The present invention relates to a lancet device, by which a lancet can be displaced along a piercing path to generate a piercing wound in a skin surface, in particular to obtain bodily fluid for diagnostic purposes, comprising a lancet drive having drive means for generating a drive force for a piercing movement of the lancet along the piercing path in the direction toward the skin surface.
Furthermore, the present invention relates to a method for generating a piercing wound in a skin surface using a lancet, in which the lancet is accelerated along a piercing path using a drive force generated by a drive spring in the direction toward the skin surface.
Lancet devices are required, for example, by diabetics, who have to check their blood sugar level frequently to be able to keep it within specific setpoint limits by insulin injections. Extensive scientific experimentation has proven that a dramatic reduction of the most severe long-term complications of diabetes mellitus (such as retinopathy with resulting blinding of the patient) may be achieved using an intensive treatment having at least four analyses per day.
For users of lancet devices, on one hand the most low-pain piercing possible and on the other hand the simplest possible operation and ability to handle the lancet device used are of great significance.
A requirement for low-pain piercing is the most rapid possible piercing movement having a short dwell time of the lancet in the skin. The use of drive springs has proven itself in the prior art for a correspondingly strong acceleration of the lancets. A disadvantage of lancet devices of this type is that manually tensioning the drive springs after completed piercing is cumbersome for many users. This is true in particular for people whose manual dexterity is restricted by age or illness.
A lancet device in which the drive spring is automatically tensioned by an electric motor does offer increased user comfort in this regard, but has the disadvantage of being larger and heavier because of the electric motor. A lancet device having an integrated electric motor therefore represents a burden for the user, who has to carry it around continuously for frequent measurements. In addition, the production costs are significantly increased by an electric motor.
Furthermore, lancet devices are known in the prior art in which the drive force is generated electromagnetically using a coil. Lancet devices of this type are disclosed, for example, in WO 02/100460 A2 and U.S. Pat. No. 6,364,889 B1. To be able to cause a sufficiently rapid piercing movement for a low-pain piercing using electromagnetic lancet drives of this type, strong magnetic fields must be generated. This requires that relatively strong electric currents flow through the drive coils used, which may be generated not at all or only with great effort in a small, compact handheld device. Electromagnetic lancet drives have therefore not been able to succeed against mechanical drives having drive springs up to this point.
The object of the present invention is to show a cost-effective way in which, in a lancet device of the type cited at the beginning, having a compact design, a sufficiently rapid piercing movement for a low-pain piercing may be generated and the user may be relieved as much as possible from preparatory handling, such as tensioning a drive spring.
This object is achieved according to the present invention using a lancet device of the type cited at the beginning in that the lancet drive comprises a magnet, by which a magnetic retention force oriented opposite to the drive force may be generated, and the lancet drive also comprises trigger means, by which the retention force may be reduced enough that the lancet is accelerated in the direction toward the skin surface under the effect of the drive force generated by the drive means.
A drive spring may be used as the drive means, which may be held in a tensioned state by the magnetic retention force. In a lancet device according to the present invention, the lancet may be retracted into its starting position via the magnetic retention force after the penetration into the skin surface. The retention force may be generated using an electromagnetic, for example, or—preferably—originate from a permanent magnet. If a permanent magnet is used, it is advantageous if the trigger means comprise a coil, by which a magnetic field may be generated, which at least partially, preferably completely compensates for the retention force of the permanent magnet. Through suitable dimensioning of the permanent magnet and the coil, the retention force generated by the magnet may be sufficiently great to cause renewed tensioning of the drive spring after completed piercing.
A lancet device according to the present invention having a drive spring has the advantage that it may be manufactured significantly more cost-effectively and compact than a lancet device having an electric motor, and nonetheless allows automatic tensioning of the drive spring.
Furthermore, a coil may be used as the drive means for a lancet device according to the present invention, to generate the drive force magnetically. The coil may also be used as the triggering means, using which the magnetic retention force is overcompensated for. The magnetic retention force is preferably generated by a permanent magnet, to which a further permanent magnet is assigned as the second part of the drive means as a drive magnet having reversed polarization, so that the magnetic fields of the permanent magnets are destructively superimposed. In this way, the drive force generated by the drive magnet is compensated for by the permanent magnet generating the retention force, so that no resulting drive force and therefore also no lancet movement results without coil current. If a current flows through the drive coil, the magnetic field of the drive magnet is superimposed constructively on the magnetic field of the coil, so that a resulting drive force to accelerate a lancet arises.
