This application is a continuation of PCT/EP2006/010802 filed Nov. 10, 2006 which is based on and claims priority to European Patent Application No. EP 05024477.1 filed Nov. 10, 2005, which are hereby incorporated by reference.
The disclosure concerns a lancing element for collecting body fluid through or over the skin in particular as a disposable part for blood sugar tests comprising a support and a lancing member which rigidly projects therefrom and can pierce the skin in a lancing movement. The disclosure additionally concerns a lancing system in which such a preferably disposable lancing element can be used and a method for skin detection when taking samples in this manner.
A system for withdrawing blood by means of a lancing element having a support-bound collecting unit is known from WO 2005/096941 A1 in which a pressure ring supported on the instrument side exerts pressure oh a finger that is pressed against it in order to provide sufficient blood in the compressed finger area and subsequently reducing pressure to prevent blood from escaping. In order to avoid contamination with blood and ensure an adequate increase of the body inner pressure, the pressure ring must have a diameter matching the dimensions of the finger pad as a result of which the body part is arched in the lancing area. The impact of the needle during the lancing propulsion then makes an inward depression in the skin until finally a lancing channel is generated depending on the skin type and skin thickness of the test subject.
Based on this the disclosure further develops the known systems in the prior art and to optimize a generic arrangement and a method especially with regard to a defined lancing depth where one aim of the invention is also a simplified system design which has advantages with regard to hygiene.
The teachings are based on the idea of pressing in the skin in the area of interaction of the lancing member by means of a skin tightener as an integral component of the lancing element. Accordingly it is proposed according to the disclosure that a pretensioning means which tightens the skin in the area of the puncture site and which has a contact member that impacts the skin during the lancing movement and can move back during this process in the opposite direction to the lancing member, is attached to the support. The contact member provides further points of support on the skin thus improving the pressure distribution in the region of the puncture site. Hence the contact member reduces the skin penetration by the lancing member. The contact member produces a concave or convex bulge of the skin at the puncture site so that the skin penetration by the impacting lancing member is reduced and the puncture channel is immediately generated. The lancing member is released while the contact member resting on the skin makes a relative backwards movement and the skin tightening directly at the puncture site allows the effect of skin-specific variations on the lancing depth to be substantially eliminated. Furthermore, contamination of the device with body fluid can be reliably avoided by the integral arrangement of the contact member on the preferably disposable lancing element. Another important advantage is that the complexity of the system or device and thus also its overall size can be reduced when the skin tightening function is implemented not on the instrument side but rather on the lancing element.
In its initial state the contact member is advantageously arranged in front of the lancing member in the lancing direction and on the skin it is braced by the support against a backwards movement during the lancing movement. This ensures that the lancing member penetrates the pretensioned skin by means of a simple forwards movement. In principle it may also be sufficient for the contact member to be located essentially at the same level as the lancing member such that the skin is tightened at least during entry into the blood generating skin zone.
Another advantageous embodiment provides that the pretensioning means, has an elastically and/or plastically compressible coupling member or one that is held by frictional lock which connects the contact member with the support. This enables an additional forward movement of the lancing element while the contact member already rests against the skin. In this connection it is also advantageous for the production process when the coupling member is formed by a folding arm which can be bent or folded at least one bending point. An additional spring excursion can be provided by supporting the contact member via a spring element.
In order to substantially cancel the contact force during the return movement into a collecting position, it is advantageous when the contact member can be automatically locked in a reset position that is proximally set back relative to the lancing member by means of a locking mechanism and in particular a catch.
It is advantageous for the blood collection when the contact member can be moved together with the support when the support is retracted while reducing or removing the contact pressure on the skin. This reduces the displacement of body fluid by the contact member.
With regard to the production process and the function it is advantageous, when the pretensioning means is attached as an integral component and preferably as one piece to the support. It is particularly preferable when the support, the lancing member and the pretensioning means are formed uniformly from one material as a disposable part. This is also advantageous for hygienic reasons because skin contact only occurs with a sterilizable article that is used once.
A further improvement provides that the lancing element is formed from a flat substrate and is in particular etched and that the pretensioning means is arranged as a part of the substrate in the substrate plane or is bent out of this substrate. Flexures of the contact member can also be advantageously generated from a flat substrate in the production process as arched or folding elements by means of appropriate two-dimensional etching.
According to a further advantageous embodiment the contact member has a point shaped or linear edge contour that can be pressed against the skin laterally next to the lancing member. This should occur as close as possible to the puncture site without colliding with the lancing member. Accordingly it is advantageous when the lancing member can be inserted into the skin at a lateral distance of less than 3 mm and preferably of 1 to 2 mm from the contact member.
In order to adjust the lancing depth, it is advantageous when a stop which limits the lancing depth of the lancing member is attached to or molded onto the support as one piece and has a skin contact surface that impacts at a defined proximal distance to the lancing member during the lancing movement.
In order to adjust the lancing depth, it is advantageous when the length of the stop which projects from the base member can be varied in the lancing direction preferably by means of a bending deformation or adjustable stop positions.
The lancing element can be designed as a simple lancet while a preferably capillary-active collecting structure which extends into the region of the lancing member is advantageous for a simultaneous collection of body fluid.
The invention also concerns a lancing system for collecting body fluid through or over the skin comprising a lancing drive and a lancing element according to the invention that can be moved forwards and backwards by means of this drive in a lancing movement.
