1. Field of the Invention
The present invention relates to lancing devices and, more particularly, to apparatuses and methods for lancing and assembling lancing devices.
2. Description of Related Art
Many people have a need to regularly monitor their blood. Diabetics, for example, need to regularly monitor their blood glucose levels. Lancing devices, generally, offer a relatively pain-free, quick, and sterile means to prick a person's skin to obtain a drop of blood. The blood may then be collected and/or tested, in a blood glucose meter, for example.
To obtain a drop of blood, a spring-loaded lancing device can be placed in contact with a person's skin. The loaded spring can then be released, and the lancing device can propel a needle-tipped lancet through a hole in a nozzle of the lancing device into the skin. The needle can then penetrate the skin for only a fraction of a second before being retracted back into the lancing device.
The depth that the needle penetrates the skin can be considered the lancing depth. The lancing depth can then generally be equal to the furthest length that the needle extends from the nozzle of the lancing device as the needle penetrates the skin.
The lancing depth can be controlled, for example, by using a particular length needle. Another, more convenient, way to control the lancing depth is by rotating the nozzle of the lancing device to adjust the relative distance between the nozzle and the tip of the lancet's needle. For instance, for a shallower lancing depth, the nozzle can be moved closer to the needle tip at the needle tip's furthest distance from the nozzle. For a deeper lancing depth, the nozzle can be moved further away from the needle tip at the needle tip's furthest distance from the nozzle.
A lancing depth that can be conveniently adjusted has many advantages. Different fingers can have different skin thicknesses, for example. Different areas of the body might also have different skin thicknesses. Adjusting a lancing device to the appropriate lancing depth can therefore minimize the pain of lancing too deeply into the skin and can help ensure that the lancet needle penetrates the skin a sufficient depth to obtain a drop of blood.
Lancing devices, generally, can be beneficial for many reasons. For example, lancing devices offer a less painful way to prick skin to obtain a drop of blood. Pain is minimized because the lancet's needle is in the skin for only a fraction of a second. Lancing devices can also minimize the emotional trauma of pricking skin. When using a lancing device one can simply, for example, press a button to lance one's skin, instead of somehow holding a needle and directly pushing the needle into the skin. Lancing devices can also hide the lancet needle within an enclosure, thereby allowing the person being stuck to avoid looking at the needle. In a clinical setting, lancing devices can also allow a nurse or other caregiver to quickly and relatively painlessly prick a patient's skin to obtain a drop of blood.
Accordingly, there is a need to provide convenient and reliable lancing devices, methods of lancing, and methods of assembling lancing devices.
Exemplary embodiments include a simple to operate handheld device with a “pen like” ergonomic styling. One embodiment has five adjustable lancing depth settings. The embodiments can be used for normal finger tip lancing or for alternate site testing, and can use standard (universal), “off the shelf” lancets. The lancing device can also be constructed of various injection molded plastic parts that can “snap-fit” or “pressure-fit” together.
In a first embodiment, the present invention provides an adjustable nozzle assembly through which a lancet can be propelled by a lancing device into a lancing surface. The adjustable nozzle assembly includes an interior nozzle comprising a ramped groove and a lancet wall; a collar comprising a collar pin that engages the ramped groove and slides relative to the ramped groove, the collar being adapted to rotate relative to the interior nozzle; and an exterior nozzle comprising a contact surface that extends beyond the lancet wall of the interior nozzle to contact the lancing surface, the exterior nozzle engaging the collar and being adapted to rotate relative to the interior nozzle. The ramped groove is sloped such that as the exterior nozzle rotates relative to the interior nozzle, the distance that the contact surface extends beyond the lancet wall changes by an amount that corresponds to the slope of the ramped groove. In this and other embodiments, the collar can further comprise a detent, and the interior nozzle can further comprise a plurality of adjustment notches that can engage the detent.
In a second embodiment, the present invention provides a rearward body assembly of a lancing device that can propel a lancet into a lancing surface. The rearward body assembly includes a lancet holder comprising one or more retaining features and one or more spring surfaces; an interior tube comprising an open end and a slotted end through which the one or more retaining features extend, the interior tube being adapted to slidably engage the lancet holder; an internal compression spring comprising a first end and a second end, the first end of the internal compression spring being adapted to act on the slotted end of the interior tube and the second end of the internal compression spring being adapted to act on the one or more spring surfaces of the lancet holder; a retainer comprising a slotted surface through which the one or more retaining features extend; a rearward body, the rearward body engaging the retainer; and an external compression spring comprising a first end and a second end, the first end comprising a reduced coil diameter that engages the one or more retaining features of the lancet holder, the first end of the external compression spring being adapted to act on the lancet holder, and the second end of the external compression spring being adapted to act on the slotted surface of the retainer. Longitudinal movement of the rearward body away from the interior tube compresses the interior compression spring.