Even if the two permanent magnets compensate for one another exactly, a greater drive force may surprisingly be generated by the use of a drive coil in combination with oppositely polarized permanent magnets than using a drive coil alone. By superimposing the coil field with the fields of the oppositely polarized permanent magnets, an increased magnetic field strength results locally in a first area and a locally reduced field strength results in a second area. The locally increased magnetic field strength may be used for the purpose of magnetizing a drive element, such as a soft-magnetic coil core. The force exerted by the magnetic field on the drive element is overall greater because of the locally increased field strength than if a coil is used without permanent magnets. An important aspect of the present invention, which may also be significant independently, therefore relates to a lancet device comprising a lancet drive having:
The object of the present invention is also achieved by a method of the type cited at the beginning according to the present invention in that the drive spring is held in a tensioned state before the triggering of a piercing movement using a magnetic retention force oriented opposite to the drive force, and the retention force is reduced enough to trigger a piercing movement that the drive spring relaxes and the lancet is accelerated in the direction toward the skin surface under the effect of the drive force generated by the drive spring.
The present invention is explained in greater detail in the following on the basis of exemplary embodiments illustrated in the figures. The special features illustrated therein may be used individually or in combination to provide preferred designs of the present invention.
The lancet device illustrated in
The central component of the lancet device 1 shown is a lancet drive 2, which comprises a pushrod 3, drive means in the form of a drive spring 4, a coil 6, and a permanent magnet 5 situated axially in the coil 6. The pushrod 3 carries a lancet holder 7 having a replaceable lancet 8 and is accelerated along a piercing path predefined by the guide 10 using the drive spring 4, which is implemented as a coiled spring, to generate a piercing wound.
The pushrod 3 is shown in its rest position having tensioned drive spring 4 in
The pushrod 3 is preferably made of plastic and carries an armature plate 12 made of iron or another ferromagnetic material, using which a magnetic circuit, which contains the permanent magnet 5 and a pole shoe 16 enclosing the coil 6, is closed in the position shown in
The armature plate 12 may also be implemented as a permanent magnet, so that it may not only be attracted by the permanent magnet 5, but rather may also be repelled and additionally accelerated by a magnetic field generated by the coil.
A comparison of
In addition to the drive spring 6, the lancet drive 2 also comprises a restoring spring 14 for generating a retraction movement of the lancet 8. The drive spring 4 is tensioned again by the retraction movement. Drive spring 4 and restoring spring 14 are each implemented as coiled springs which enclose the pushrod 3. The drive spring 4 and the restoring spring 14 are each supported at one end on a support section 15 of the pushrod 3, which is implemented as a thickened part in the exemplary embodiment shown, and at the particular other end on the guide 10. The drive spring 4 and the restoring spring 14 are situated in such a way that relaxation of the drive spring 4 causes tensioning of the restoring spring 14 and relaxation of the restoring spring 14 causes tensioning of the drive spring 4.
The term “tensioning” is to be understood in this context to mean that energy is stored in the particular effective spring. This may be caused by compression in a compression spring and by stretching in an expansion spring.
Of course, friction forces occur in the lancet device 1 shown, so that the energy stored in the restoring spring 14 in the piercing position shown in
In order that the retention force of the permanent magnet 5 may be used for tensioning the drive spring 4 again, it is sufficient to turn off the current which is sent through the coil 6 to trigger a piercing. As soon as current no longer flows through the coil 6, a magnetic field is also no longer generated by the coil 6, so that the retention force of the permanent magnet 5 is no longer compensated for and is added to the spring force of the restoring spring 14.
A piercing and retraction movement of the lancet typically lasts a total of 4 ms to 6 ms. In order that the retention force of the permanent magnet may be used for tensioning the drive spring again, the current which is sent through the coil 6 to trigger a piercing is therefore preferably turned off after 1 ms to 3 ms, preferably 1.5 ms to 2.5 ms. A current pulse having the steepest possible flanks, ideally having a rectangular profile, is especially well suitable.
An appropriately strong drive spring 4 and an appropriately strong permanent magnet 5, such as a rare earth magnet, are preferable for the most rapid possible piercing movement. To compensate for the magnetic retention force, voltages and/or current strengths which greatly exceed the performance capability of commercially available batteries are therefore preferably used. The coil 6 is therefore preferably connected via a current buffer and/or a voltage converter to an internal current source of the lancet device, such as a battery, so that a current pulse capable of compensating for the magnetic retention force may be generated using commercially available batteries. For example, capacitors or accumulators, in particular lithium-polymer accumulators, are suitable as the current buffer. Suitable voltage converters are available as DC/DC converters. The corresponding technology for generating intensive current pulses is typical in photographic apparatus for generating light flashes, for example, and may be used for the described lancet device.
To additionally support the retraction movement, the direction of the current flowing through the coil 6 to trigger a piercing may be reversed in polarity, so that the magnetic field generated by the coil 6 is added to the retention force of the permanent magnet 5. For example, a control unit having an H bridge may be used for reversing the polarity of the current. Ideally, the polarity is reversed at the moment in which the lancet has reached the outermost point of the piercing path.
