A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings, of which:
Although not depicted in
Lancing device 200 includes a housing 202, a lancing mechanism (of which arming member 204 and trigger button 206 are depicted) disposed at least partially within housing 202 and configured to lance a target site with a lancet (not shown). Lancing device 200 also includes a cap 208 and an integrated light source 210. Cap 208 can be formed as an integral portion of housing 202, as a removable portion of housing 202 or as an independent component of lancing device 200.
Light source 210 includes a light source switch 212. Although the embodiment of
Integrated light source 210, in combination with at least one of housing 202 and cap 208, produces an intense beam of light (IBL) for illumination of at least the target site and a weaker diffuse light (DL) that provides a user with spatial awareness while conducting a test. The intense beam of light (IBL) can be, for example, projecting essentially parallel to the longitudinal axis of the lancing device axis (as depicted in
A non-limiting example of an intense beam of light (IBL) is a beam with a 15 degree angle cone and 900 Lux Illuminance at a distance of 0.1 m from the lancing device. In general, the Illuminance range for the intense beam of light can be, for example, in the range of 500 Lux to 2000 Lux for distances of between 5 cm and 15 cm from the lancing device. The Illuminance of the weaker diffuse light can be, for example, in the range of 3 Lux to 10 Lux for distances in the range of 5 cm to 15 cm from the lancing device.
Light sources employed in embodiments of the present invention can produce light of any suitable wavelength or wavelengths. Since the human eye has heightened sensitivity to light of a wavelength near 550 nm it can, for example, be suitable for a light source to employ (i) a green Light Emitting Diode (LED) that emits light with a wavelength of approximately 530 nm or (ii) a yellow LED that emits light with a wavelength of approximately 585 nm. However, a white LED that emits light across a range of wavelengths that appears natural to a user may also be suitable. The selection of a suitable light source can also be based on other relevant concerns such as the light source's required operating power.
Referring to
Illustrative but non-limiting examples of suitable components for a circuit as depicted in
As would be apparent to one skilled in the art once apprised of the present disclosure, circuit switch 308 is operatively connected to light source switch 212 such that a user can manually activate integrated light source 210. In addition, if desired, circuit 300 can include a timing element (i.e., a timer, not shown) configured to limit the duration of time during which integrated light source 210 produces the intense beam of light IBL and diffuse light DL. Such a timing element can serve to conserve battery power in the event a user does not turn off integrated light source 210 using light source switch 212 once a test has been completed. For example, upon activation of integrated light source 210 by a user via light source switch 212, the timing element may automatically activate high intensity LED 302 for a predetermined duration of time that is sufficient to complete a successful test (for example, a duration of time of approximately 3 minutes). Power consumption can also be conserved by employing a rapidly pulsing light source (e.g., a light emitting diode (LED) pulsing at a frequency of 50 Hz or greater), the pulsing of which will not be visible to the human eye. The rapid pulsing can be achieved by adjusting the LED's duty cycle, thus conserving power.
The certain types of light created by integrated light source 210 (i.e., both an intense beam of light and a diffuse light) are particularly beneficial when a test is being conducted in low ambient light conditions (for example, light conditions of 5 Lux or less). For example, the intense beam of light can be employed to illuminate an area to locate ancillary items required to perform the test, to illuminate a target site, while the diffuse light can be employed provide a user with general spatial awareness. Since the light source is integrated with the lancing device (for example, integrated with a lancing device's housing or cap), a user has the convenience of not carrying a separate light source such as a flashlight.
In the embodiment of
Once apprised of the present disclosure, one skilled in the art will recognize that the diffuse light can be produced by, for example, employing a cap with a surface finish, surface ribs or surface ridges on all or a portion of the cap. Such surface finishes, ridges or ribs can be predetermined to provide an angle of incidence that permits light to escape. In alternative embodiments, the lancing device housing can be similarly configured for light escape and the production of diffuse light.
Lancing device 400 includes a housing 402, a lancing mechanism (of which arming member 404 and trigger button 406 are depicted) disposed at least partially within housing 402 and configured to lance a target site with a lancet (not shown). Lancing device 400 also includes a cap 408,and an integrated light source 410 with light source switch 412.
Lancing device 400 also includes a stand 414. Stand 414 can be placed in a foldaway position (depicted with solid line in
Integrated light source 410, in combination with at least one of housing 402 and cap 408, produces an intense beam of light (IBL, not shown in
Any suitable technique can be employed to product the intense beam of light.
However, such an intense beam of light (IBL) can be produced, for example, by configuring the housing and/or cap such that light from the integrated light source reaches the housing (or cap) surface at an angle that is nearly normal to the surface, thus enabling the housing (or cap) to focus the light into an intense beam of light (IBL). In this circumstance, it is beneficial for the housing (or cap) can be formed of a transparent material, such as polymethylmethacrylate, with an index of refraction that is greater than the index of refraction of air.
