The present invention relates generally to the field of medical devices, and more particularly to a lancing device for blood sampling and testing.
Lancing devices are utilized for penetrating the skin of a human or animal subject at a lancing site to obtain a sample of blood or other body fluid for medical testing, as in blood-typing or blood-glucose testing. Commercially-available lancing devices typically include a housing containing a drive mechanism, a charging mechanism for energizing the spring or other drive means of the drive mechanism, and a release mechanism for releasing the drive mechanism upon actuation.
A lancet is typically propelled by the drive mechanism from a retracted position within the housing to an extended position wherein a sharp tip portion of the lancet projects from the housing to prick the subject's skin at a desired lancing site. The lancet is typically a disposable component that is removably mounted into a receiver or lancet carrier portion of the drive mechanism of a lancing device. A used lancet typically is removed from the lancet carrier after sampling for subsequent disposal. An ejection mechanism can optionally be included for discharge of the used lancet from the lancing device. A new, sterile lancet is then replaced into the lancet carrier for further sampling.
A depth-control mechanism can optionally be provided to adjust the penetration depth of the lancet, to control sample size and/or to minimize pain. Commercially-available depth control mechanisms typically include endcaps that are adjustably positioned relative to the lancing device housing, and movable stops that limit the travel of the drive mechanism by contact with the lancet carrier.
Needs exist for an improved depth control mechanism for use with a lancing device. It is to the provision of improved lancing devices and lancing depth control mechanisms that the present invention is primarily directed.
The present invention provides an improved lancing device with a depth control mechanism including a tether or linkage for adjustment of the lancet penetration depth. In example embodiments, adjustment of the lancing depth is controlled by varying the point of contact or connection of the tether or linkage to the lancing device housing, and/or by varying the length or degree of extension of the tether or linkage.
In a first aspect, the present invention is a lancing device including a housing having a proximal end, a distal end and a longitudinal axis. The lancing device has a lancet carrier translatably supported with respect to the housing. The lancet carrier has a proximal end and a distal end. And, the lancing device has a depth-control mechanism with a positioning tab adapted to engage the housing, and a tether secured with respect to the positioning tab and the lancet carrier.
In a second aspect, the present invention is a depth-control mechanism for a lancing device having a drive-mechanism-driven lancet carrier translatably secured within a housing. The depth-control mechanism includes an engagement body adapted to releasably engage a predetermined location on the housing. The depth-control mechanism also includes a tether connected between the engagement body and the lancet carrier. The tether is adapted to transition between a retracted state and an extended state. And, the depth-control mechanism is adapted to control the distance the lancet carrier is driven with respect to the housing.
In a further aspect, the present invention is a depth-control mechanism for a lancing device with a drive-mechanism-driven lancet carrier translatably secured within a housing. The depth-control mechanism includes an engagement body adapted to releasably engage a predetermined location on the housing. The depth-control mechanism also includes a joint with a first member pivotally connected with respect to the engagement body and a second member pivotally connected with respect to the lancet carrier. The first member is pivotally connected to the second member. And, the depth-control mechanism is adapted to control the distance the lancet carrier is driven with respect to the housing.
These and other aspects, features and advantages of the invention will be understood with reference to the drawing figures and detailed description herein, and will be realized by means of the various elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following brief description of the drawings and detailed description of the invention are exemplary and explanatory of preferred embodiments of the invention, and are not restrictive of the invention, as claimed.
The present invention may be understood more readily by reference to the following detailed description of the invention taken in connection with the accompanying drawing figures, which form a part of this disclosure. It is to be understood that this invention is not limited to the specific devices, methods, conditions or parameters described and/or shown herein, and that the terminology used herein is for the purpose of describing particular embodiments by way of example only and is not intended to be limiting of the claimed invention. Any and all patents and other publications identified in this specification are incorporated by reference as though fully set forth herein.
Also, as used in the specification including the appended claims, the singular forms “a,” “an,” and “the” include the plural, and reference to a particular numerical value includes at least that particular value, unless the context clearly dictates otherwise. Ranges may be expressed herein as from “about” or “approximately” one particular value and/or to “about” or “approximately” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment.
With reference now to the drawing figures, wherein like reference numbers represent corresponding parts throughout the several views,
A release button 40 projects through an opening in the upper housing shell 22a to release a trigger mechanism (shown in
A charging handle 30 forming the rear or distal end of the housing 20 retracts the lancet carrier and energizes a drive spring (shown in
When the lancing device 10 is actuated, the penetration depth of the lancet is limited by the extent of travel of the lancet carrier 60 in the forward or proximal direction, relative to the housing 20. The forward extent of travel of the lancet carrier 60 is, in turn, limited by the connection—provided by the linkage or tether 80—between the lancet carrier and the charging handle 30 and/or other portion of the housing. Further extension is prevented by limiting the forward motion of the lancet carrier and defining the penetration depth achieved by the lancing procedure. As the lancet carrier moves into its forward or extended position, the first and second links 86, 88 pivot from a retracted, transversely offset, and/or axially unaligned configuration (shown in
As depicted, the area of the cut-out is large enough for the proximal coupling 82 to travel therebetween. By selectively repositioning the positioning tab 84 in a proximal direction along the charging handle opening 83 (shown in
In a further alternative embodiment shown in
While the invention has been described with reference to preferred and example embodiments, it will be understood by those skilled in the art that a variety of modifications, additions and deletions are within the scope of the invention, as defined by the following claims.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/322,423, filed Apr. 9, 2010, the entirety of which is hereby incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
6022366 | Schraga | Feb 2000 | A |
6156051 | Schraga | Dec 2000 | A |
6322575 | Schraga | Nov 2001 | B1 |
6811557 | Schraga | Nov 2004 | B2 |
6887253 | Schraga | May 2005 | B2 |
7105006 | Shraga | Sep 2006 | B2 |
7175641 | Schraga | Feb 2007 | B1 |
7311718 | Schraga | Dec 2007 | B2 |
20080077167 | Flynn et al. | Mar 2008 | A1 |
20080146966 | Levaughn et al. | Jun 2008 | A1 |
20080269639 | Korner et al. | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
1764037 | Mar 2007 | EP |
1797822 | Jun 2007 | EP |
2009069720 | Jun 2009 | WO |
2010080584 | Jul 2010 | WO |
Entry |
---|
ISR and Written Opinion of PCT/US2011/031685; Jul. 26, 2011; 14 pgs. |
Number | Date | Country | |
---|---|---|---|
20110313438 A1 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
61322423 | Apr 2010 | US |