A particularly advantageous variant envisages a position detector for detecting the position of the skin, preferably of the tightened skin, during the lancing movement. This enables a very accurate determination of the lancing depth without an “idle path” of the lancing member leading to errors due to skin indentation. The lancing movement can comprise a probing movement with a return movement before penetration or only one single forward and backward movement.
In this connection it is advantageous when the position detector probes the position of the skin tightened by the pretensioning means using the contact member and/or the lancing member as a sensor and when the position detector detects a change in capacitance or conductivity or force when it probes the skin. It is obvious that the lancing member can undertake a detection function by simultaneously being a capacitance, conductivity or force sensor relative to the skin surface.
According to another advantageous embodiment the lancing element is connected to a distance measuring unit which preferably operates incrementally to detect the relative position of the contact member and lancing member.
For a defined lancing process which is thus as pain-free as possible, it is advantageous when the lancing drive has a device, for adjusting the lancing depth of the lancing member relative to a detected reference position of the skin and preferably of the tightened skin.
Another aspect of the invention is to provide a system for skin detection for taking samples of body fluid in which the position of the skin relative to a movement axis of a lancing element is detected by a position detector wherein the skin is locally tightened during the position detection by a pretensioning means of the lancing element. In this connection it is advantageous when the lancing element is moved into a retracted position from the skin after the position detection and then the lancing movement is executed by means of a lancing drive. For the skin detection, the pretensioning means can be formed by a lancing member or a separate contact member of the lancing element. The lancing movement of the lancing element is advantageously controlled according to the detected skin position by a lancing drive in order to set a defined lancing depth.
With regard to the process, the aforementioned object in the sense of a skin detection for taking samples of body fluid in which the position of the skin is detected relative to a movement axis of a lancing element, is achieved in that the skin is locally tightened/during the position detection by a pretensioning means of the lancing element.
In order to execute the lancing movement more dynamically, it is advantageous when the lancing element is moved into a starting position that is retracted from the skin after the position has been detected and before a lancing movement. The pretensioning means can comprise a lancing member or a separate contact member of the lancing element. In this connection it is also advantageous when the lancing movement of the lancing element is controlled according to the detected skin position in order to set a defined lancing depth.
The invention is elucidated in more detail in the following on the basis of the examples of embodiments shown schematically in the drawing:
a-5f show the lancing element according to
a and 8b show a skin sensor on a lancing element in a sectional view in the initial state and lancing state;
a and 9b show an additional ring or finger holder in connection with the lancing element;
a, 12b and 13 show lancing elements with adjustable spacers for adjusting the lancing depth in an illustrative diagram.
The lancing elements 10 shown in the drawing have a support or a base part 12 as a holder, a lancing member 14 projecting from the holder in the lancing direction (distal) that is formed as a point and a pretensioning means 16 as a skin tightener that can be placed on the skin next to the lancing member.
According to
For this purpose the instrument 18 has a lancing drive 26 which moves the inserted lancing element 10, a skin defector 28, a device that interacts therewith for adjusting the lancing depth 30 and further instrument component assemblies such as an analytical unit 32. The blood collected on the test element 10 can thus be utilized on-site for a blood sugar determination in an automated measuring process. Subsequently the used test element is disposed of and a new test element is provided preferably from an instrument magazine to ensure the most hygienic handling.
The test element 10 shown in
The pretensioning means 16 is formed by a contact member 36 which, during the lancing movement, impacts the skin laterally before the lancing member 14 and forms a coupling part 38 which connects the contact member with the support 12. In this manner the pretensioning means 16 is moved together with the support 12 as an integral structure. The point shaped or linear edge contour of the contact member 36 is placed on the skin 22 during the forward movement of the lancing element before the lancing element 10 makes contact with the skin. During the further advance the distal length of the coupling part 38 is elastically and/or plastically deformed by the contact member 36 resting against the skin as it is moved back relative to the lancing member 14 such that the lancing element 14 punctures the previously tightened skin as elucidated in more detail in the following.
In the embodiment example shown in
Whereas in the embodiments according to
After the intended puncture depth that is defined relative to the tightened skin has been reached, the lancing element is retracted in a return movement (arrow 44) to a collecting position that is punctured to a lesser depth. If the folding arm 38 was previously plastically deformed, or held back by a locking mechanism, the contact member 36 follows the return movement as shown in
In the embodiments shown in the following figures, parts that have already been described above are provided with the same reference numerals. According to
According to
a shows the lancing element 10 in combination with a cone or pressure ring 60 as a finger receiver. Such a finger receiver 60 can according to
As shown in more detail in
In order to collect body fluid a skin contact can be firstly detected by the contact member 36 as shown in the left half of
It is also possible that a reference position on the instrument, for example the bearing surface 61 of the ring, is selected as the initial position for the lancing stroke, or it is possible to entirely do without a position detection when the maximum displacement d of the skin with the pretensioning means 16 is considerably less before the needle penetration than the variations of the skin bulge at the ring 60.
The force can be detected before the lancing in a separate probing process or it can be part of the lancing process with a correspondingly more rapid evaluation of the force signal and drive control in real-time.
Embodiments of a lancing element 10 are shown in
In the embodiment according to
Thus, embodiments of the lancing element, lancing system and a method for skin detection are disclosed. One skilled in the art will appreciate that the teachings can be practiced with embodiments other, than those disclosed. The disclosed embodiments are presented for purposes of illustration and not limitation, and the invention is only limited by the claims that follow.
Number | Date | Country | Kind |
---|---|---|---|
05024477.1 | Nov 2005 | EP | regional |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2006/010802 | Nov 2006 | US |
Child | 12118146 | US |