Stand 414 is configured to enable a user to employ integrated light source 410 in a hands-free manner. When stand 414 is in a deployed position, lancing device 400 can be securely placed on a surface in a stable manner to provide the user with light in which to work (see
Integrated light source 510, in combination with removable cap 508, produces an intense beam of light (IBL) for illumination of at least the target site and a weaker diffuse light (DL) that provides a user with spatial awareness while conducting a test. The intense beam of light (IBL) can, for example, be essentially parallel to the longitudinal axis of the lancing device axis of lancing device (as depicted in
Cap 600 also includes an integrated light source 610 with light source switch 612.
Integrated light source 610, in combination with cap body 602, produces an intense beam of light (IBL) for illumination of, for example, a target site and a weaker diffuse light (DL) that provides a user with spatial awareness while conducting a test. In this regard, cap body 602 serves as a light guide channeling photons emitted from integrated light source 610 into intense beam of light IBL.
Cap 700 also includes an integrated light source 710 with light source switch 712, battery 714 and light emitting diode 716. Light source 710, in combination with cap body 702, produces an intense beam of light (IBL) for illumination of, for example, a target site and a weaker diffuse light (DL) that provides a user with spatial awareness while conducting a test. In this regard, cap body 702 serves as a light guide channeling photons emitted from integrated light source 710 into intense beam of light IBL.
Integrated light source 710 can be positioned at any suitable angle with respect to cap body 702 such that a diffuse light DL and an intense beam of light IBL are formed. For example, integrated light source 710 can be positioned to optimize photon capture within cap body 702, thereby channeling the photons to form a focused beam of intense beam of light IBL.
Once apprised of the present disclosure, one skilled in the art will recognize that light sources employed in embodiments of the present invention light source can be of any suitable type including, for example, LED light sources. LED light sources can include a coupled light guide, for example a fiber optic light guide, resulting in a fiber optic light source. A fiber optic light source can, for example, be molded within a housing or a cap body of a removable cap during manufacture in a manner which optimizes light capture therein, and guiding the light to form an intense beam of light and an area of diffuse light.
Integrated light source 810, in combination with cap 808, produces an intense beam of light (IBL) for illumination and a weaker diffuse light (DL) that provides a user with spatial awareness while conducting a test. The intense beam of light (IBL) can, for example, be essentially parallel to the longitudinal axis of lancing device 800 (as depicted in
Lancing device 800 also includes a depth setting gauge with background area 814 formed of light transmitting material and numerals 816 (of which only the numeral “5” is visible in the view of
Lancing device 900 includes a housing 902, a lancing mechanism (of which arming member 904 and trigger button 906 are depicted) disposed at least partially within housing 902 and configured to lance a target site with a lancet (not shown). Lancing device 900 also includes a cap 908 and an integrated light source (not entirely visible in the view of
The light source of lancing device 900 includes a light source switch 910 configured to activate the light-source at three intensity settings (each marked by one of three arrows 912) as light source switch 910 is moved in the direction of arrow A by a user. A user can, thereby, adjust the intensity of the intense beam of light and the diffuse light to suit the low ambient light conditions present during testing.
Lancing device 1010 can be any suitable lancing device according to embodiments of the present invention and, therefore, includes (i) a housing, (ii) a lancing mechanism disposed at least partially within the housing and configured to lance a target site with a lancet, and (iii) an integrated light source. The light source, in combination with at least the housing, produces an intense beam of light for illumination and a diffuse light that provides a user with spatial awareness.
Meter 1020 is configured for the analysis of a bodily fluid sample expressed from a target site lanced by the lancing mechanism. For example, meter 1020 can be configured for the determination of blood glucose in a whole blood sample using techniques that are known to those of skill in the art.
Method 1100 includes employing diffuse light produced by an integrated light source of a lancing device to achieve user spatial awareness in a low ambient light condition (see step 1110). A target site in the low ambient light condition is illuminated with an intense beam of light from the integrated light source, as set forth in step 1120. Subsequently, the lancing device is urged against the target site and the target site is lanced with a lancet held by the lancing device (see steps 1130 and 1140, respectively).
If desired in method 1100, the intense beam of light and/or the diffuse light can also be employed to locate, manipulate and employ items that are ancillary to lancing.
Such ancillary items include, but are not limited to, a meter, a supply of control solution, a sterile lancet supply, alcohol swabs, test strip(s), and an owner's booklet and quick reference guide. For example, the intense beam of light and/or diffuse light can be employed as an aid in locating a test strip and applying a bodily fluid sample thereto.
Methods according to embodiments of the present invention beneficially enable a lancing device user to successfully and easily lance a target site under low ambient light conditions by providing both diffuse light for general special awareness and an intense beam of light for illumination of a target site.
It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that structures and methods within the scope of these claims and their equivalents be covered thereby.
Number | Date | Country | |
---|---|---|---|
60796344 | Apr 2006 | US |