A further possibility for moving the pushrod 3 from an intermediate position shown in
It may be established by a measurement of the inductance of the coil 6 whether the armature plate 12 presses against the pole shoe 16. In this way, it may thus be ascertained whether or not the pushrod 3 is located in the rest position shown in
In this way, the coil 6 is used as a position sensor for the position of the pushrod 3. The illustrated lancet device may alternatively or additionally also be equipped with other position sensors, so that the optimal instant for turning off or reversing the polarity of the current through the coil 6 may be ascertained as a function of the instantaneous position of the pushrod 3. The use of sensors therefore allows, instead of simple control of the coil current, in which a predefined profile is predefined for a current pulse, regulation of the coil current as a function of the position of the pushrod 3.
A further exemplary embodiment of a lancet drive 2 for a lancet device is shown in
As the field course of the magnetic field generated by the permanent magnets 23, 24 illustrated in
The permanent magnets 23, 24 work together with the coil 20, which generates a further magnetic field as the third magnetic field source in operation, whose field course is shown in
Before the coil current is turned on, the magnetization direction of the coil core 22 is determined by the permanent magnet 23, so that the coil core 22 is drawn into the first partial area 31 of the drive chamber 21 by the permanent magnet 23, but pushed out of the second partial area 32 of the drive chamber 21 by the oppositely polarized permanent magnet 24. Therefore, the position of the coil core 22 shown in
An increased overall field results in the second partial area 32 of the drive chamber 21 by turning on the coil current, which causes a reversal of the magnetization of the soft-magnetic coil core 22. As a result of this reversal of the magnetization direction of the coil core 22, the coil core 22 is drawn into the second partial area 32 of the drive chamber 21 and thus moved out of the position shown in
The relationships of the overall field course shown in
The length of the coil core 22 is less than the length of the drive chamber 21 enclosed by the first and the second magnetic field sources, i.e., the permanent magnets 23, 24, preferably at least 10% shorter. In this context, only the length of a soft-magnetic part is to be understood as the coil core 22. Possible parts which are attached to a soft-magnetic part, but are not magnetic themselves, such as a pushrod made of plastic, are not to be viewed as the coil core in this regard.
The drive principle described on the basis of
In the exemplary embodiment shown in
In the exemplary embodiment described on the basis of
As in the exemplary embodiment described on the basis of
Number | Date | Country | Kind |
---|---|---|---|
05015171 | Jul 2005 | EP | regional |
06004319 | Mar 2006 | EP | regional |
This application is a continuation of International Patent Application No. PCT/EP2006/005929 filed Jun. 21, 2006, which claims the benefit of European Patent Application No. 06 004 319.7 filed Mar. 3, 2006 and of European Patent Application No. 05 015 171.1 filed Jul. 13, 2005, which are all hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3051173 | Johnson et al. | Aug 1962 | A |
3805795 | Denniston et al. | Apr 1974 | A |
3832776 | Sawyer | Sep 1974 | A |
3840088 | Marumo et al. | Oct 1974 | A |
6037851 | Gramann et al. | Mar 2000 | A |
6080172 | Fujiwara | Jun 2000 | A |
6265957 | Baginski et al. | Jul 2001 | B1 |
6364889 | Kheiri et al. | Apr 2002 | B1 |
6646529 | Kahnert | Nov 2003 | B1 |
6741151 | Livshitz et al. | May 2004 | B1 |
6938506 | Henry et al. | Sep 2005 | B2 |
20020075109 | Iwazaki | Jun 2002 | A1 |
20030058667 | Suzuki et al. | Mar 2003 | A1 |
20040049219 | Briggs et al. | Mar 2004 | A1 |
20040155743 | Sako | Aug 2004 | A1 |
20040219192 | Horstmann et al. | Nov 2004 | A1 |
Number | Date | Country |
---|---|---|
1 063 666 | Dec 2000 | EP |
H02-095352 | Apr 1990 | JP |
H02-095352 | Apr 1990 | JP |
2003-339680 | Dec 2003 | JP |
2003-339680 | Dec 2003 | JP |
WO 02100460 | Dec 2002 | WO |
Entry |
---|
Koichi et al. Machine translation of JP 2003-339680 A. Published Feb. 12, 2003. |
International Patent Application PCT/EP2006/05929 International Search Report mailed Nov. 20, 2006. |
International Application PCT/EP2006/005929, “International Preliminary Report on Patentability,” mailed May 27, 2008 (translation). |
Number | Date | Country | |
---|---|---|---|
20080188883 A1 | Aug 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2006/005929 | Jun 2006 | US |
Child | 12013057 | US |