In a third embodiment, the present invention provides that the rearward body assembly of the second embodiment can releasably engage the adjustable nozzle assembly of the first embodiment.
In a fourth embodiment, the present invention provides a method of assembling an adjustable nozzle assembly of a lancing device. The method of the fourth embodiment includes providing an interior nozzle comprising an assembly groove in communication with a ramped groove, the assembly groove being separated from the ramped groove by a raised boss; providing a collar with a collar pin; and attaching the collar to the interior nozzle by sliding the collar pin in the assembly groove, over the raised boss, and into the ramped groove. In this and other embodiments, the collar can further comprise a detent, and the interior nozzle can further comprise a plurality of adjustment notches that can engage the detent.
In a fifth embodiment, the present invention provides a method of adjusting a lancing depth of a nozzle assembly in a lancing device, the nozzle assembly comprising an exterior nozzle, an interior nozzle comprising a ramped groove, and a collar engaging the exterior nozzle and comprising a collar pin that can slidably engage the ramped groove. The method includes rotating the exterior nozzle and the collar relative to the interior nozzle to slide the collar pin in the ramped groove of the interior nozzle to adjust the lancing depth.
Other embodiments are possible as well, and a variety of alternatives will become apparent to those skilled in the art upon review of the following detailed description.
Exemplary embodiments of the present invention are described herein with reference to the drawings, in which:
1. Exemplary Lancing Device Configurations
In an exemplary embodiment, the lancet holder 34 includes a plurality of components and serves a plurality of functions. The lancet holder 34 can comprise a barrel holder 39 and a seat 23, both of which can hold and help propel the lancet 20. The lancet holder 34 can also comprise one or more internal spring surfaces 41 against which the internal spring 32 can act to propel the lancet 20. Further, the lancet holder 34 can comprise one or more retaining features 36 that can extend through a slot 33 of the interior tube 26 and can help retain an external spring 44 and a retainer 40 (both shown in
To spring load the trigger 24 and prepare the lancing device 10 for use, the trigger extension 35 can be aligned with the interior tube opening 29 by compressing the internal spring 32. Once sufficiently aligned, the bias of the trigger extension 35 can cause the trigger extension 35 to extend toward the opening 29 and engage the trigger 24. A trigger extension notch 37 on the trigger extension 35 can then engage a corner 19 of the interior tube 26. The trigger extension 35 can thereby oppose longitudinal movement of the lancet holder 34 and can oppose the longitudinal force caused by the compressed internal spring 32.
There is thus a “loaded” position of the lancing device 10 in which the internal spring 32 is compressed and the engagement of the notch 37 with the interior tube 26 opposes the release of the compressed internal spring 32. In the loaded position, the trigger extension 35 engages the trigger 24 such that, in an exemplary embodiment, the trigger is somewhat raised from the surface of the finger cover 14 and offers some resistance to movement. To propel the lancet 20, a user can actuate the trigger 24 to release the engagement of the notch 37 with the interior tube 24 and to thereby release the internal spring 32. The internal spring 32 can then move the lancet holder 34 longitudinally to propel the lancet 20.
In assembly, both the finger cover alignment feature 30 and the snap ring 28 can help align the finger cover 14 with other components of the lancing device 10. As shown in
The interior surface of the collar 50 can also comprise a collar pin 51, which is depicted in
In an exemplary embodiment, to assemble the collar 50 and the interior nozzle 22, one can slide the collar pin 51 through the assembly groove 66 to the ramped groove 68. Near where the assembly groove 66 meets the ramped groove 68, the interior nozzle 22 can comprise a raised boss 73. In assembly, the collar pin 51 can be slid in the assembly groove 66 and can then snap over the raised boss 73 into the ramped groove 68.
