displayed, either to create certain specific atmosphere; if the candle used at the birthday celebration can be replaced, it will not only create a celebration atmosphere, but also solve many problems such as the large pollution of traditional flame candles and potential safety hazards; if the torch handle can be replaced in the team building, it will not only contribute to the atmosphere creation, but also avoid conflagration caused by traditional torch; therefore, it is desirable to develop a lamp for illumination and preset pattern display to create a special display effect.
The foregoing and other exemplary purposes, aspects and advantages of the present invention will be better understood in principle from the following detailed description of one or more exemplary embodiments of the invention with reference to the drawings, in which:
The invention will now be described in detail through several embodiments with reference to the accompanying drawings.
Referring to
The light source module 30 includes a second plate 31 connected to the lamp base 10, a first plate 32 connected to the second plate 31, a control circuit 33 fixed on the second plate 31 and electrically connected to lamp base 10, and plural of LED sources or OLED light sources 34 to form a first dot matrix light source 341 and a second dot matrix light source 342 for illuminating and displaying preset patterns. The first LED dot matrix light source 341 is electrically connected to the control circuit 33 and fixed on a first surface 321 of the first plate 32. The second LED dot matrix light source 342 is electrically connected to the control circuit 33 and fixed on a second surface 322 of the first plate 32.
The first plate 32 is substantially a flat panel and is formed in a flame shape viewed in a direction perpendicular to the surfaces (the first and the second surfaces 321, 322) of the first plate 32. The flame shape means that when the first plate 32 is viewed in a direction perpendicular to the surfaces of the first plate 32, its shaped made its looked like a candle flame. In detail, a width of the first plate 32 gradually increases from a flame-shaped root portion 323 of the first plate 32, and reaches the maximum in the middle part of the first plate 32, and then begins to gradually shrink, so that the end (top portion) of the first plate has a slender tip. The second plate 31 extends integrally from a flame-shaped root portion 323 of the first plate 32 and is a rectangular plate. In the embodiment, the first and the first plate 31, 32 are both printed circuit board, may be choosen from: a glass fiber circuit board, an aluminum-based circuit board, and a copper-based circuit board. In other embodiments, the first or the first plate may be a metal plastic bracket.
A first optical cover 35 is covered on the first surface 321 of the first plate 32 to received the first LED dot matrix light source 341 in a space defined by the first optical cover 35 and the first surface 321. A second first optical cover 36 is covered on the second surface 322 of the first plate 32 to received the second LED dot matrix light source 342 in a space defined by the second optical cover 36 and the second surface 322.
In the embodiment, both of the first optical cover 35 and the second optical cover 36 are made from epoxy resin containing scattering powder and are transparent or semitransparent. The first optical cover 35 and the second optical cover 36 may have a graded thickness with an thin edge and thickened intermediate, and both are dyed red mixed with orange for simulating flame color of a candle. In particularly, a periphery of the first and the second optical covers 35, 36 are fixedly connected to a periphery of the two surfaces 321, 322 of the first plate 32 respectively, and a middle of each of the first and the second optical covers 35, 36 is convex with respect to the surface of the first plate 32, and the middle of each of the first and the second optical covers 35, 36 is in smooth transition to the periphery of the first and the second optical covers 35, 36.
The first first optical cover 35 and the second optical cover 36 are both spaced from the lamp cover 20 by a certain distance. In particular, the optical covers disposed on the front and back sides of the first plate are combined into a flame-shaped cover with a three-dimensional structure.
In the first embodiment, the second plate 31 in a rectangular shape with a flat structure and the first plate 32 having a flame shape with a flat structure are integrally formed as a one-piece printed circuit board. The lamp base 10 has a screw cap. The preset patterns that the dot matrix light source may display include, but not limited to a candle flame, a flower, a fireworks, et al. A dynamic flame effect may be realized by the control of the control circuit.
In a variation exbodiment as shown in
Referring to
Referring to
Understandably, in a variation example of the third embodiment, the lamp base 301 may defined a battery box therein. The first and the second LED dot matrix light sources are electrically connected to the control circuit, and the control circuit on the second plate is electrically connected to the battery box in the lamp base 301. That is, the lamp may not be powered by external power supplies, but by batteries fixed in the lamp base.
Referring to
Referring to
Referring to
Referring to
From the first embodiment to the seventh embodiment, the dot matrix light sources are driven by the control circuit to display one or more preset patterns those can be dynamic if actually needed, so that images of a real object to be simulated can be vividly presented, creating the certain specific atmosphere. If the candle used at the birthday celebration can be replaced, it will not only create a celebration atmosphere, but also solve many problems such as the large pollution of traditional flame candles and potential safety hazards; if the torch handle can be replaced in the team building, it will not only contribute to the atmosphere creation, but also avoid conflagration caused by traditional torch. A variety of realistic atmospheres can be created without pollution and safety hazards. For the purpose of further enhancing the realistic effect of the simulated object, the two sides of the first plate are provided with LED dot matrix whose surface is covered by an optical cover with a double-sided dot matrix structure, so that the display effect of the object to be simulated can be viewed by 360° without dead angles, and the addition of the optical cover makes the preset pattern more transparent, real and natural.
In above embodiments, the first plate is substantially flat plate. It is understandably, the first plate may be a curved plate to simulate a flickering mode of a candle flame.
In other embodiment, there may be only one dot matrix light source fixed on one of the two surfaces of the first plate.
In other embodiments, other types of lamp beads may be used instead of the LEDs to form a dot matrix light source, as long as a preset pattern can be displayed.
In other embodiments, the shape of the first plate may be circular, polygonal, or the like, and the overall pattern formed by the dot matrix light source may be a flame shape, or may be rectangular, polygonal, or the like.
In other embodiments, the lamp base can be other types of cap that may be applied to a lamp.
In other embodiments, a dot matrix light source is disposed on one of the two surfaces of the first plate, and no light source is disposed on the other surface.
In other embodiments, the lamp cover may be omitted.
In other embodiments, the color of the optical cover may be different depending on the pattern to be displayed by the dot matrix light source.
In other embodiments, the periphery of the optical cover is fixedly connected to the periphery of the first plate, and the middle of the optical cover is convex with respect to the surface of the first plate; the middle of the optical cover is in smooth transition to the periphery of the optical cover, and the periphery of the optical cover is approximately parallel to the surface of the first plate.
In the above embodiment, the optical cover is separately formed (that is, independently formed with respect to other components). In other embodiments, a transparent or scattering-containing resin may be printed on the first plate and the dot matrix light source to form the optical cover, that is there is no space between the optical cover and the first plate or the dot matrix light source.
In other embodiments, the second plate and the first plate are separate, and the first plate is connected to the flame-shaped root of the second plate, and the two plates may be partially stacked or vertically fixedly connected.
In other embodiments, the control circuit may also be divided into two parts, respectively disposed on the front and back sides of the second plate.
In other embodiments, the power supply mode is AC, DC, battery or solar energy.
While the invention has been described in terms of several exemplary embodiments, those skilled on the art will recognize that the invention can be practiced with modification within the spirit and scope of the appended claims. In addition, it is noted that, the Applicant's intent is to encompass equivalents of all claim elements, even if amended later during prosecution.
Number | Date | Country | Kind |
---|---|---|---|
201811518580.8 | Dec 2018 | CN | national |