Once assembled, the raised boss 73 creates a tortuous path that can make disassembly of the collar 50 (and hence the exterior nozzle 18) from the interior nozzle 22 difficult. The ramped groove 68 can retain the collar pin 51 and can allow the collar to rotate about the periphery of the interior nozzle 22. The interior nozzle 22 can also comprise an over rotation groove 75 that can retain the collar pin 51 when the collar is fully rotated and can help prevent disassembly of the collar 50 (and hence the exterior nozzle 18) from the interior nozzle 22 when the collar 50 and the exterior nozzle 18 are fully rotated.
As shown in
The interior nozzle mating ramp 72, the collar mating ramp 70, and the ramped groove 68, can each be sloped relative to a plane perpendicular to the longitudinal axis of the lancing device 10. Further, in an exemplary embodiment, the slopes of each of the interior nozzle mating ramp 72, the collar mating ramp 70, and the ramped groove 68 should be approximately the same or similar. Once assembled, the collar pin 51 can then slide in the ramped groove 68 and the collar mating ramp 70 and the detent 76 can rotate along the interior nozzle mating ramp 72.
As shown in
As discussed above, in an assembled lancing device 10, the exterior nozzle 18 engages the collar 50. Thus, the collar pin 51, the collar 50, and the exterior nozzle 18 rotate together about the periphery of the interior nozzle 22. By sliding in the ramped groove 68, the collar pin 51 can act to vary the distance that the contact surface 21 of the exterior nozzle 18 extends from the lancet wall 94, and, hence, can act to vary the distance that the lancet 20 extends from the contact surface 21. Thus, by rotating the exterior nozzle 18 relative to other components of the lancing device 10, one can vary the lancing depth according to the slope of the ramped groove 68.
In an exemplary embodiment, particular lancing depth positions can be defined by the adjustment notches 74 along the slope of the interior nozzle mating ramp 72. Then as the exterior nozzle 18 is rotated, the detent 76 of the collar mating ramp 70 can engage the various adjustment notches 74. The engagement between the detent 76 and each adjustment notch 74 can help define a particular lancing depth for the lancet 20. An indication of the location and the corresponding, relative lancing depth represented by each of the adjustment notches 74 can be marked on the outside surface of the lancing device 10.
As also shown in
The exterior nozzles depicted in
2. Exemplary Operation
With reference to the above discussed figures, operation of the lancing device 10 can include several steps. These steps might include insertion of a lancet 20 into the lancing device 10, selection of a lancing depth, spring loading the lancing device 10, and actuating the trigger 24 to lance a surface, such as a person's skin.
In particular, to insert a lancet 20 into the lancing device 10, a user can disengage the nozzle assembly 60 from the rearward body assembly 48 to expose the barrel holder 39 of the lancet holder 34. The user can then insert the barrel section 80 of the lancet 20 into the barrel holder 39 until the lancet 20 rests against the seat 23 of the lancet holder 34. As necessary, the user can remove any protective or safety cover on the lancet 20 to expose the needle section 82 of the lancet 20. The user can then re-engage the nozzle assembly 60 with the rearward body assembly 48.
Next the user can select a particular lancing depth of the lancet by rotating the exterior nozzle 18. The exterior nozzle 18 can be marked with identifications of available lancing depths that correspond with the adjustment notches 74. As the user rotates the exterior nozzle 18, the detent 76 can click into the adjustment notches 74, indicating to the user that a particular lancing depth has been selected.
The user can then spring load the lancing device 10 by pulling the rearward body 12 along the longitudinal axis of the lancing device 10. To hold the lancing device while pulling the rearward body 12, the user can grip another component, such as the finger cover 14 or the interior nozzle 22. In an exemplary embodiment, once the user has pulled the rearward body 12 a sufficient amount, the user can see and/or hear the trigger extension 35 engaging the trigger 24 and/or the trigger extension notch 37 engaging the interior tube 26. The user can then release the rearward body 12, which will return to its original position via the external spring 44 acting on the retainer 40.
To use the lancing device 10, the user can place the contact surface 21 of the external nozzle 18 on the surface to be lanced, such as a person's skin. The user can then actuate the trigger 24 and the internal spring 32 will propel the lancet holder 34 and, hence, the lancet 20, toward the lancing surface. The needle section 82 will also be propelled through the lancet wall opening 98, through the lancet opening 91, and into the lancing surface, up to the lancing depth. Blood can then be collected from the lanced surface and tested.
Exemplary embodiments of the present invention have been described above. Those skilled in the art will understand, however, that changes and modifications may be made to these embodiments without departing from the true scope and spirit of the invention, which is defined by the claims.